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Abstract

Evaluating the return on ad spend (ROAS), the causal effect of advertising on sales, is critical
to advertisers for understanding the performance of their existing marketing strategy as well as
how to improve and optimize it. Media Mix Modeling (MMM) has been used as a convenient
analytical tool to address the problem using observational data. However it is well recognized
that MMM suffers from various fundamental challenges: data collection, model specification
and selection bias due to ad targeting, among others (Chan & Perry 2017; Wolfe 2016).

In this paper, we study the challenge associated with measuring the impact of search ads in
MMM, namely the selection bias due to ad targeting. Using causal diagrams of the search ad
environment, we derive a statistically principled method for bias correction based on the back-
door criterion (Pearl 2013). We use case studies to show that the method provides promising
results by comparison with results from randomized experiments. We also report a more complex
case study where the advertiser had spent on more than a dozen media channels but results
from a randomized experiment are not available. Both our theory and empirical studies suggest
that in some common, practical scenarios, one may be able to obtain an approximately unbiased
estimate of search ad ROAS.

1 Introduction and problem description

Evaluating the return on ad spend (ROAS) is a fundamental problem in marketing. Many advertisers
use multiple media channels to maximize their reach to potential customers. Media mix modeling
(MMM) is an analytical approach (e.g. multivariate regression) first proposed by (Borden 1964;
McCarthy 1978) using observational data (e.g. price, media spend, sales, economic factors) to
estimate and forecast the impact of various media mix strategies on sales. While MMM has been
adopted by many Fortune 500 companies, various limitations have been well-recognized, for example,
data collection, selection bias, long-term effects of advertising, seasonality and funnel effects, see
(Chan & Perry 2017; Wolfe 2016) for discussion.

A typical MMM at a brand level can be described as a regression model (Jin, Wang, Sun, Chan
& Koehler 2017), where the dependent variable is a key performance indicator (KPI), often sales,
and independent variables include various media inputs (e.g. spend levels, impressions or GRPs),
product price, economic factors, competitors’ marketing activities, etc, usually measured per market
area on the daily, weekly or monthly basis. The value of the model to the advertiser is in the
causal estimates of the set of media effects; causal inference is known to be notoriously hard with

1



observational data (Imbens & Rubin 2015). One of the major challenges to valid causal inference
in MMM is selection bias due to ad targeting. Ad targeting is common across many different media
channels, but is particularly acute in digital channels. Selection bias from ad targeting arises when
an underlying interest or demand from the target population is driving both the ad spend and the
sales. See Hal R Varian (2016) for a formal mathematical description of selection bias.

In reality, advertisers often spend more when there is stronger demand for their product. As a result,
a naive regression which measures the change in sales relative to the change in ad spend leads to
over-estimates of ROAS. A heuristic explanation is that the change in sales could be caused by a
change in either consumer demand or ad spend or both, while the naive method ignores the change in
consumer demand. Evaluation of media effects from observational studies is questionable in general
due to the risk of selection bias and related problems, see (Blake, Nosko & Tadelis 2015; Farahat
& Bailey 2012; Lewis, Rao & Reiley 2011; Lewis & Reiley 2014; Papadimitriou, Garcia-Molina,
Krishnamurthy, Lewis & Reiley 2011) and references therein.

In this paper, we study the selection bias issue in search ads in the context of media mix modeling.
Using causal diagrams of the search ad environment, we derive a statistically principled method for
paid search bias correction in MMM (SBC) based on the back-door criterion from the literature
of causal inference (Pearl 2013). We have carried out various case studies using randomized exper-
imental results as a source of truth, which show that SBC provides promising results. Both our
theory and empirical studies suggest that in some common, practical scenarios one may be able to
obtain approximately unbiased estimation for paid search ROAS without solving all the challenges
in MMM, such as funnel effects and selection bias in non-search media channels.

The rest of the paper proceeds as follows: Section 2 reviews related work; Section 3 describes the
back-door criterion; Section 4 derives our SBC method and Section 5 describes the implementation
procedure; some real case studies are reported in Section 6 in comparison with results from ran-
domized experiments, and in Section 7 a more complex case study is reported;1 the conditions and
limitations of the method are further discussed in Section 8.

2 Related work

There have been several research efforts focused on evaluating search ad effectiveness in the industry.
Randomized experimentation is the gold standard. Some Google research has been reported in this
direction (Kerman, Wang & Vaver 2017; Vaver & Koehler 2011, 2012). See (Blake et al. 2015)
and (Farahat & Bailey 2012) for some examples of large-scale randomized experiments as well
as comparison with non-experimental studies, carried out by eBay and Yahoo respectively. Due
to practical limitations in implementing randomized experiments, the industry has been actively
looking for alternative solutions based on observational studies, aside from media mix modeling.
These can be summarized as follows.

The first type of research makes use of user-level data. The main idea is to compare users who were
exposed to the ads with ones who were not exposed to the ads, either by propensity matching or
covariate adjustment by regression. This type of methods are commonly employed in the industry
but its risk is also well recognized, see examples in (Chan, Ge, Gershony, Hesterberg & Lambert
2010; Gordon, Zettelmeyer, Bhargava & Chapsky 2016; Lewis et al. 2011).

1Disclaimer: All data analysis reported in this paper was done with proprietary Google data and results may not
be the same by using publicly available Google search data.
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The second type of research makes use of aggregate data at a campaign level. The main idea is to
estimate the difference in a KPI that a campaign may have made by comparing the observed KPI
from the campaign with the counterfactual value had the campaign not happened. For example,
researchers at Google (Brodersen, Galluser, Koehler, Remy & Scott 2015; Brodersen & Varian 2017;
Chan, Yuan, Koehler & Kumar 2011; H. Varian 2009) have proposed various parametric models
which use pre-campaign data to predict such counterfactual values.

The third type of research makes use of query-level data (Liu 2012). Liu assumed ad serving
pseudo-randomness between organic search and paid search, and based on that derived an estimate
of incremental value of ad impressions to ad clicks.

The first type of methods is less relevant to this study as MMM-related KPIs are usually hard to
collect at the user level. MMM data usually consist of various campaigns across multiple media,
which rule out direct application of the second type of methods. Liu’s work in the third type is
closest to ours in the spirit of looking into the search ad mechanism. His method is based on
query-level data. Our method works with aggregate data and does not assume randomness in ad
serving.

There are other works on measuring search ad effectiveness, see for example Lysen (2013) for
measuring the incremental clicks impact of mobile search advertising, Sapp, Vaver, Dropsho and
Schuringa (2017) on near impressions, Narayanan and Kalyanam (2015) for measuring position
effects with regression discontinuity and Rutz and Trusov (2011) for using both aggregate data and
consumer level data.

3 Preliminary to Pearl’s causal theory

A causal diagram is a directed acyclic graph (DAG), representing causal relationships between
variables in a causal model. It comprises of a set of variables, represented as nodes of the graph,
defined as being within the scope of the model. An arrow from node i to another node j represents
causal influence from i to j, i.e. all other factors being equal, a change in i may cause changes in j.
Below we first describe an example of causal diagram about search ad and then introduce the key
concept of Pearl’s causal theory that our estimation methodology will be based on.

3.1 Causal diagram for search ads

Consider a simplified causal diagram about how search ads affect sales value (e.g. sales revenue, or
number of sales) based on Google’s search ad mechanism (Hal R Varian 2009) as follows.

Suppose that a user submits a search query (say “flower delivery”) to www.google.com. There are
typically two consequences: 1) the user would see a list of URLs plus a few lines of description in the
main body of the search pages, called organic results, which are ranked by the search engine based
on their relevance to the search query; 2) if the search query matches certain keywords targeted by
a set of advertisers, then the ads to be shown on the page will be chosen by auction. The auction
considers various factors including bid, ad quality and advertiser homepage quality. The user may
click on some URLs from organic results or click on the ads, and then land on some flower delivery
websites to make an order.

For this search event, let A represent the auction factors, Q be the search query controlled by a
search user, P indicate the presence of a paid search impression, and O be organic search results.
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Figure 3.1: A causal diagram for search ad at a query level, where Q stands for the number of
relevant queries, A stands for auction factors, O stands for organic search results, P is the number
of paid search impressions, and Y stands for the sales value.

Given the query Q, O is determined by the search engine2 and P is determined by the search engine
and other parties in the auction. Let Y be the sales value. The causal path goes as follows: 1) Q
has two consequences P and O; 2) P is affected by both Q and A; 3) Y is affected by both O and
P . Therefore intervention on P has direct effect on Y , while intervention on A does not have effect
on Y unless it causes changes in P . The causal diagram can be described by the directed acyclic
graph shown in Figure 3.1.

Note that Figure 3.1 makes an implicit assumption: Given a search query Q, organic search content
does not depend on paid search content - there is no arrow between P and O. This is true for some
search engines like Google (Adwords 2016), but may not hold for other search engines.

In observational studies like MMM, measurements are often only possible for some of the nodes in
the causal diagram. In order to measure the causal effect of ad spend on sales, it is important to first
understand the underlying causal diagram, and then judge whether the causal effect is identifiable
from the partially observed data. The back-door criterion originated by Pearl (1993) provides some
theoretical guidance for this. To make the paper self-contained, we briefly review the relevant theory
in the next subsection.

3.2 Pearl’s causal framework

Pearl’s description of causal diagrams as models of intervention are important to understanding
the concept of causal identifiability that we use. Each child Xi in a causal diagram represents a
relationship

Xi = fi(pai, εi) (3.1)

where fi is a function, pai is the set of parents of Xi and εi is an arbitrarily-determined random
disturbance that must be independent of all other variables and disturbances in the model.

Definition. (Causal effect, Pearl 2013) Given two variables, X and Y , the causal effect of X on
Y , denoted Pr(y | x̌), is a function from X to the space of probability distributions on Y . For

2Per discussion with Hal Varian, personalized search is very limited and is only relevant for repeated searches. See
https://googleblog.blogspot.com/2009/12/personalized-search-for-everyone.html.
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each realization x of X, Pr(y | x̌) gives the probability of Y = y induced by deleting from model
(3.1) the equation corresponding to X and forcing X to equal x in the remaining equations. The x̌
notation indicates “intervene by setting X to x”.

Definition. (Identifiability, Pearl 2013) The causal effect of X on Y is identifiable if the quantity
Pr(y | x̌) can be computed uniquely from any positive probability of the observed variables that is
compatible with the diagram.

Identifiability means that, given an arbitrarily large sample from the joint distribution described by
the causal diagram, the causal effect Pr(y | x̌) can be determined.

Definition. (d-separation, Pearl 2013) A path between two nodes on a causal diagram is said to be
d-separated or blocked by a subset of variables (nodes) Z if and only if either of the two conditions
is satisfied: 1) the path contains a chain i → m → j or a fork i ← m → j such that m ∈ Z, or 2)
the path contains an inverted fork i→ m← j such that m /∈ Z and such that no descendant of m
belongs to Z.

Now the back-door criterion can be stated as follows.

Definition. (The back-door criterion, Pearl 2013) Given a causal diagram, a set of variables Z
satisfies the back-door criterion relative to an ordered pair of variables (X, Y ) in the diagram if: 1)
no node in Z is a descendant of X; and 2) Z “blocks” every path between X and Y that contains
an arrow into X.

Condition 1) in the definition of the back-door criterion rules out covariates which are consequences
of X, and condition 2) makes sure that Z contains the right set of confounding factors. The
back-door adjustment theorem (Pearl 2013) says that if a set of variables Z satisfies the back-door
criterion relative to (X,Y ), then the causal effect of X on Y is identifiable and the causal effect of
X on Y is given by the formula

Pr(Y | x̌) =
∑
z

Pr(Y | x, z)Pr(z). (3.2)

In other words, Z makes it possible to estimate the causal effect of X on Y .

In the example described by Figure 3.1, since there is only one path from P to Y that has an arrow
into P , i.e. P ← Q → O → Y , obviously the node Q (search query) meets the back-door criterion
for the causal effect of node P on Y . This makes it possible to estimate the causal impact of search
ad given proper query level data; Liu (2012) reported some pioneer work in this direction.

Pearl’s framework has the same goal as and can be translated to the counterfactual framework
defined in the Neyman-Rubin causal model (Holland 1986), but it also provides formal semantics to
help visualize causal relationships. See Pearl (2013) for detailed discussion. The back-door criterion
provides a convenient tool for us to identify the proper set of covariates which satisfies the so-called
ignorability assumption in order to identify causal effects from observational data (Rosenbaum &
Rubin 1983). A general identification condition for causal effects has been developed in (Maathuis
& Colombo 2015; Tian & Pearl 2002). Our methodology of selection bias correction for search ads
is based on the back-door criterion and the assumption that ad serving has a random component.

Note that Pearl’s framework puts aside three major questions that we have to address in order to
use it. First, how to construct the causal diagram? Second, can all necessary variables be measured
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accurately, even if they are observable? Third, given finite sample size, what is the functional form
of Pr(Y | X,Z) when identifiability has been established as in Eq (3.2)? The first question requires
deep domain knowledge. The second question may be addressed by careful data validation. The
last question may be alleviated when sample size is sufficiently large to allow for non-parametric
estimates, but in ads measurement, and especially in MMM, datasets are often quite small and so
these practical considerations matter a lot.

4 Methodology

With a focus on overall budget allocation across channels, the standard industry MMM takes as a
given a causal diagram where details of page ranking and the ad auction are ignored. Since search ad
spend and exposures are actually intermediate outcomes influenced by bids, budget and consumer
click behavior, the standard MMM problem is inherently mis-specified for search. We take the
standard MMM problem as a given and show that reasonable results may be obtained even with
this misspecification. We briefly discuss a more realistic causal diagram for search in the Appendix.

We formulate the ROAS problem by starting with simple cases where search ad is the only media
channel that an advertiser has invested. Under some realistic assumptions, we use the back-door
criterion to derive the method of bias correction for the corresponding causal diagram. The theory
and method is then extended to more complex cases.

4.1 Simple scenario

In the simple scenario, search advertising is assumed to be the only advertising channel, and the
contribution of other media channels on sales, if any, is ignorable. Let Xt be the search ad spend for
a particular product sold by an advertiser at time window t and Yt be sales for the product during
time window t. We assume that the impact of search ads on sales occurs within the same period as
the ad exposure.

Consider the model below:

Yt = β0 + β1Xt + εt (4.1)

where the parameter of interest is β1, measuring the expected incremental value of one unit change
in search ad spend Xt but conditional on no change in εt. Here β1 is called the ROAS for search ads.
That is, β1Xt measures the causal impact of search ads on sales, and εt represents other impact on
sales (with the mean absorbed by the intercept β0) which are not explained by Xt.

The major factor which prevents us from obtaining unbiased estimates of β1 by ordinary least
squares (OLS), is the correlation between Xt and εt. This is called the endogeneity problem in
econometrics. Throughout the paper, we drop the subscript t if it causes no confusion.

In fact, by rewriting ε = γX + η, with γ = cov(X, ε)/var(X) and η = ε− γX, we have

Y = β0 + (β1 + γ)X + η.

It is easy to verify that cov(X, η) = 0 and thus the naive estimate β̂1 through OLS has expectation
β1 + γ instead of β1.

To obtain an unbiased estimate of β1, it is critical to understand what ε consists of. An important
contributor to sales is the direct impact from underlying consumer demand, denoted as ε0, which
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can be affected by economic factors and seasonality. Organic search results may contribute directly
to sales, denoted as ε1. Due to ads targeting, organic search content and paid search content are
typically positively correlated, resulting in cov(X, ε1) > 0. To be pragmatic, we model the main
effect as in (4.1). It is often expected that cov(X, ε0) > 0 and thus cov(X, ε) > 0 if ε = ε0 + ε1,
which explains the phenomenon of over-estimation by the naive regression.

Let V be the sufficient statistics to summarize the number of relevant search queries that have
potential impact on the sales of the product. Since different queries may have a different effect on
sales, V is measured as a multi-dimensional time series. Detailed implementation for deriving V is
left to Section 5. When V is measured accurately, based on the search ads mechanism described in
Section 3.1 it is reasonable to assume that

ε1 ⊥ X | V (4.2)

i.e. conditional on the relevant search queries, search ad spend is independent of potential organic
search impact.

Recall that search ads are determined by two parts: search queries are available to match keywords
targeted by the advertiser; the advertiser has the budget to participate in the auction for search
ads. To derive a working example causal diagram, we make two simple and explicit assumptions as
follows:

(a) the advertiser’s budget for search ads is unconstrained, and

(b) conditional on volumes of relevant search queries, the impact of consumer demand or other
economic factors on auction such as the advertiser’s bid and competitors’ actions is ignorable.

Under these assumptions, the causal diagram can be described as in Figure 4.1. The diagram
implicitly assumes both (4.2) and

ε0 ⊥ X | V.

The assumptions above are not unrealistic. Though an advertisers’ budget is always finite, it is
quite common3 that advertisers rely on bid optimization instead of specific budget constraint to
control search ad spend, under which assumption (a) holds. Assumption (b) may be harder to
verify but we suspect it holds in general if advertisers follow the bid strategy described by Hal R
Varian (2009). Furthermore, the assumptions are just examples, under which it is relatively easier
to verify or reject the causal diagram; the assumptions can be relaxed. We consider the scenario
depicted by Figure 4.1 to be the simple scenario.

Theorem 1. Assume that the causal diagram in Figure 4.1 for paid search holds. If X and V are
not perfectly correlated, then under regularity conditions4, search ad ROAS, i.e. β1 in model (4.1)
can be estimated consistently by fitting the additive regression model below:

Y = β0 + β1X + f(V ) + η (4.3)

where f(·) is an unknown function and η is the residual, uncorrelated with X and f(V ).

Proof. There are four paths from search ad spend X to sales that contains an arrow into search ad
as shown in Figure 4.1: X ← V → organic search→ ε1, X ← auction← V → organic search→ ε1,

3https://support.google.com/adwords/answer/2375418?hl=en
4See Bickel, Klaassen, Ritov and Wellner (1998) for the definition of regularity conditions for semiparametric

models.
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Figure 4.1: Causal diagram for paid search (simple scenario), where X represents search ad spend;
A more realistic causal diagram for search ad spend is given in the Appendix.

X ← V ← consumer demand → ε0, and X ← auction ← V ← consumer demand → ε0. It is easy
to check that V satisfies the back-door criterion relative to search ad and sales. According to the
back-door adjustment theorem, the causal effect of X on Y is identifiable by (Y,X, V ).

Let f(v) = E(ε | V = v) and η = ε − E(ε | V ). Now according to model (4.1), the average causal
effect can be identified from conditional expectation:

E(Y | X,V ) = β0 + β1X + E(ε | X,V ).

Due to the conditional independence (ε0, ε1) ⊥ X | V assumed by the causal diagram, we have

E(ε | X,V ) = E(ε | V ).

Then

E(Y | X,V ) = β0 + β1X + f(V ).

By the identifiability theorem of additive index models (Yuan 2011), both f(·) and β1 are identifiable.
Therefore, under regularity conditions, β1 can be estimated consistently by the usual regression
method which minimizes || Y − β0 − β1X − f(V ) ||2 w.r.t. parameters (β0, β1, f) with proper
regularization on f . When f is known to be a linear function, the estimate of β1 is not only
consistent but unbiased.

The model (4.3) falls into the class of semi-parametric models (Bickel et al. 1998), where the
parameter of interest is β1 and the nuisance parameters include f(·) and the residual distribution of
η, assumed to have mean 0 and unknown finite variance. The estimation procedure is described in
detail later. We note that even when the causal effect of search ads deviates from the simple linear
form, the formulation (4.1) may still provide interesting insight regarding the average causal effect.
The result can be extended naturally when the linear form β1X is relaxed to an unknown function,
which is described in Section 5.
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Remark 1. Assumptions (a) and (b) above are special cases where one expects the causal diagram
in Figure 4.1 to hold. Assumption (a) is relatively easy to check. The essential assumption required
by the causal diagram is that search ad spend only depends on the volumes of relevant search queries
and other factors can be treated as noise unaffected by consumer demand.

Remark 2. The assumptions in Theorem 1 are sufficient but not necessary; for example, if search
ad spend only depends on ad budget and is entirely randomized so that assumption (a) is violated,
then model (4.3) can still give a consistent estimate of search ad ROAS as defined in (4.1).

Remark 3. There exists scenarios where the causal diagram in Figure (4.1) does not hold. For
example, weather has dramatic impact on both consumer demand and supply on the fish market
(Angrist, Graddy & Imbens 2000). If weather becomes too bad, it may reduce both consumer
demand and supply dramatically, then there can be a path from consumer demand to X which does
not go through search queries, but through weather and supply assuming that the supply market
advertises on search through auction. In this scenario, search ad ROAS is not identifiable unless
weather or supply is taken into account. See Section 8.2 for a few more counter examples.

4.2 Complex scenario

Now we consider cases where search advertising is not the only channel that may affect sales sig-
nificantly. We let X2 denote all non-search ad contributors, e.g. traditional media channels and
non-search digital channels, which may directly affect sales. Non-search contributors may also trig-
ger consumers to search more online for the product (i.e. a funnel effect). Advertisers might want
to plan budgets for both search ads and other media channels. We use the graph in Figure 4.2 as
an example of causal diagram for such a scenario. As in the case above, this graph is a dramatic
simplification. For example, it does not describe complexity such as historical ads may impact
current sales (lag effect of non-search contributors), and it may ignore potentially weak links not
shown on the diagram.

If search ad spend is not directly correlated with other media spend, but is mostly determined by
the availability of search ad inventory through consumers’ relevant search query volume, then the
causal diagram reduces to Figure 4.3. This holds approximately for many advertisers, for example
when advertisers use bid optimization instead of specific budget constraint to control search ad
spend. Under this approximation, non-search contributors as well as their potential lag effects do
not affect the identifiability of β1.

We derive the simplified theory for the complex scenarios as in Theorem 2.

Theorem 2. (1) Assume that the causal diagram in Figure 4.2 for search ads holds and that X2 has
ignorable lag effect. The causal effect of paid search on sales is identifiable from observational data
(X1, X2, V, Y ). If X1 is not perfectly correlated with V and X2, then under regularity conditions,
search ads ROAS β1 defined in model (4.1) can be estimated consistently by fitting the additive
regression model below:

Y = β0 + β1X1 + f(V,X2) + η (4.4)
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Figure 4.2: Causal diagram for search ad (complex scenario 1)

Figure 4.3: Causal diagram for search ad (complex scenario 2), where the only difference from
Figure 4.2 is the lack of arrow from budget to X1 due to unconstrained budget for search ad spend.
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where

f(v, x2) = E(ε0 | V = v,X2 = x2) + E(ε1 | V = v) + E(ε2 | X2 = x2)

and η is the residual, uncorrelated with X1 and f(V,X2).

(2) If the causal diagram in Figure 4.3 holds, then under regularity conditions, search ad ROAS β1
defined in model (4.1) can be estimated consistently by fitting the additive regression model below:

Y = β0 + β1X1 + f(V ) + η, (4.5)

where β1 is the parameter of interest and f is an unknown function. That is, the estimation procedure
is the same as for the simple scenario described earlier.

Proof. First prove (1). It is not hard to verify by definition that (V,X2) satisfies the back-door
criterion for X1 → Y and thus makes the causal effect of X1 on Y identifiable. Next due to
ε1 ⊥ X1 | V , ε2 ⊥ X1 | X2 and ε0 ⊥ X1 | (V,X2) assumed by the causal diagram, one can show that

E(Y | X1, X2, V ) = β0 + β1X1 + E(ε1 | V ) + E(ε2 | X2) + E(ε0 | V,X2).

Result (2) can be proved similarly.

Remark 4. As mentioned earlier, it is quite common that advertisers put no budget constraint on
search ad spend. This implies that the scenario identified by Figure 4.3 can be more common than
the more complex one identified by Figure 4.2. Practical models for the scenario of Figure 4.2 may
require careful consideration of lag effects in X2.

Remark 5. Note that (X1, V ) does not satisfy the back-door criterion for X2 → Y , since the
path X2 ← consumer demand → ε0 is not blocked. For example, X2 may represent social media
ad spend. This suggests that the causal effect of X2 on sales cannot be estimated consistently by
observations on (Y,X1, X2, V ) only.

Remark 6. It may be worth pointing out that even if one may be able to collect additional variables
so as to satisfy the back-door criterion for X2 → Y , there is no guarantee that one can estimate
the causal effects of X1 and X2 simultaneously from a single regression in traditional MMMs as
described in Jin et al. (2017). If the two subsets of variables that satisfy the back-door criterion
for X1 → Y and X2 → Y separately, are not the same, by regression against all relevant variables
one may obtain uninterpretable results and even Simpson paradox. For example, by conditioning
on unnecessary covariates, one may obtain negative impact for some media while the true impact
is positive.

4.3 Estimation of full MMM

Much of the focus of this paper thus far has been around the estimation of the impact of search ad
(X1). For a practitioner of MMMs, it is also required to estimate the impact of the non-search ad
media (X2). The remarks above note that it would be difficult to obtain general conditions under
which it is possible to estimateX2 consistently, especially if the modeler was to use a single regression
model. Even if the modeler was to use a fully graphical model, estimation of X2 consistently would
remain a challenge due to the conditions that need to be satisfied.
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If the requirement still is to estimate the impact of both X1 and X2 in the MMM, then one possible
approach would be to estimate the impact of X1 first, with the bias correction method applied. The
impact of X1 can then be fixed in the full MMM, and the impact of X2 can be fitted via traditional
means such as described in Jin et al. (2017). The modeler should view the estimated parameters
for X2 fitted via this approach with the same critical lens as if the bias correction method was not
applied at all.

5 Implementation

In this section, we first describe how to collect search query data V , which is not available in
standard MMM data collection, and then describe the model fitting procedure.

5.1 Summarization of search query data

As noted in the previous section, V represents the volumes of relevant search queries that have po-
tential impact on the sales of the product. The total number of relevant search queries is potentially
very large, so it is important to summarize search queries in a way that can be used conveniently
for model fitting. The summarization of V is not straightforward, as the potential impact of each
query term can be different. Below we describe a procedure to summarize search queries based on
their potential impact on organic search results.

Step 1
Identify the advertiser’s website and its top competitors’s websites.

Step 2
Collect all queries over a target region (e.g. US) in a given time window (e.g. last six months).
For each query, count the number of times each URL appears in the organic search results. These
URLs are called destination URLs. The data structure looks like this:

(qi, uj , ni,j)

(qi, uj+1, ni,j+1)

...

where ni,j is the number of times the jth URL appears with the ith query term. Given query qi,
if the set of URLs associated with the query contains the advertiser’s website, then the query is
considered relevant to that advertiser. Let S be the set of relevant queries. Each relevant query in
S may represent a different level of demand for the advertiser’s product.

Step 3
Partition the relevant query set S into three groups according to the mix of URLs that appear for
each query. The destination URLs appearing in the organic results can be classified into four groups:
a) belongs to the advertiser, b) belongs to top competitors, c) does not belong to the advertiser
or its competitors, but belongs to the business category, and d) does not belong to the business
category.

For any query qi, the sum of the number of impressions for the URLs classified into each group can
be denoted as wi,a, wi,b, wi,c and wi,d respectively. Let wi,total = wi,a +wi,b +wi,c +wi,d be the total
impressions for qi and wi,category = wi,a + wi,b + wi,c be the category impressions for qi.
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If wcategory/wtotal is less than a pre-determined threshold, ignore the query as it is less likely to be
relevant to the business category.

Otherwise: if wa/wcategory is greater than a pre-determined threshold, classify it as target-favoring,
else if wb/wcategory is greater than a threshold, classify it as competitor-favoring, else classify it as
general-interest.

This gives us three subsets of queries, say, S1 containing all target-favoring queries, S2 containing
all competitors-favoring queries, and S3 containing all general-interest queries.

Step 4
Given the three sets of queries S1,S2 and S3, we can count the total number of searches for each
query set in each time window t and label it as V1t (target-favoring), V2t (competitors-favoring) and
V3t (general-interest) correspondingly. The sum V1t + V2t + V3t is called category search volume at
time window t.

Empirically we have found that 50% is a reasonable choice for the thresholds required for the above
segmentation procedure. Figure 5.1 shows the scatter plots of queries in terms of wa/wcategory and
wcategory/wtotal for four different case studies, which show clusters on both sides of the vertical line
at 50%. Note that the segmentation procedure is based on domain-knowledge of the advertiser and
the related queries, and could probably be refined.

5.2 Model fitting procedure

Implementation of our SBC method relies on fitting the additive models identified by Theorem 1
and Theorem 2 in Section 4.

For the simple scenario, we approximate the function f(V ) defined in Theorem 1 by an additive
function

∑3
i=1 fi(Vi), where V = (V1, V2, V3). The bias corrected estimation of β1 can be imple-

mented by fitting an additive regression model (Hastie & Tibshirani 1990) through the R function
GAM in the library MGCV (Wood 2012) as below:

Y ∼ β0 + β1X + s(V1) + s(V2) + s(V3) (5.1)

where s(·) is the smooth function as described in Wood (2006).

We adopt the REML algorithm proposed by Wood (2011) which reformulates the additive regression
procedure as fitting a parametric mixed effect model, and is already implemented in the library
MGCV (Wood 2012). Both point estimate and standard error are reported by GAM.

When the number of observations is large enough (which in this paper applies specifically to the case
study in Section 7), instead of approximating f(V ) by an additive function, one can approximate
f(V ) directly by a 3-dimension full tensor product smooth as described in Wood (2006) and estimate
β1 by the regression below:

Y ∼ β0 + β1X + te(V1, V2, V3) (5.2)

where te is the R function in MGCV to implement the full tensor product smooth.

To check model stability, we have also looked at results which replace β1X by an unknown smooth
function s(X), assumed to be monotonically increasing. The results were calculated based on
marginal ROAS as defined in Jin et al. (2017), i.e.

β̂1 =
∑
t

(ŝ((1 + δ)Xt)− ŝ(Xt))/(δ
∑
t

Xt)

13



Figure 5.1: Examples of search query classification, where each dot is for a relevant query, x-axis
shows the ratio wa/wcategory and y-axis shows the ratio wcategory/wtotal (see Step 3 in Section 5.1
for the definition of wa, wcategory and wtotal); In each case, queries on the right hand side of each
vertical red line are grouped as target-favoring.
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This is a non-parametric model fitting procedure. In all case studies below, marginal ROAS point
estimates by this procedure are very much comparable to the estimates from (5.1) but we have not
evaluated the standard errors. Details may be reported in future work.

For the purpose of comparison, we also report the naive estimate fitted by OLS as follows:

Y ∼ β0 + β1X. (5.3)

Consumer demand has a large impact on sales but it is hard to measure directly. Modelers sometimes
use proxy variables to control for the underlying consumer demand, so we also include the demand-
adjusted estimate below for comparison, also fitted by GAM:

Y ∼ β0 + β1X + s(S) (5.4)

where S stands for a consumer demand proxy variable. In the case studies below, category search
volume is used for S.

For the complex scenario described by the causal diagram in Figure 4.3 where there is no direct
correlation between search ad spend and other media spend, it reduces to the simple scenario
according to Theorem 2.

For the causal diagram in Figure 4.2, where there is correlation between search ad spend and other
media spend induced by budget constraints and unblocked by any observable variable, the method
described in (4.4) may be insufficient as we may need to consider lag effects, especially for traditional
media such as TV and direct mail. How to model long-term lag effect is still an active open problem
in the literature (Wolfe 2016). Further research is required for the scenario identified by Figure 4.2.

6 Case studies in simple scenarios

To understand the performance of the proposed SBC method in measuring search ad effectiveness,
it is important to study real cases and compare with ground truth. It is not easy to collect the right
data in practice. Fortunately we have been able to identify various cases where we have access to
both media spend data and outcome metrics. These cases span from simple scenarios where search
ads are known to be the dominating media channel, to a complex scenario, with more than a dozen
media channels, including search ads.

In this section, we report three case studies from three different verticals which all fall into the
simple scenario where search ads are the dominant media channel in terms of spend, and other
media spends are much smaller.5 In each case, the advertiser ran a randomized geo-experiment to
estimate the effect of their search ads. 6

We use experimental results as the source of truth to compare to observational results. For each
of the case studies, we compare various estimation methods: the naive estimate (NE), demand
adjustment by category search volume (SA), the SBC method as described in Section 5. In each of
the three case studies, the data include overall search ad spend, the KPI and search query volumes

5We were able to identify four such cases in total, but the fourth case showed strong lag effect in search ad, requires
a more complex model, and thus is not reported in this paper. More case studies may be reported in the future.

6There are about 200 DMAs in the United States, defined by the Nielsen company. DMAs are first paired according
to comparable demographics and then DMAs in each pair are randomly assigned to the control group or the treatment
group. See Kerman et al. (2017) for the estimation of search ad ROAS from randomized geo experiments.

15



Figure 6.1: Time series of sales, search ad.spend and search query volume (the target-favoring
dimension), simulated from real data in the first case study below, where each time series is rescaled
by its median value.

in the U.S. on the daily basis over a few months. Both search ads spend and KPIs were reported
by the clients, while search query volumes were collected internally as described in Section 5.1. The
outcome variable (KPI) varies across experiments. In case 1, the KPI was offline transaction value;
in case 2 it was the number of inquiries; and in case 3 it was number of site visits. The ROAS values
we report are on the scale of KPI/search dollar.

The time series of each variable in each case follows a clear seasonality pattern, e.g. day of the week,
and seasonal trends – see Figure 6.1 for an example which were simulated from one of the cases. To
keep data privacy, we do not report the scale of each variable, but report some high level summary
statistics such as pairwise correlation and fitted model parameters. Also, for each case study, the
experimental point estimate is scaled to equal one and all results and standard errors are indexed
to that result.

6.1 Case 1

In this case, the advertiser is a medium-size (with annual revenue of tens of millions of USD) retailer.
Search advertising was the only major marketing channel, with no significant spend on other media
channels. We have daily metrics of sales, ad spend and search query volumes for 65 days in 2015.
The left panel in the top row of Figure 6.2 shows the pairwise scatterplot, where the numbers on the
upper panels are the Pearson correlation. For example, the correlation between ad.spend and sales
is 0.91. A simple linear model with ad.spend can fit and predict sales well. The strong correlation
(0.91) between target-favoring search query volume and ad spend in this case suggests that: 1)
there may be strong ad targeting, and 2) the advertiser rarely or never hits the top of their search
ad budget. On the other hand, the correlation between search volume and sales is 0.97.
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(a) Case 1

(b) Case 2

(c) Case 3

Figure 6.2: Report the pairwise scatter plots and correlations between search ad spend, target-
favoring search volume and sales (Left panels) and estimated ROAS (Right panels) for the three
case studies, where NE stands for the naive estimate and SA stands for the demand-adjusted
estimate; EXP stands for the reference value from randomized geo experiments. The bar-lines show
the values of β̂1 ± std.error(β̂1). Both point estimates and standard errors are rescaled by the
original EXP point estimate in order to preserve data privacy.
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First we fit SBC as described in (5.1):

response ∼ β0 + β1 × ad.spend + s(target) + s(competitors) + s(general.interest)

where target, competitors and general.interest represent target-favoring, competitor-favoring and
general interest search query volumes separately. The point estimate of β1 is 3.0 with standard
error 1.02. The fitted smooth function for target-favoring query volume is monotonically increasing
and almost linear (see Figure 6.3(a)). The adjusted R2 value is 0.95. The monotonicity is expected,
but it is interesting to see the fitted curve from data directly without forcing monotonicity in any
way. The fitted function for competitors-favoring search volume on the other hand is pretty flat
and is not statistically significant, while the one for general interest is statistically significant.

The naive estimate of β1 based on OLS (5.3) is 14.7, with std.error 0.83. Using category search
volume to control for seasonal demand, as in model (5.4), the fitted value is 7.1 with std.error 1.51.
These two model fittings have adjusted R2 values of 0.83 and 0.90 respectively.

The advertiser conducted the randomized geo experiments during the second month of the period.
The indexed experimental estimate of ROAS has std.error 0.66 . The naive estimate of ROAS is
almost 15-fold larger than the experimental result. With the simple category-search-volume based
demand adjustment, the gap shrinks but the estimate is still seven times as large. In contrast, the
SBC estimate is much closer to the experimental result. See the comparison in Figure 6.2(a).

6.2 Case 2

In this case, the search ad spend, KPI, search query volumes data are on a daily basis over a period
of about 4 months (135 days). The randomized experiment was carried out in the last 6 weeks.

In this case, the demand adjustment does not reduce the bias much, bringing the estimated ROAS
from 8.4 (with standard error 1.30) to 7.3 (with standard error 1.14). On the other hand, the SBC
estimate is 1.9 with standard error 0.71, much closer to the experimental result with standard error
0.14. See the comparison in Figure 6.2(b). The fitted smooth function for the target-favoring search
volume again is monotonically increasing and almost linear. Like Case 1, the competitors-favoring
search volume is not statistically significant, as shown in Figure 6.3(b). It is noticeable that the
correlation between target-favoring search volume and search ad spend is only 0.47, much lower
than that in Case 1, but the strong correlation between sales and search volume may suggest that
underlying consumer demand or organic search or both have contributed to sales dramatically in
this case.

6.3 Case 3

In this case, the data covers about 3 months (88 days) and the randomized experiment was carried
out in the last 6 weeks.

The SBC estimate of ROAS is 0.8 with standard error 0.28, the naive estimate is 2.9 with standard
error 0.23, while the demand-adjusted estimate is 1.4 with standard error 0.33. See the graphical
comparison in Figure 6.2(c). In this case, the naive estimate is about three times larger than
the experimental result. The demand-adjusted estimate is about half of that, much closer to the
experimental result. As in Cases 1 and 2, taking into account standard errors, the SBC estimate is
again quite comparable to the experimental result. The fitted curve for target-favoring search query
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(a) Case 1

(b) Case 2

(c) Case 3

Figure 6.3: Selection bias explained by changes of target-favoring, competitors-favoring and general
interest search query volumes in Case 1, 2 and 3, where the response curves and 95% confidence
bands for the 3-dim search query volumes are fitted in an additive function as described in the
regression (5.1); the scatter plots are fitted function values plus model residuals.
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Figure 7.1: The correlation structure between daily search ad spend, target-favoring search volume
and sales for Case 4 (a complex scenario), where black, red and green dots represent the scatter
plots (with scales removed) for 2013, 2014 and 2015 respectively.

volume is again almost linear except steeper at the left end and the other two search dimensions
have ignorable impact, as shown in Figure 6.3(c).

6.4 Empirical observations and discussions

All three case studies above provide consistent empirical evidence which validates the theory. First,
a naive estimate of search ad ROAS would lead to significant over-estimation. Second, a demand
adjustment helps reduce the bias but may be far from sufficient. Third, the SBC method provides
consistent selection bias correction and its ROAS estimates are quite comparable to results from
randomized experimental studies.

7 Case study with complex scenario

The advertiser in this case, called Case 4, had spend on more than a dozen different media channels
over the past three years, including both traditional media and digital channels, with search ads
accounting for more than 1/3 of overall ads spend. The ads spend and KPIs were collected on a
daily basis. As in the above cases, time series of search ad spend, search query volumes and sales all
show strong day-of-week patterns. The list of top 4 channels did not change over the three years,
which account for almost 90% of overall ad spend.

The advertiser was never budget-constrained in the auction, so aside from consumer demand, the
two factors determining its search ad volume were its own bidding (and related ad and page quality)
and that of its competitors. Thus we consider Figure 4.3 as a reasonable approximation to the true
causal diagram.

Figure 7.1 shows the pairwise correlation structure between sales, search ad spend and target-
favoring search volume, where the black, red and green colors mark the years of 2013, 2014 and
2015 respectively. The pairwise scatterplots suggest somewhat different correlation between target

20



Naive estimate demand-adjusted SBC SBC (full)
2013 3.43 (.14) 2.09 (.40) 1 (.20) 1.17 (.23)
2014 3.57 (.11) 1.66 (.26) 1.29 (.20) 1.09 (.20)
2015 3.54 (.11) 3.03 (.11) 1.80 (.20) 1.77 (.20)

Table 7.1: Comparison of estimated ROAS for search ad in Case 4: Naive estimate, demand-adjusted
estimate, and SBC for 2013, 2014 and 2015 respectively. Note that SBC (full) stands for results
fitted from the SBC full regression model (5.2), while SBC stands for results from the SBC model
(5.1). Here the SBC point estimate for 2013 is scaled to equal to one and all results and standard
errors are indexed to that result.

and (search ad spend, sales) over the three years. So we fit the models for each year separately
according to the additive form (5.1) and report the results in Table 7.1.

The naive estimates of ROAS do not change much over the years, while the SBC estimates keep
growing and the estimate for 2015 is significantly higher than the estimate for 2013. This may sug-
gest that the advertising effectiveness has been improved gradually, but we do not have randomized
experimental results for reference. The response curves for the search query volumes are reported
in Figure 7.2 for 2014 only, as they are similar for 2013 and 2015. Unlike previous cases, all three
curves are statistically significant.

One might be curious why the response curve for the competitors-favoring search volume is mono-
tonically increasing as one would expect negative impact. It is worth pointing out that the response
curves for the 3-dim search query volumes do not measure the causal impact of search volume on
sales, but are the projection of the sales due to consumer demand, organic search and other non-
search contributors onto the space of search queries, which serve the role of bias correction for search
ad.

Due to the relatively large sample size in this case, we have also been able to fit the full regression
model (5.2), with results comparable to the SBC results from the model (5.1), as reported in Table
7.1.7

8 Discussion

Measuring ad effectiveness with observational media mix data is hard. This research focuses on
search advertising and our major contributions are as follows:

1) By looking into the causal diagrams of search ads mechanism, we have derived a statistically
principled method to estimate search ad ROAS from MMM data for some common scenarios, where
search query data satisfy the back-door criterion for the causal effect of paid search on sales.

2) Somewhat surprisingly, for the scenarios identified by causal diagrams in Figure 4.1 and 4.3,
we have found that data on search ad, relevant search queries and KPIs are sufficient to provide
consistent estimates of search ad ROAS, while data about non-search contributors are not required.
This is unlike traditional media mix models, which usually fit a single regression with all relevant

7We have also performed the analysis on the data aggregated on the weekly basis, and obtained higher estimates
of absolute ROAS values for all methods, probably due to search ad lag effect ignored by the daily-based models.
The effect of bias correction is similar.
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Figure 7.2: Selection bias explained by changes of target-favoring, competitors-favoring and general
interest search query volumes in Case 4 for 2014; in each panel, x-axis represents query volumes
and y-axis represents response values, where the response curves and 95% confidence bands for the
3-dim search query volumes are fitted in an additive function as described in the regression (5.1);
the scatter plots are fitted function values plus model residuals.

media and control variables.

3) We have identified that one major assumption required by the theory is satisfied when search ad
spend is not constrained by its budget, as is common practice in the industry.

4) Empirical studies on real cases in the simple scenario (causal diagram in Figure 4.1) show prom-
ising results, comparable to randomized geo experimental studies; and an empirical study on a
complex case scenario, without comparison to randomized experimental studies, further shows sig-
nificant difference between the proposed SBC estimate and alternative estimates.

We have also validated the theory from various simulation studies based on the simulator designed
by Zhang and Vaver (2017) recently, where scenarios as depicted by causal diagrams in Figure 4.1,
4.2 and 4.3 can be easily generated so that assumptions required by the causal diagrams hold.

However, as in other observational studies, one must be always cautious in interpreting the results
as causal, because it is often hard to validate the assumptions made by the causal diagrams. We
recommend MMM analysts to check with advertisers about the assumptions; budget constraint or
budget planning across all media channels can help explain whether there is any direct relationship
between search ad spend and other relevant variables. Below we list a few situations where we
believe that a straight-forward application of the proposed SBC estimate may be insufficient.

i) Data quality is poor. For example, top competitors are not identified accurately and important
search queries are missing from V . As another example, if ad impressions which did not lead to ad
clicks had significant impact, SBC which is currently based on search ad spend but ignores search
ad impressions, would under-estimate search ad ROAS. If the impact of search ad on the KPI (e.g.
store visits) is not immediate, i.e. there exists significant lag effect, the estimate may be biased.

ii) It may be tempting to incorporate V as an additional control variable into traditional media mix
models as described in Jin et al. (2017). This will most likely reduce the coefficient of search ad,
but the estimate may still be biased.

iii) Existence of strong media mix synergy, where search ad impact may heavily depend on simul-
taneous ad spends in other media channels.
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iv) Existence of significant confounding effect from competitors’ marketing activities while compet-
itors’ information is not available.

v) The global marketing environment changes abruptly due to factors not captured in the model,
and search ad impact is affected correspondingly.

Nevertheless, by introducing Pearl’s causal framework into media mix modeling, our work provides
a new research direction towards measuring media effect truthfully in some practical scenarios. We
expect to extend the research to non-search media as well as to address some of the above issues in
the future.
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Appendix

8.1 A more realistic search causal diagram

Instead of Figure 3.1, a more precise causal diagram for search ad can be described by Figure
8.1.8 Since predicted click-through rate is part of the auction scores, there is a directed edge from
paid clicks to ad rank but at a later time, not shown on the diagram for simplicity. The diagram
suggests that: 1) bids and budgets are the causes while ad spend and ad clicks are the intermediate
outcomes in the MMM problem, therefore, measuring the effect of ad spend on sales may be an
ill-posed problem; 2) Organic rank and organic clicks may be a confounding factor. One could also
imagine paid clicks causing organic search. The more it is advertised, the more people recognize the
brand and the more they search for the brand. So the ad may have impression value that stimulates
searches, but the effect may be weaker.

Instead of using ad spend, a better formulation can be made w.r.t. ad impressions as described in
Figure 3.1. Nevertheless, our case studies suggest that one may still obtain reasonable estimates
under some common scenarios.

We have not studied how to incorporate organic rank into the model because organic rank is often
stable during a short time window. However, it can be used to further improve dimension reduction
of relevant search queries.

One must be cautious in consideration of organic clicks as a confounding factor. As a toy example,
suppose user searches do not change and nothing else changes except that ads grow. Assume no lag
effect and organic rank is stable. Then the effect of ads change (e.g. changing bids or budgets) can
be measured simply by the change in sales. Since organic clicks decrease due to negative correlation
with ad clicks, i.e. cannibalization effect (see (Blake et al. 2015; H. Varian 2009) for real examples),

8This diagram was shared by Hal Varian.
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Figure 8.1: A more precise causal diagram for search ad at a query level, where the dashed edge
between organic click and paid click represents potential cannibalization effect.

bringing organic clicks into the model would bias the estimate. In fact, self-loops are not supported
in Pearl’s causal diagram. To break the loop in Figure 8.1, it looks more reasonable to use the
direction "paid clicks → organic clicks", instead of the opposite, and then organic clicks should not
be controlled according to the back-door criteria.

8.2 More examples where Figure (4.1) does not hold

We provide a few more examples below where condition (b) is violated and the causal diagram
identified by Figure (4.1) does not hold.

Example 1. A movie may have just won a prestigious award. This could have the effect of increasing
both consumer demand (i.e. search queries for the movie) and click-through rates on search ads for
the movie. Then there can be a direct edge from consumer demand to X which does not go through
search queries.

Example 2. Assuming auction factors stay constant, any situation which affects both consumer
demand and click-through rates, can lead to a direct edge from consumer demand to X. The
Equifax data breach9 is one such example, which can cause a loss of confidence in the advertiser,
leading to much lower CTRs and hence lower X.

Example 3. An advertise increases its search ad bids and also reduces its product price due to factors
in its business that have no effect on overall consumer demand, such as a reduction in cost-of-goods.
The advertiser’s sales and search ad volume will go up, but the effect of the search ads on sales is
confounded by its price change and is not identified.

Example 4. An advertiser’s competitor increases its search ad bid and also reduces its product price
due to factors in its business that have no effect on overall consumer demand, such as a reduction
in cost-of-goods. The advertiser’s sales and search ad volume will go down, but the effect of the
search ads on sales is confounded by competitor price changes and is not identified.

9https://www.consumer.ftc.gov/blog/2017/09/equifax-data-breach-what-do
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