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Abstract

In this paper we tackle the marketing problem
of assigning credit for a successful outcome to
events that occur prior to the success, other-
wise known as the attribution problem. In the
world of digital advertising, attribution is widely
used to formulate and evaluate marketing but of-
ten without a clear specification of the measure-
ment objective and the decision-making needs.
We formalize the problem of attribution under
a causal framework, note its shortcomings, and
suggest an attribution algorithm that is evalu-
ated via simulation.

1 Introduction

Advertisers have a primary need to know how
best to allocate their advertising resources to
maximize the return on their investment. In dig-
ital advertising, this often translates into esti-
mating how effective advertising campaigns are
at increasing the number of purchases made by
consumers. This measurement is frequently es-
timated using digital attribution. (Analytics,
2018)

Figure 1: Consumer Path Example

Digital attribution is the process of assign-
ing credit for a successful outcome (known as
a conversion) to observed digital consumer en-
gagements that occurred prior to the converting
event. For example, in Figure 1, the advertiser

would like to know how much credit for the con-
version should be shared between the Display Ad
Impression, Search Ad Impression and a Direct
Navigation to the website. This event level at-
tribution credit may be aggregated across paths
or other event level features, such as a keyword
or geographic location, and used by advertisers
to make decisions about allocating funds.

Advertisers have many choices when it comes
to attribution modeling. The simplest are the
rules-based models: the last event model, which
gives all credit to the event just prior to the
conversion, the first event model, which give all
credit to the first observed event, and the linear
model, which assigns equal credit across all ob-
served events (Analytics, 2017). There are other
more complex models, including various forms of
data driven attribution, such as the one we de-
scribe in this paper.

2 Issues With Current Attribu-
tion Practices

Although popular, and easy to use in practice,
there are significant drawbacks related to the
rule-based models and current attribution prac-
tices. The first is that the concept of credit is
never defined in a principled way and so it is un-
clear what each algorithm is actually trying to
estimate. This leads advertisers to use attribu-
tion results to solve a myriad of problems. For
example, an advertiser may use last-click attri-
bution from a set of data to evaluate the value
of an entire ad campaign, decide how to allocate
spend across multiple advertising campaigns or
even figure out what to bid in an ad auction. By
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not having a strict definition of what an attri-
bution algorithm is trying to achieve, we are left
with an algorithm that is used to solve multiple
problems, while not being suitable to solve any
one of them.

In addition to this ambiguity in the mea-
surement objective, there are additional prob-
lems related to entrenched reporting practices.
Advertisers want an automated and continuous
method of measurement with unequivocal results
that are easy to interpret. These expectations
have lead to the establishment of requirements
for attribution that imply underlying assump-
tions that do not hold in practice and, in fact, un-
dermine the task of measuring ad effectiveness.
These include the requirements:

• credit must add to the total number of re-
ported conversions, both at the path level
and in aggregate,

• credit is non-negative at the event level, and
therefore also at the channel level,

• credit is additive and no credit is explicitly
assigned to ad interactions,

• credit is not assigned to events in non-
converting paths.

These restrictions reflect the desire from ad-
vertisers to have a simple measure of how their
advertising works, but accommodating this de-
sire leads to implicit assumptions that are lim-
iting and unlikely to hold in practice. For ex-
ample, by only considering non-negative cred-
its, attribution models are implicitly assuming
that advertising cannot have a negative effect.
This is reasonable since the goal of advertising
is to drive conversions. However, there can be
instances in which an ad may cause a user not
to buy a product, and if this is the case, this is a
very strong and useful piece of information that
is lost under existing attribution measurement.
This non-negative constraint can also cause is-
sues in the estimation process when advertising
is completely, or close to being, ineffective. Due
to the probabilistic nature of user behavior, hav-
ing some negative credits is appropriate and ex-
pected, even if the overall ad campaign had a

positive effect in expectation. Prohibiting neg-
ative credit from occurring at all places an un-
reasonable constraint on the estimation and can
lead to bias.

Continuing, the fact that attribution meth-
ods attribute a credit to each individual event,
rather than assigning credits to combinations or
sequences of events, also indicates that an inde-
pendence assumption is being made. That is, the
sum of marginal effects are guaranteed to equal
the joint effect of all events only if the underlying
events are independent. This is quite unlikely in
practice, especially if the notion of an advertising
funnel holds true.

Lastly, the notion that it is necessary to ac-
count for every conversion both at the path and
aggregate level can cause serious issues. Namely,
it implies that all relevant events and pieces of in-
formation that went into the decision for the user
to convert is completely observed and present
in the user’s path. That is, if unpaid (non-ad)
events are present in the path then the assump-
tion is that credit that can’t be attributed to
ads can be explained by these observed unpaid
events. If only paid events are present then the
assumption is that no external or user actions
caused the user to convert other than the ob-
served advertising interventions.

This requirement also ignores the user’s
propensity to convert. As an extreme exam-
ple, consider the situation in which only paid
ad events are in the path and these have no im-
pact on user behavior. That is, a user converts
for reasons not related to the ad and thus by
definition the events preceding a conversion are
independent of the conversion status. Reporting
requirements dictate that the credit for the con-
versions will be divvied up among these events
even when we know they had no effect. Data-
driven methods should utilize all information in
the data and, as is the case in Sapp and Vaver
(2016), take the approach of considering non-
converting paths in assigning credit. While this
is a positive step for attribution, the goal of ac-
counting for every conversion remains along with
the problems associated with this expectation.

Beyond these issues with reporting, adver-
tisers often choose an attribution model based
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on preconceived notions about how attribution
credit should be allocated, which can lead to
poor decision-making. A better approach is to
choose an attribution model based on its demon-
strated ability to answer a specific decision-
related question. The approach we take in this
paper is to choose a single measurement goal,
which is to estimate the number of additional
conversions generated by a single ad channel.
Here an ad channel is defined as a grouping of
similar campaigns that the attribution algorithm
treats as equivalent. This is inherently a causal
question, so answering it requires defining core
concepts such as credit in terms of a causal ef-
fect.

3 Attribution Through Experi-
mentation

We take the viewpoint that attribution is actu-
ally trying to estimate the effectiveness of dif-
ferent types of advertising. Namely, to estimate
the effect that an intervention (an ad) has on
an outcome of interest (the conversion) and as
such it is inherently a causal inference problem.
The causal framework we outline is extremely
important as it reflects the goal of attribution
to comment on the effects of actions made by
advertisers not merely to find which events are
correlated with conversions.

Experimentation is the gold standard in causal
inference, so attribution is best understood when
viewed as a broken randomized experiment.
That is, let us imagine what experiment we
would do to estimate the effect of advertising and
then let’s examine how the observed data from
attribution products fit into that experiment.
This approach makes it clear when, and how,
observational methods of measurement, such as
attribution models, are appropriate. It requires
the clear definition of an estimand and makes
it possible to conduct simulation studies, as de-
scribed in Section 7, that can be used to evalu-
ate attribution models with experiments that are
run on simulated path data. Most importantly,
this causal motivation guides the development of
new attribution methods that explicitly resolve

discrepancies between the assumptions of the ex-
periment and the attribution model.

Advertising is often organized such that mul-
tiple ad channels are concurrently active. This
proposal is tackling one of the goals of attribu-
tion; determine how valuable each channel is in
affecting a user’s propensity to convert. It is
hypothesized that for each ad channel there is
a corresponding experiment of interest where in
one arm of the experiment the ad channel is ac-
tive and in the other arm it is inactive. The
attributable value of the ad channel is defined as
the difference between the number of conversions
in the two experimental arms. Note that this
marginal effect of an ad channel is still relevant
when there are multiple ad channels. Each ad
channel can be active or inactive and therefore
has its own marginal effect even in the presence
of other active channels. Additional effects can
be defined with a more complex experiment in
which multiple ad channels are concurrently ac-
tive or inactive. This would allow for measures
of interactions between ad channels.

One such experiment would be a full factorial
experiment in which every combination of the
ad channel is active or inactive. In Appendix
A, we present a proposal that describes a set of
contrasts that measure the relative importance
of each channel across the full factorial experi-
ment by combining main and interaction effects.
This approach is very much in line with that pro-
posed in Shapley (1953) and, although it parti-
tions credit for the aggregate incremental conver-
sions generated by the ad channels, it provides
a different set of information to the advertiser
that is arguably less actionable. This is because
the incremental effect of a channel is directly tied
to an advertiser action of turning a channel on
or off. A Shapley value or the set of contrasts
from a full factorial embedding multiple effects
is, by definition, a measure under many different
advertiser actions. Each combination of adver-
tiser actions represents a particular arm of the
full factorial experiment and, as only one arm of
the experiment or set of advertiser actions can
be taken at any one time, this makes the infor-
mation much less actionable. On the other hand,
this full factorial approach does accomplish the
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goal of providing a systematic objective for allo-
cating conversion credit across paid ad channels
along with a no-advertising conversion baseline.

We tackle one use case for attribution; the ef-
fect of turning a whole channel on or off. This
use-case is in line with estimating the return on
ad spend (ROAS) at the channel level, which can
advise the advertiser regarding the worth of an
entire channel. Unlike existing attribution meth-
ods that assign credit to every event, the pro-
posal addressed in this paper does not estimate
the effect of each ad instance at the ad serving
level. Identifying a credit for each ad event would
be more useful for practices such as bidding on ad
serving opportunities in an auction environment.
However, these credits may not accurately esti-
mate the ROAS of an entire channel. The fact
that current attribution methods often try to an-
swer these two questions simultaneously with one
algorithm is a concern as equivalence exists only
under some strict assumptions. Avoiding this
pitfall is the first step in the systematic design of
an attribution model. Although in this paper we
only consider the ROAS case both questions can
be formulated and answered within the causal
framework proposed.

4 Causal Framework

As we indicated previously, attribution estimates
the impact that an intervention has on an out-
come and so it is natural to view it under the
Rubin Causal Model (RCM) framework (Rubin,
1974). Under the RCM framework we can quan-
tify the causal effect (the estimand), describe
how to estimate this quantity (the estimator)
and list assumptions such that the estimator has
desirable properties such as unbiasedness.

An RCM aims to embed an observational
study into a hypothetical randomized experi-
ment that happens to be broken in that the exact
assignment mechanism of the treatment, in this
case ad exposure, is unknown to the researcher.
This framework also allows us to imagine what
value the outcome metric would have taken for
each experiment arm. While this framework can
be used to describe a multi-arm experiment with

each arm having a single channel turned off, for
exposition purposes, we focus on turning on and
off a single channel in the presence of other chan-
nels that always remain on. This experiment
aims to replicate the behavior and interests of
advertisers who have multiple channels running
on an ongoing basis and would like to know the
marginal effect of a single channel in the pres-
ence of others. Knowing how a channel con-
tributes to the number of conversions can inform
the marginal return on ad spend (ROAS) for that
channel.

For the attribution problem, the experimental
units are individual users who have the potential
to be served ads. In order to make the problem
tractable, and for our inferences to be causal, it is
necessary to make assumptions about the under-
lying data generation process. The first assump-
tion we make is related to how the users and their
corresponding digital histories are sampled:

Assumption 1 (Simple Random Sample
from a Superpopulation)
N users are independently and identically sam-

pled from an infinite superpopulation. This is
equivalent to setting an observation window and
observing all the users with events in the window
where the start and end dates of the window are
independent of the distribution of the collected
data.

The second assumption is about the ad serv-
ing mechanism and it is made by the majority
of existing attribution models (often implicitly),
including the rules-based ones:

Assumption 2 (Stable Unit Treatment
Value Assumption - SUTVA)
There are two components to this assumption.

The first is that there is no interference between
users, and the potential outcomes of one user
are not affected by the treatment assignment of
another. That is, whether or not one user sees
an ad has no influence on whether a different
user converts. Secondly, we assume that there
are no hidden variations of treatment and that
neither the label of treatment or the assignment
has an effect on the potential outcomes. (Imbens
and Rubin, 2015)
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Under these first two assumptions we can
equate the advertiser level experiment of turning
off an entire channel with the individual effect of
an ad at the user level. One consequence is that
an advertising channel can only affect a user if
that user actually sees an ad. This means that
a user will have the same number of conversions
if they do not see the ad when the channel is
active as they would have if the channel was in-
active. This identification allows us to estimate
the effect of turning off an ad channel solely by
observing those users who did and did not see
ads from the channel when it was active.

While it is likely that the first two assump-
tions are required by most attribution models
our third assumption could be relaxed and re-
placed by an alternate modeling assumption.

Assumption 3 (Conditionally the Passage
of Time has No Effect)
Given the sequence of events, whether they be

ads or organic actions by the user, the time be-
tween events is independent of conversion status.
That is, the actual calendar time of the events
does not matter as all of the relevant informa-
tion is contained in the sequence of events.

The consequence of Assumption 3 is that we only
need to consider the sequence of events when do-
ing attribution and not the timestamps of those
said events. We assume this largely for exposi-
tional reasons and the theory outlined here can
be expanded to incorporate temporal informa-
tion.

Our fourth assumption is done so for math-
ematical reasons and is largely inconsequential
as its veracity is confirmed for any problem in
practice.

Assumption 4 (There are a maximum of
J finite number of events in a user’s path)
A user can see an ad for the first time at any
position in the sequence of events in their path,
which is collected across a common observation
window. We assume that each user path contains
a finite number of events that is less than some
integer, J .

From Assumption 4 we see that every user has
the potential to see an ad for the first time at
any position in their path or, alternatively, not
at all. Thus, depending on when a user sees the
ad, they may have a different number of conver-
sions at the end of the experiment or observation
window. These are known as potential outcomes
under the RCM framework. Namely, for each
user there is at a maximum, J + 1 potential out-
comes (number of conversions), depending if the
user saw the ad and in what position they first
saw it. Note that here we are implicitly assuming
that each user has a fixed organic path that only
changes through the intervention of an ad and
does not change through repeated experiments.
This allows us to treat the organic path as a
covariate that is only partially observed depend-
ing on what position the ad was served. We do,
however, allow for the effect of the advertising to
be stochastic and hence the J + 1 potential out-
comes are random variables with each realization
representing the number of conversions resulting
from a realized path.

For every user (and ignoring any user index
for now) we let {Cj | for j = 0, 1, . . . , J} be the
set of these potential outcomes (Splawa-Neyman
et al., 1990; Rubin, 2005) where C0 is defined
as the number of organic conversions (when the
user does not see the ad at all). We also let
Z ∈ {0, 1, . . . , J} be the treatment index that
identifies the position in a user’s path in which
they saw the ad for the first time. Finally, we
let {Uj | for j = 0, 1, . . . , J} be the subsequence
of events that occurred upstream of, but not in-
cluding, the first ad event at position j.

5 Estimand

Under Assumption 2, if a user does not see an ad
when the channel is active then this user should
have the same number of conversions as if the
channel had been inactive. Hence, we can write
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our estimand as

∆ = E(# Conversions when channel is active)

− E(# Conversions when channel is inactive)

= E(
J∑

j=1

1Z(j)(Cj − C0))

=

J∑
j=1

E(Cj − C0|Z = j)P(Z = j)

=
J∑

j=1

∆jpj (1)

where ∆j = E(Cj − C0|Z = j) and pj = P(Z =
j). Note that in the simple binary treatment case
∆j = E(Cj − C0|Z = j) is a standard estimand
known as the Average Treatment Effect for the
Treated (ATT). However, in this case, there is an
ATT for each event number, {∆j | j = 1, . . . , J},
in which a user could see the ad for the first
time. Our estimand, ∆, then is just the aver-
age of these ATT’s weighted by the probability
of seeing the ad for the first time at each event
number.

The issue with any experiment is that only one
potential outcome can ever be observed for each
user. That is, it’s not possible to apply treat-
ment (i.e., show an ad for the first time) at two
different points in the path for any given user,
let alone apply treatment for the first time at
every point in the path for every user. This is
known as the fundamental problem of causal in-
ference (Holland, 1986) and it means that, for
each user in our experiment, we will be missing
all but one of {Cj | for j = 0, 1, . . . , J}. Note
we defined Z as the variable denoting the point
in the path that the ad was served in the real-
ization of the experiment. The definition of Z
along with the following identifiability assump-
tion formally links our potential outcomes under
seeing the ad at any point in the event sequence
and the actual outcome that was observed in the
experiment that took place,

Corollary 1 (Identifiability)

Cobs =
J∑

j=0

Cj1Z(j).

A consequence of SUTVA (Assumption 2) is that
the potential outcomes are statistically identifi-
able because any change in their distribution will
naturally change the distribution of the observed
data.

Our final assumption, Assumption 5, relates
to the ad serving mechanism, otherwise known
as the treatment assignment. Here we assume
that by event number j, we have observed all
of the relevant information related to whether a
user may see an ad or not at that point so that
the treatment status is independent of the value
of the potential outcomes.

Assumption 5 (Strongly Ignorable Treat-
ment Assignment)
For j = 1, . . . , J assume

(C0, Cj) ⊥⊥ 1Z(j)|Uj

and
0 < P (Z = j|Uj = u) < 1

for all u and j = 1, . . . , J .

A consequence of this assumption is that there
are no unobserved confounders. That is, there
are no missing variables that are related both to
treatment and the potential number of conver-
sions. This assumption is required in order to
correctly identify and estimate the causal effect
of advertising. If there was such a confounder it
can easily be seen that any differences in conver-
sion rates between users who saw ads and those
who did not could, perhaps, be partially or fully
explained by the missing confounder.

For our experiment this assumption equates
to saying that the sequence of events upstream
of the ad serving opportunity are all that is re-
quired to estimate the effect of the ad at that
point in the event sequence. In general, this as-
sumption does not hold due to the existence of ad
targeting. It obviously ignores important covari-
ate information, such as age and location, which
are very often used in ad targeting. In order to
align with common practices, and for our com-
parison to be on an even keel with rules-based
attribution algorithms, we restrict ourselves to
only having the sequence of events available.
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However, making covariate information available
is the biggest opportunity for improving attribu-
tion, and the algorithm we describe is easily ex-
tended to a use case in which additional covariate
information is available.

6 Estimation

Our estimator is directly informed from the es-
timand in (1) as we can estimate ∆ via a plug-
in estimator by estimating each ∆j and pj sep-
arately for all j. This is desirable as we have
reduced the rather complicated problem of attri-
bution to estimating the average treatment effect
on the treated (ATT) for a binary treatment,
which is a standard problem.

∆ is the average effect for a randomly sampled
user and hence we do not index by user in defin-
ing ∆. In our estimation, however, we utilize all
experimental units (users) in our experiment and
we use i to index these users.

To estimate pj we simply use the sample mean
in each group

p̂j =
Nj

N

where Nj =
∑N

i=1 1Zi(j), and N is the number
of users sampled as defined in Assumption 1.

In order to estimate ∆j we need to further link
our potential outcomes to the observed data. By
the law of total expectation we see that

∆j = E(E(Cj − C0|Z = j, Uj)|Z = j)

= E(∆(j,Uj)|Z = j)

where ∆(j,u) = E(Cj −C0|Z = j, Uj = u). Then
using (Corollary 1) and (Assumption 5) we find
that

∆(j,u) = E(Cobs|Z = j, Uj = u)

− E(Cobs|Z = 0, Uj = u). (2)

(2) shows that ∆(j,u) can be expressed as the
difference in the mean number of conversions for
users with upstream path, u, who saw the ad at
event j and those users with the same upstream

path, u, who did not see the ad at event j. This
immediately leads to the following estimator,

∆̂(j,u) =
C(j, u)

N(j, u)
− C(0, u)

N(0, u)
, (3)

where C(j, u) =
∑N

i=1 1Zi(j)1Uij (u)Cobs
i repre-

sents the number of observed conversions and
N(j, u) =

∑N
i=1 1Zi(j)1Uij the number of users

who saw an ad in position j with upstream path
u.

We can interpret ∆̂(j,u) as the difference be-
tween sample conversion rates for users with up-
stream path u who saw the ad at time j and
those who did not. In short it is an estimate
of the incremental effect of advertising at time
j on users who have already taken path u. For
the jth event, there are many different possible
upstream paths. We can average over these up-
stream paths to estimate the effect of advertising
for this event number,

∆̂(j) =
∑
u

∆̂(j,u)
N(j, u)

Nj
. (4)

We now have an estimate for the effect of ad-
vertising for each value of j and we can average
over the distribution of when users saw the ad
in order to estimate the overall average effect of
advertising in the treated population,

∆̂ =
J∑

j=1

∆̂(j)p̂j . (5)

Note that this model is equivalent to the one
described in Sapp and Vaver (2016).

To demonstrate how this estimator works we
revisit the path from Figure 1. In this path, we
note that the user saw the Search Ad Impres-
sion1 in the third position in the path, Z = 3,
and had upstream path U = (Direct Naviga-
tion, Display Impression). In Figure 2, we have

1A search ad impression represents the intervention
taken by the advertiser. We are interested in the causal
effect of this impression but attribution models often only
have access to search clicks. As such, under some assump-
tions about the click through rate, search clicks are used
in practice as proxies for impressions even though they
are outcomes and are caused by the intervention.
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aggregated all those paths that have this same
upstream path, and then separated them into
groups that saw an ad in position 3 and those
that did not see an ad at all. From (3) we con-
struct the estimator,

∆̂3,U =
10

100
− 20

500
= 0.1− 0.04 = 0.06.

To estimate the effect of the entire ad chan-
nel for search, ∆, this process is repeated for all
uniquely observed upstream paths to estimate
∆3, and then this process is repeated to find each
∆j .

Figure 2: An Example of Estimation

6.1 Missing Data Bias Adjustment

The estimator in (5) would be sufficient if it
weren’t for a data collection issue that plagues
attribution products. By definition the data
collection system only collects user paths that
have at least one observable event within the
observation window. Some events are not de-
tectable by the data collection process and so
users only enter the database based on whether
they have an observable event in the observa-
tion window. This issue is described in Sapp and
Vaver (2016) in the section Systematically Cen-
sored Users where the authors note the bias of
upstream data driven attribution in the presence
of this censoring.

This censoring would not be an issue if the
censoring affected both treated (those who see
an ad) and control (those who do not see an ad)
users the same. However, given that seeing an
ad is captured by the data collection mechanism
we see that all treated users are observed and
the control users, who do not have an observable
event, will be missing. Hence, using the esti-
mator described in (4) and (5) naively without
adjusting for this censoring will result in a biased
estimate of the causal effect.

This problem only arises in the estimation of
∆1. This is because users who do not immedi-
ately see an ad, i.e., users with j ≥ 2, we know
that the first event in the path must have been
an observable non-ad event. In the estimation
of ∆j the data collection process affects both
treated and control equally as all units entered
the sample due to the first observable event. On
the other hand, estimating ∆1 is problematic be-
cause there is no prior observable event to match
on when constructing a counterfactual control
group. All of the relevant treated users are ob-
served by virtue of seeing the ad, however, not all
users who could have seen the ad, but didn’t, are
observed as some may not have any observable
event in the observation window.

Figure 3: Missing Data Example

This issue is demonstrated in Figure 3 where
both User 1 and User 4 have identical upstream
paths leading up to the start of the observation
window. User 4 should be used in the estima-
tion of the counterfactual control conversion rate
for User 1 but as our observation window did
not encompass any observable events for User 4
they were censored and did not enter the dataset.
The same issue does not exist in estimating the
counterfactual conversion rate for User 2, how-
ever, as there is an observable first event and
hence the counterfactual control path (User 3 )
will also have an observable first event and enter
the dataset.

Since we assumed that the observation window
is selected at random, and given our assumption
that only the sequence of events are informative,
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rather than the passage of time (Assumption 3),
the distribution of upstream paths leading to an
ad should be the same just prior to the start of
the observation window as it is in the observation
window. Hence, the group of users who imme-
diately see an ad can be thought of as a mix-
ture of the treated users, each with varying up-
stream paths or, equivalently, as a random sam-
ple of treated users who happened to have their
upstream path censored. This is illustrated in

Figure 4: Mixture Example

Figure 4 where User A1 and User B1 are indis-
tinguishable in the observation window. If the
window had begun earlier, we would be able to
distinguish them as is possible with User A2 and
User B2. In this example we see that the distri-
bution of the missing upstream paths is the same
as the observed upstream paths in the observa-
tion window.

This property is implied by the assumption
that the passage of time is uninformative given
the event sequence. Under this assumption, and
the fact that the missing upstream paths would
have the same distribution as the observed ones
in the observation window, we can construct the
estimator for ∆1,

∆̂1 =

∑J
j=2 ∆̂(j)p̂j∑J

j=2 p̂j
, (6)

which can be used to compute the first term in
(5). Note that (6) is simply the average effect
of seeing the ad at each position weighted by the
estimated probability of seeing the ad in that po-
sition. Or, equivalently, it is just the estimated
average treatment effect for those who saw an ad
after the first event. This adjustment is a fix to
censoring issue for the UDDA model described
in Sapp and Vaver (2016).

Note that we can test Assumption 3 which un-
derpins the theory behind our calculation in (6).
This is because, although we cannot construct a
counterfactual for the group of users who imme-
diately see an ad, we can compare the observed
conversion rate under seeing the ad with the rate
implied by the mixture. That is, we have two es-
timates of the conversion rate under seeing the
ad, r1, where rj = E(Cj |Z = j). The first esti-
mate uses the sample rate for all users who hap-
pen to see the ad immediately, r̂1, where

r̂j =

∑N
i=1C

obs
i 1Zi(j)

Nj
.

and the second uses the rate implied by the mix-
ture,

∑J
j=2 r̂

j p̂j . We can test to see if these two
estimates are truly estimating the same true pop-
ulation quantity by undergoing a two-sample t-
test utilizing the point and standard error esti-
mates of each method.

7 Evaluation

One way to evaluate the method described in
Section 6 is to see how closely the attribution
algorithm can estimate the true effect of ad-
vertising. This is accomplished by comparing
estimates from the attribution algorithm with
results from corresponding experiments under-
taken on real users. However, this is typically
a costly procedure and advertisers are often re-
luctant to turn off entire ad channels due to the
missed opportunity cost of not serving ads to
potential converting users. Hence, we strive to
provide some level of validation through a simu-
lation study in which we simulate the generation
of user paths and the ways in which these paths
are affected by ads.

To accomplish this we utilize the Digital
Advertising System Simulation (DASS) (Sapp
et al., 2016). DASS models the way in which
users traverse the internet via a non-stationary
Markov process. It generates user level path data
and has the flexibility to do so under many dif-
ferent assumptions about how advertising affects
user behavior. We use DASS to generate sets of
path data for which we can find the true effect
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of an ad channel by allowing simulated users to
experience both arms of an experiment (ad chan-
nel is active/inactive). The difference between
the number of conversions in these two arms is
by definition, ∆, as defined in (1). This exper-
imental ground truth is used to determine how
well an algorithm fairs in estimating ∆ when it
only observes path data from the experimental
arm in which the ad channel is active, as is the
case in practice.

We compare the algorithm described above,
UDDA Bias Adjusted, to the existing algorithm,
UDDA, as described in Sapp and Vaver (2016)
where UDDA stands for Upstream Data-Driven
Attribution. Note that UDDA Bias Adjusted is
functionally identical to UDDA without the bias
adjustment step noted in Section 6.1.

It is important to evaluate an attribution algo-
rithm under many different conditions (e.g., dif-
ferent types of ad impact on user behavior, differ-
ent magnitudes of ad impact, and different mixes
of ad channels) to help ensure that it has the
flexibility to handle situations that are encoun-
tered in practice. See Singh and Vaver (2017)
for a more in depth discussion of model evalua-
tion and the development of evaluation scenarios.
Here we focus on the evaluation scenarios previ-
ously considered by Sapp and Vaver (2016).

In Figure 5 we examine how UDDA Bias Ad-
justed compares with the UDDA algorithm intro-
duced in Sapp and Vaver (2016). This scenario
examines the ability of an attribution algorithm
to identify changes in the effectiveness of Display
advertising. In this scenario, each time a user
sees a display ad impression there is a chance
that the user’s subsequent browsing behavior will
be altered. In moving from left to right on the
x-axis, the effectiveness of the ad is increased in
the sense that users are more likely to favor ac-
tivities that will lead to a conversion (e.g., do an
advertiser-related search or visit the advertiser’s
website). The Truth line indicates the true dif-
ference in the number of conversions between the
two experimental arms in which the Display ad
channel is active versus inactive. The error bars
on the ground truth represents a 95% interval for
the ground truth constructed through repeated
experiments.

Figure 5: This plot is analogous to the first plot
from Figure 6 in Sapp and Vaver (2016) in which
display impressions affect downstream browsing
behavior.

Figure 6: This plot is analogous to the second
plot in Figure 6 from Sapp and Vaver (2016) in
which display impressions affect the probability
of conversion.

Figure 6 has a similar setup to Figure 5 with
the exception that in this scenario the display
advertising only affects a user’s propensity to
convert and does not otherwise alter the user’s
downstream browsing behavior. Again, in this

10



scenario we see that UDDA Bias Adjusted closely
matches the Truth.

Figure 7: Here we visit a scenario in which the ad
serving mechanism targets users differently de-
pending on some covariate information not avail-
able to the attribution algorithm. In moving
along the x-axis from left to right the effect of ad
targeting diminishes to zero as the users become
more homogeneous and hence are more similarly
targeted.

Figure 7 corresponds to a scenario in which
both UDDA and UDDA Bias Adjusted should
have trouble. Poor performance is expected be-
cause there is extraneous covariate information
not available to the attribution algorithms that
is needed to inform both a user’s propensity to
see an ad and their propensity to convert. This
is a violation of Assumption 5. The result is that
counterfactual comparisons may be comparing
groups with different distributions of important
covariates that explain some of the difference in
conversion rates.

As expected, UDDA Bias Adjusted fairs worse
when ad targeting is more prevalent and is unbi-
ased when there is no form of ad targeting. This
is a problem that can’t be fixed by changing the
attribution algorithm. It can only be fixed by
providing the attribution algorithm with covari-
ate data related to ad targeting.

8 Conclusions

In digital advertising, attribution is widely used
to inform a variety of marketing decisions. In
this paper we highlight the need to identify a sin-
gular objective (Section 2) for attribution mea-
surement and propose that advertisers are really
interested in the marginal effect of an ad channel.

In viewing attribution through a scientific lens,
we propose a hypothetical experiment in Section
3 that attribution products might aim to approx-
imate. This experimental viewpoint allows for
the creation of an easily interpretable estimand
of interest (Section 5) which is based on a repli-
cable action by the advertiser (turning off an ad
channel).

In Section 4 we describe the attribution prob-
lem in a causal framework using the Rubin
Causal Model (RCM). The benefit is that this
approach requires us to construct the assump-
tions that are needed to be able to identify and
estimate the estimand (causal effect) of interest.
These assumptions are made so that we can more
easily identify situations in which an attribution
algorithm will do well or fall short in terms of es-
timating ground truth. They also make it easier
to identify avenues for algorithm or data source
improvement. The specific description provided
was largely made for the purpose of demonstrat-
ing how a simple attribution algorithm can fit
into a causal framework. In practice, and de-
pending on the particular attribution environ-
ment, some of these assumptions may not hold
and can be removed, relaxed or extended.

In Section 6.1, we propose a solution for the
problem of working with path data that system-
atically censors users. This issue has plagued
previous attribution algorithms and left them
unusable in practice (Sapp and Vaver, 2016).

In Section 7 we conclude with a simulation
study highlighting the efficacy of the UDDA Bias
Adjusted algorithm. We use the DASS simulator
to compare the estimates of UDDA and UDDA
Bias Adjusted to the Truth and note the vast im-
provement over UDDA due to the missing data
adjustment. In Figures 5 and 6, we see that
UDDA Bias Adjusted improves UDDA and now
all estimates fall within the 95% interval. Addi-
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tionally, in Figure 7 we see improvements when
ad targeting is present and hence there is a large
degree of bias and estimation is difficult. We con-
clude that UDDA Bias Adjusted is a viable solu-
tion to the Systematically Censored Users prob-
lem described in Sapp and Vaver (2016).

In short, we have highlighted issues with cur-
rent attribution practices and algorithms and de-
scribed the attribution problem under a causal
framework. This framework provides a useful
guide for understanding and addressing deficien-
cies in attribution modeling. It should be the ba-
sis for all future attribution model development
efforts.
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A Proposal for Embedding
Synergistic Effects Into One
Measure Per Channel

A.1 Model for two channels

Consider the case of two channels, A and B,
where we can run a full-factorial experiment as
shown in Figure A1. One model formulation is
as follows: 2

Yij = β0+β11i(1)+β21j(1)+β121i(1)1j(1)+εij ,

where the i subscript is for channel A indicating
off or on by 0 or 1, respectively, and the j sub-
script is for channel B similarly indicating off and

2This deviates from the classic analysis of experiments
model where the intercept represents all channels are half
on and half off and where the X-variables are coded as
-1 and +1. However, the proposed formulation provides
easier understanding of the de-duping of credit and how
to adjust to fit into the ROAS reporting requirements.

A B X0 X1 X2 X12

Y00 0 0 1 0 0 0
Y10 1 0 1 1 0 0
Y01 0 1 1 0 1 0
Y11 1 1 1 1 1 1

Table A1: Full factorial experiment for two chan-
nels along with corresponding design matrix X
(last four columns)

on by 0 and 1. This can be written in matrix no-
tation as Y = Xβ+ε where Y is a column vector
given in the first column of Table A1, X is a ma-
trix given in the last four columns of Table A1,
X is a matrix given in the last four columns of
Table A1, β = (β0, β1, β2, β12)

T and ε is a vector
of error terms. 3

Figure A1: Full factorial experiment for two
channels A and B with resulting outcomes Yij

We can solve for β using least squares
β̂ = (XTX)−1XTY where the matrix Q =
(XTX)−1XT is the linear combinations of the
data used to estimate the parameters of the
model. For the two channel case this is given
in Table A2. So, for example, β̂0 = Y00 and
β̂12 = (Y00 − Y10 − Y01 + Y11).

Now consider our estimate for the total num-
ber of incremental conversions:

∆C = Y11 − Y00 = β1 + β2 + β12

3The error terms aren’t particularly interesting here
as the rank of the model equals the number of observa-
tions so estimation of the errors can’t be derived from the
model - although they could be from external sources (i.e.,
estimated from a simulator directly). We will assume that
the errors are negligible.
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Y00 Y10 Y01 Y11
0 1 0 0 0
1 -1 1 0 0
2 -1 0 1 0
12 1 -1 -1 1

Table A2: Q matrix for two channels.

and the estimates of the marginal impact of each
channel (e.g., impact of the target channel when
the other channel is on):

∆C(A;B on) = Y11 − Y01 = β1 + β12

∆C(B;A on) = Y11 − Y10 = β2 + β12.

Clearly, the inconsistency of the marginal im-
pact estimates and the desire that these esti-
mates sum to the total ad-driven conversions is
the double counting of the synergistic or inter-
action effects between the two channels A and B
(i.e., β12). A reasonable solution is to give equal
credit to each channel for the interaction effects.
Hence,

∆A = β1 + β12/2

∆B = β2 + β12/2

which gives the desired property that ∆A +
∆B = ∆C. These adjusted credits can be easily
calculated as linear combinations of the Y ’s:

∆A ≈ (Q2. +Q4./2)Y

= (−0.5,+0.5,−0.5,+0.5)Y

= 0.5(Y10 − Y00) + 0.5(Y11 − Y01)
∆B ≈ (Q2. +Q4./2)Y

= (−0.5,−0.5,+0.5,+0.5)Y

= 0.5(Y01 − Y00) + 0.5(Y11 − Y10).

So now the estimates are the average of the effect
of turning a channel on when the other channel
is on and is off. Referring to Figure A1, this is
for channel A the average effect of moving from
the left side of the square to the right side and
for channel B moving from bottom to top.

A.2 Model for Three Channels

The model for two channels extends easily to
three channels. Here we denote the three chan-

β0 β1 β2 β3 β12 β13 β23 β123
Y000 1 0 0 0 0 0 0 0
Y100 1 1 0 0 0 0 0 0
Y010 1 0 1 0 0 0 0 0
Y110 1 1 1 0 1 0 0 0
Y001 1 0 0 1 0 0 0 0
Y101 1 1 0 1 0 1 0 0
Y011 1 0 1 1 0 0 1 0
Y111 1 1 1 1 1 1 1 1

Table A3: Full factorial design matrix, X, for
three channels.

nels as A, B, and D4 and now use subscript k for
channel D - again 0 indicating the channel is off
and 1 indicating the channel is on. The model is

Yijk = β0 + β11i(1) + β21j(1) + β31k(1)

+ β121i(1)1j(1) + β131i(1)1k(1)

+ β231j(1)1k(1) + β1231i(1)1j(1)1k(1)

+ εijk (7)

Again, this can be written in matrix notation as
Y = Xβ where the X matrix is given in Table
A3. The visualization of the design is given in
Figure A2 and similar to the two channel case
β̂ = (XTX)−1XTY = QY and the Q matrix is
given in Table A4.

Figure A2: Full factorial experiment for three
channels A, B and D with resulting outcomes
Yijk

The estimate for the total number of conver-

4We use D to not confuse C with conversions.
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Y000 Y100 Y010 Y110 Y001 Y101 Y011 Y111
β0 1 0 0 0 0 0 0 0
β1 -1 1 0 0 0 0 0 0
β2 -1 0 1 0 0 0 0 0
β3 -1 0 0 0 1 0 0 0
β12 1 -1 -1 1 0 0 0 0
β13 1 -1 0 0 -1 1 0 0
β23 1 0 -1 0 -1 0 1 0
β123 -1 1 1 -1 1 -1 -1 1

Table A4: Q matrix for three channels.

sions is

∆C = Y111 − Y000
= β1 + β2 + β3 + β12 + β13 + β23 + β123

and for the marginal impact of each channel (i.e.,
impact of the target channel when the other
channels are on) it is

∆C(A;B and D on) = Y111 − Y011
= β1 + β12 + β13 + β123

∆C(B;A and D on) = Y111 − Y101
= β2 + β12 + β23 + β123

∆C(D;A and B on) = Y111 − Y110
= β3 + β13 + β23 + β123.

We have the two-way interaction terms be-
ing double counted while the three-way inter-
action term is triple counted. Applying split
credit across interacting channels gives our ad-
justed credits

∆A = β1 + β12/2 + β13/2 + β123/3

≈ (Q2. +Q5./2 +Q6./2 +Q8./3)Y

∆B = β2 + β12/2 + β23/2 + β123/3

≈ (Q3. +Q5./2 +Q7./2 +Q8./3)Y

∆D = β3 + β13/2 + β23/2 + β123/3

≈ (Q4. +Q6./2 +Q7./2 +Q8./3)Y.

We get the desired property that ∆A+ ∆B +
∆D = ∆C. The detailed estimating coefficients
are given in Table A5. All of these estimates are
weighted contrasts from when a channel is on
vs. off. For the three channel case, turning on a
channel when either all other channels are off or
all channels are on are weighed twice as much as
when only one other channel is on.

Y000 Y100 Y010 Y110 Y001 Y101 Y011 Y111
∆ A -1/3 1/3 -1/6 1/6 -1/6 1/6 -1/3 1/3
∆ B -1/3 -1/6 1/3 1/6 -1/6 -1/3 1/6 1/3
∆ D -1/3 -1/6 -1/6 -1/3 1/3 1/6 1/6 1/3

Table A5: Estimating coefficients for estimating
adjusted (additive) credit for three channels.

A.3 Model for General Number of
Channels

The model is extended to the general case with
p channels. Now the indices denote channels
rather than levels of channels as in the examples
above. The full factorial design can be repre-
sented by the vertices of a p-dimensional hyper-
cube - each vertex representing a combination
of channels on and off. Hence, we have n = 2p

simulation results. Let the n-length column vec-
tor xi represent the on/off settings (0/1) for
channel i. Further, define the n-length column
vectors xij = xixj , xijk = xixjxk, . . . , x12...p =
x1x2 . . . xp. The model,

Yij...p = β0 +
∑
i

βixi +
∑
i<j

βijxij

+
∑
i

∑
j<i

∑
k<j

βijkxijk + . . .

+ β12...px12...p + ε12...p,

can again be represented as Y = Xβ where we
can compute Q = (XTX)−1XT to get the linear
combinations of the Y ’s that estimate the β’s.
The estimate of the total number of incremental
conversions is

∆C =
∑
i

βi +
∑
i<j

βij

+
∑
i

∑
j<i

∑
k<j

βijk + . . .+ β12...p.

While the marginal impact of channel i (turning
ith channel on when all others are already on) is

∆(i; rest on) = βi +
∑
j 6=i

βij +
∑

k<j,k 6=i

βijk

+ . . .+ β12...p.
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All two-way interactions are double counted,
three-way triple counted, . . ., and the p-way in-
teraction is p-times counted. Hence the adjusted
credit for channel i is

∆(i) = βi +
∑
j 6=i

βij/2 +
∑

k<j;k 6=i

βijk/3

+ . . .+ β12...p/p.

These can be easily computed by taking the ap-
propriate rows of the Q matrix, dividing each
row by the appropriate de-duping and then
adding to get the contrast to calculate ∆(i).

References

Analytics, G. (2017). Google analytics help
center: About the default attribution
models. Technical report, Google Inc.
https://support.google.com/analytics/

answer/1665189.

Analytics, G. (2018). Google attribution
capabilities. Technical report, Google
Inc. https://www.google.com/analytics/

attribution/capabilities/.

Holland, P. W. (1986). Statistics and causal in-
ference. Journal of the American Statistical
Association, 81(396):945–960.

Imbens, G. W. and Rubin, D. B. (2015). Causal
Inference for Statistics, Social, and Biomedical
Sciences: An Introduction. Cambridge Univer-
sity Press.

Rubin, D. B. (1974). Estimating causal effects
of treatments in randomized and nonrandom-
ized studies. Journal of educational Psychol-
ogy, 66(5):688.

Rubin, D. B. (2005). Causal inference using po-
tential outcomes: Design, modeling, decisions.
Journal of the American Statistical Associa-
tion, 100(469):322–331.

Sapp, S. and Vaver, J. (2016). Toward improv-
ing digital attribution model accuracy. Tech-
nical report, Google Inc. https://research.
google.com/pubs/pub45766.html.

Sapp, S., Vaver, J., Shi, M., and Bathia,
N. (2016). Dass: Digital advertising sys-
tem simulation. Technical report, Google
Inc. https://research.google.com/pubs/

pub45331.html.

Shapley, L. S. (1953). A value for n-person
games. Contributions to the Theory of Games,
2(28):307–317.

Singh, K. and Vaver, J. (2017). Attribution
model evaluation. Technical report, Google
Inc.

Splawa-Neyman, J., Dabrowska, D., Speed, T.,
et al. (1990). On the application of probabil-
ity theory to agricultural experiments. essay
on principles. section 9. Statistical Science,
5(4):465–472.

15

https://support.google.com/analytics/answer/1665189
https://support.google.com/analytics/answer/1665189
https://www.google.com/analytics/attribution/capabilities/
https://www.google.com/analytics/attribution/capabilities/
https://research.google.com/pubs/pub45766.html
https://research.google.com/pubs/pub45766.html
https://research.google.com/pubs/pub45331.html
https://research.google.com/pubs/pub45331.html

	Introduction
	Issues With Current Attribution Practices
	Attribution Through Experimentation
	Causal Framework
	Estimand
	Estimation
	Missing Data Bias Adjustment

	Evaluation
	Conclusions
	Acknowledgments
	Proposal for Embedding Synergistic Effects Into One Measure Per Channel
	Model for two channels
	Model for Three Channels
	Model for General Number of Channels


