
Text Normalization for Bangla, Khmer, Nepali, Javanese, Sinhala and
Sundanese Text-to-Speech Systems

Keshan Sodimana, Pasindu De Silva2, Richard Sproat1, Theeraphol Wattanavekin1, Chenfang Li3,
Alexander Gutkin1, Supheakmungkol Sarin1, Knot Pipatsrisawat1

1Google,2Google (on contract from Teledirect Pte Ltd),3Google (on contract from Optimum
Solutions Pte Ltd)

{ksodimana,pasindu,rws,twattanavekin,chenfangl,agutkin,mungkol,thammaknot}@google.com

Abstract
Text normalization is the process of converting non-standard
words (NSWs) such as numbers, and abbreviations into stan-
dard words so that their pronunciations can be derived by a
typical means (usually lexicon lookups). Text normalization is,
thus, an important component of any text-to-speech (TTS) sys-
tem. Without text normalization, the resulting voice may sound
unintelligent. In this paper, we describe an approach to develop
rule-based text normalization. We also describe our open source
repository containing text normalization grammars and tests for
Bangla, Javanese, Khmer, Nepali, Sinhala and Sundanese. Fi-
nally, we present a recipe for utilizing the grammars in a TTS
system.
Index Terms: text normalization, text-to-speech, low-
resourced languages

1. Introduction
Recently, text-to-speech (TTS) systems are becoming popular,
powerful and more human-like, thanks to novel techniques like
WaveNet [1] and to the availability of high quality datasets.
These systems have to be able to handle text in various forms,
including text with non-standard words (NSWs) such as abbre-
viations, numbers, and telephone numbers [2]. Typically, the
systems cannot identify the pronunciations of these NSWs by
using a lexicon/dictionary or a letter-to-pronunciation system.
Thus, a text normalization component is needed to identify and
convert any NSWs encountered in the input text into standard
words so that their pronunciations can be easily produced. Cre-
ating a text normalization component for a new language typi-
cally requires a collaboration between native speaker(s) of the
language and an engineer, because it is challenging to find a per-
son with sufficient technical and linguistic knowledge in a target
language. In general, it is important for any teams wishing to
scale their work to multiple low-resourced languages (such as
in an industrial setting) to be able to spend less effort acquiring
linguistic data for each new language.

In this paper, we describe a process for creating a text nor-
malization component for 6 low-resourced languages: Bangla
(Bangladeshi Bengali), Javanese, Khmer, Nepali, Sinhala and
Sundanese. We worked with native speakers in these languages
to create grammar rules for normalizing NSWs from frequent
semiotic classes. These grammars can be utilized by open
source text normalization framework called Sparrowhawk [3]
and be integrated into actual TTS systems. We open sourced
these grammars in the hope that they will empower local com-
munities and researchers who are interested in developing TTS
voices for these low-resourced languages.

The rest of the paper is organized as follows. In the next

section, we discuss related work in the area of text normaliza-
tion and highlight the key contributions of our work in this pa-
per. Then, we describe a process for creating text normalization
component for a new language. In Section 4, we list and ex-
plain the resources that we open source. Then, in Section 5, we
provide a recipe for utilizing these resources in an actual TTS
system. Finally, we end the paper with some discussions and
conclusions.

2. Related Work
Although a considerable amount of work has been done in the
area of text normalization for well-resourced languages, there
is a limited amount of literature devoted to text normalization
for low-resourced languages. A regular expression-based text
normalization system for Bangla is described in [4]. The au-
thors showed that the system had 99% accuracy for tokens in
three classes: floating point numbers, currency and time. An
implementation of tokenization and text normalization compo-
nent for Sinhala using Festival text-to-speech framework is de-
scribed in [5]. A minimally supervised approach to text nor-
malization for Khmer is presented in [6]. However, the work
focused only on number normalization and the system was not
made available publicly. There is no significant work focusing
on text normalization of a wide range of semiotic classes for
Javanese, Nepali and Sundanese. In [7], the authors described
a Bangla TTS system whose text normalization component be-
comes a part of this work. All the text normalization rules dis-
cussed in this paper were written using Sparrowhawk which is
the open source version of Kestrel, a component of the Google
text-to-speech synthesis system [3]. In this system, the text nor-
malization rules are compiled into weighted finite-state trans-
ducers (WFSTs) and applied to input text to produce outputs.

The main contributions of this paper are as follows:

1. we describe a general method for working with native
speakers in identifying patterns and grammars needed to
normalize text,

2. we make available text normalization grammars and
their test cases for a wide range of common semiotic
classes for 6 low-resourced languages,

3. we provide a recipe for utilizing these grammars and for
integrating them into actual text-to-speech systems.

We believe that these contributions could be very useful for
researchers working in the field of natural language processing
for low-resourced languages.

The 6th Intl. Workshop on Spoken Language Technologies for Under-Resourced Languages
29-31 August 2018, Gurugram, India

147 10.21437/SLTU.2018-31

http://www.isca-speech.org/archive/SLTU_2018/abstracts/Keshan2.html

Table 1: Semiotic classes covered by this work.

Semiotic class Description Example inputs (in English)

ABBREVIATION Abbreviations Dr., Mr., Ms.
ADDRESS Address expressions 34 Main st.
CARDINAL Normal numbers 3479, 90,581
DATE Date expressions 3/5/2018, 2018-01-02
DECIMAL Numbers with decimal points 234.79, 11.98
DIGIT Digit sequences which read digit-by-digit 007, 123-4
ELECTRONIC Email addresses and URLs hello@example.com, www.google.com
EMOTICON Emoticons/Emojis :-), 8-)
FRACTION Fractions with numerators and denominators 2

5 , 1 3
4

LSEQ Letter sequences FBI, IMF
MEASURE Quantities with units 10 km, 30 sq.m.
MONEY Quantities with currency symbols $2.5, 7.38$
ORDINAL Ordinal numbers 1st, 3rd
TELEPHONE Phone numbers +(94) 123 4567, 310-200-4791
TIME Time expressions 14:55, 4.33pm
VERBATIM Text that should be read by symbol names ∆X +∆Y

3. Implementing text normalization

Text normalization, as described in this paper, takes segmented
text as input. For languages where words are already sepa-
rated by whitespaces (namely, Bangla, Javanese, Nepali, Sin-
hala, Sundanese), this input is just the plain text. However,
for languages that do not use whitespaces to separate words
(namely, Khmer), the input to the text normalization component
is the output from a word segmenter [8]. Word segmentation is
beyond the scope of this work.

3.1. System structure and semiotic classes

In this study, we follow the structure of text normalization sys-
tem described in [3]. Text normalization is divided into two
phases. First, input text is analyzed and NSWs are classified
into semiotic classes [9]. In this phase, some input tokens may
be grouped together. For example, input text “15 km” may be
grouped together and classified as a measurement token. Then,
verbalizer grammar for each semiotic class will convert the
classified NSWs into standard text accordingly. Table 1 shows
the semiotic classes covered by our grammars. We focused on
these classes because they are commonly found in TTS inputs
and are standard classes implemented throughout TTS systems
for various languages at Google.

After identifying the semiotic classes, we reached out to na-
tive speakers in each language with a questionnaire. The ques-
tionnaire contains a set of questions for each semiotic class. The
questions were designed to capture the writing and verbalizing
system of the language. First, we started with understanding the
basics of cardinal numbers. We ask questions like how to read
numbers from 0 – 20, hundreds, thousands, millions, billions
and other irregular number names. The native speakers can sup-
ply additional information for special numbers not present in the
questionnaire. For ordinal numbers, we ask whether there is any
special prefix or suffix to indicate ordinality and whether any in-
flection is involved when reading these numbers. For date/time,
we ask for all common date/time formats used in the language.
For example, what orderings of year, month, day are possible
and whether the time expressions use 12h or 24h format and
whether there are any time period indicators (such as "a.m." or
"p.m."). For less complex classes such as ABBREVIATIONS,
VERBATIM, and EMOTICONS, we simply asked for transla-
tions of various input symbols in the language.

3.2. Language-specific considerations

When working across many languages, there are many nuances
that we need to be cautious about. In this part of the paper, we
highlight some language-specific considerations that affected
the implementation of text normalization.

• Bangla: Bangla is an inflection language. Therefore, the
grammars need to handle all different inflection cases
properly. Moreover, the language has 4 different time in-
dicators (similar to “a.m./p.m.”) that are commonly used
in time expressions.

• Khmer: Since word segmentation is required for Khmer
prior to text normalization, the grammars need to some-
times cover the possibilities of incorrect segmentation
outputs. The zero-width space character (U+200B) is
used inconsistently in writing and needs to be cleaned
up for lexicon lookup to succeed.

• Nepali: Nepali uses native calendar in addition to the
Gregorian calendar. These 2 calendar systems have dis-
tinct month names. The grammar needs to pay special
attention to indicator words and date formats to identify
the correct calendar system used in each date expression.

• Sinhala: All measurement units are verbalized before the
quantities. For example, the input “10 km” will be ver-
balized as “kilometer ten” in Sinhala.

• Javanese and Sundanese: These 2 languages are rel-
atively simpler, because they use Latin characters and
Arabic numbers. Moreover, their writing and verbaliza-
tion systems are both similar to those of Indonesian. We
most needed to focus on translating words into the target
languages.

Besides the above considerations, all languages in this set,
other than Javanese and Sundanese, have their own alphabets
and digits. Bangla uses the Bengali alphabet. Khmer uses the
Khmer script. Nepali uses Devanagari and Sinhala uses the Sin-
hala alphabet. As mentioned above, Khmer writing contains
inconsistent usages of the zero-width space character. Bengali,
Nepali and Sinhala also utilize zero-width non-joiner (U+200C)
and joiner (U+200D). The use of these unique character sets and
symbols require special attention when classifying and tokeniz-
ing text in these languages.

The unique phenomenon mentioned above show that ask-
ing the native speakers (who often do not have technical back-
ground) the right questions is vital to correctly classifying and
converting NSWs in these languages.

148

Table 2: Example input and output of each step in the text normalization pipeline for Bangla.

Stage Example

Input text $1.20
↓

Classifier output (protocol buffer) money { currency: "usd" amount { integer_part: "1" fractional_part: "20"} }
↓

Verbalizer output (standard words) এক ডলার িবশ ƿসů

3.3. Grammars and unit tests

Based on the answers to the questions, we also obtained test
cases as important by-products of this process. These test cases
are used to create unit tests for the grammars. So, we make sure
to solicit both common and corner cases and include them in
our tests to verify that our rules cover everything correctly.

Once we have the test cases and explanations about how
to classify and verbalize different semiotic classes, we create
grammar rules to do the classification and verbalization. The
grammars that we created are Thrax grammars [10], which
consist of mostly regular expressions and context-dependent
rewrite rules. The grammars can then be compiled with
the Thrax grammar compiler, which turns them into archives
of finite state transducers (known as “FARs” – Finite State
Archives).

First, the input text will be classified into different semi-
otic classes. The output of this classification step is a protocol
buffer1 which contains information about the original token and
its semiotic class. Then, the protocol buffer will be passed to
the verbalizer component, which converts the token into one or
more standard words based on the verbalization rules for the
semiotic class associated with the token.

For example, the classification of input "100 m" will output
the following protocol buffer:

measure { decimal { integer_part: "100" }
units: "meter" }

This protocol buffer indicates that this input text is a kind
of "measure" token. Notice that the protocol buffer contains
sufficient information (in this case, the quantity and the unit)
to verbalize this token at a later stage. The verbalizer will then
take this as its input and apply the rules to convert it into output
text that consists only of standard words, which can be found in
the lexicon.

Inside the classifier component, many languages share the
same rules for some semiotic classes. For example, all 6 lan-
guages have similar formats for telephone numbers; the input
can start with an optional ’+’ sign, followed by a country code
and then a 10-digit number with optional spaces, hyphens and
parentheses in between. Similarly, some of the time and date
expressions share similar formats. For language-agnostic items
such as email addresses, web addresses, symbols (verbatim),
and emoticons, the rules are extensively shared across all lan-
guages. On the other hand, since the outputs of the verbaliza-
tion step are words in the target language, verbalizers have to be
written for each semiotic class in each language. Table 2 shows
an example that illustrates the end-to-end flow of data in our
system in Bangla.

As mentioned earlier, all of our grammars come with unit
tests for individual classifiers and verbalizers. Table 3 lists the
number of test cases for each semiotic class.

1Google’s Data Interchange Format,
http://code.google.com/p/protobuf.

4. Open-sourcing the resources
We have open sourced the implementation of the classifiers and
verbalizers described in the previous section along with the test
cases to verify the rules for all 6 languages mentioned above.
Unless otherwise noted, all original files are licensed under the
Apache License, Version 2.0 [11] and where specifically noted,
some datasets are licensed under the Creative Commons Attri-
bution 4.0 International License (CC BY 4.0) [12].

5. Usage recipe
In this section, we will provide instructions for utilizing our
grammars in an actual TTS system.

5.1. Prerequisites

Bazel: This is the build system we use to compile Thrax gram-
mars. The installation guide is provided in [13].
Language resources: This is the repository that contains the
open source grammars and other helper scripts. Its contents
should be downloaded from [14].

5.2. Compiling and running

There are two ways to run the text normalization system. The
first way is running individual semiotic grammars. The sec-
ond way is running all grammars in an end-to-end Sparrowhawk
system. One may wish to run grammars individually for testing
and debugging purposes. Individual grammars can be compiled
and run with the following commands:

• Compiling a grammar file. This can be done by
$ bazel build //<lang>/textnorm/classifier:
<grammar name>_thrax_compile_grm
For example,
$ bazel build //si/textnorm/classifier:
measure_thrax_compile_grm
would compile the measure classifier grammar for
Sinhala and produce measure.far.

• Building thraxrewrite-tester tool. This is the tool
for utilizing and interacting with the above generated
FAR file.
$ bazel build @thrax//:thraxrewrite-tester

• Using the thraxrewrite-tester tool to run the FAR
file.
$ bazel-bin/external/thrax/
thraxrewrite-tester
--far=bazel-genfiles/si/textnorm/
classifier/measure.far
--rules=MEASURE_MARKUP
This command will display an interactive prompt where
users can enter arbitrary text in Sinhala and receive out-
put from classification using the measure grammar.

149

Table 3: Number of test cases for each semiotic class.

Semiotic class Bangla Javanese Khmer Nepali Sinhala Sundanese

ABBREVIATION 15 n/a n/a n/a n/a n/a
CARDINAL 190 70 274 261 265 70
DATE 66 15 45 16 50 15
DECIMAL 20 10 40 36 36 10
DIGIT 20 19 28 17 17 18
FRACTION 15 18 15 15 14 15
ELECTRONIC 14 n/a 15 22 22 n/a
EMOTICONS n/a 34 35 35 35 34
LSEQ 15 20 24 59 69 20
MEASURE 19 23 174 20 50 23
MONEY 19 16 75 12 37 16
ORDINAL 20 44 n/a 28 19 45
TELEPHONE 12 15 12 12 12 15
TIME 37 14 13 14 14 14
VERBATIM 27 23 28 30 27 23

To run the grammars in an end-to-end system, where
classification and verbalization are applied to each input text,
we need to utilize Sparrowhawk, which is an open source text
normalization system for TTS. Sparrowhawk is distributed
as part of the language resource repository listed under
prerequisites. In the language resource repository, we have
also included necessary files needed to set up Sparrowhawk for
each language. For example, Sparrowhawk configurations for
Sinhala can be found at

https://github.com/googlei18n/
language-resources/tree/master/si/sparrowhawk

Configurations for other languages can be found in their re-
spective folders. To build and run Sparrowhawk for a language,
follow these steps (using Sinhala as an example):

1. Build the files required by Sparrowhawk
$ bazel build si/sparrowhawk:si_sparrowhawk

2. Run Sparrowhawk interactively
$ bazel-bin/si/sparrowhawk/si_sparrowhawk

Sparrowhawk can also be used as a command line tool to
process one input sentence. For example, to process input text
"www.google.com" with Sinhala text normalization, run

$ echo www.google.com |
bazel-bin/si/sparrowhawk/si_sparrowhawk

This method allows Sparrowhawk to be quickly integrated
with any TTS system as it allows users to treat Sparrowhawk
as a component that takes in segmented text and outputs nor-
malized text. The authors of Sparrowhawk also provided in-
structions for integrating it with Festival [15] as well [16]. This
allows users to adds a Sparrowhawk Festival module which can
be used by Festival recipes to normalize text. Describing this
process is beyond the scope of this paper.

6. Discussion
In this work, we focused on creating a set of text normaliza-
tion grammars for 6 low-resourced languages. The grammars
were aimed at covering semiotic classes that were commonly
found as TTS inputs. We ensured good coverage and robust-
ness of our system with unit tests for each component of each

language. A future direction would be to evaluate these gram-
mars more systematically against some standard (unseen) text
corpora so that they can be compared against other text normal-
ization approaches.

Another area for future work is to further improve the cov-
erage of our grammars. For example, currently, our measure-
ment grammars focus on commonly used measurement units in
each language. More units could be included in our grammars
in future versions. For example, we are currently lacking test
cases for abbreviations in many languages. At the same time,
there could be many more specialized classes of non-standard
words that could be added to the grammars. Examples include
flight numbers, bank account numbers, highway numbers, etc.
The importance of these other classes varies from language to
language and warrants further investigations.

7. Conclusions
In this paper, we described a process for creating text normaliza-
tion grammars for low-resourced languages. Moreover, we pre-
sented text normalization grammars, both classifiers and verbal-
izers, for 6 low-resourced languages: Bangla, Javanese, Khmer,
Nepali, Sinhala, and Sundanese. These grammars, along with
test cases, are available for free to the public. We also described
a process for testing and utilizing these grammars through Spar-
rowhawk text normalization system.

8. Acknowledgments
We would like to thank Daan van Esch and Viviana Montoya for
creating the questionnaire that was used as a basis of our work.
We would also like to thank Pattara Sukprasert, Khan Md An-
warus Salam, Saroj Kumar Dhakal, Jaka Aris Eko Wibawa, and
Makara Sok for their contributions to creating text normaliza-
tion grammars presented in this paper.

9. References
[1] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,

A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“WaveNet: A Generative Model for Raw Audio,” in Arxiv, 2016.
[Online]. Available: https://arxiv.org/abs/1609.03499

[2] R. Sproat, A. W. Black, S. Chen, S. Kumar, M. Ostendorf, and
C. Richards, “Normalization of Non-Standard Words,” Computer
Speech and Language, vol. 15, no. 3, pp. 287–333, Jul. 2001.

[3] P. Ebden and R. Sproat, “The Kestrel TTS text normalization sys-
tem,” Natural Language Engineering, vol. 21, pp. 333–353, 2015.

[4] F. Alam, S. Habib, and M. Khan, “Text normalization system for
Bangla,” in Conference on Language and Technology, 2009.

150

[5] R. Weerasinghe, A. Wasala, V. Welgama, and K. Gamage,
“Festival-si: A Sinhala Text-to-Speech System,” in Text, Speech
and Dialogue, 10th International Conference, TSD 2007, Pilsen,
Czech Republic, September 3-7, 2007, Proceedings, 2007, pp.
472–479.

[6] K. Gorman and R. Sproat, “Minimally supervised number nor-
malization,” Transactions of the Association for Computational
Linguistics, vol. 4, pp. 507–519, 2016.

[7] A. Gutkin, L. Ha, M. Jansche, K. Pipatsrisawat, and R. Sproat,
“TTS for Low Resource Languages: A Bangla Synthesizer,” in
10th edition of the Language Resources and Evaluation Confer-
ence, Portorož, Slovenia, May 2016, pp. 2005–2010.

[8] V. Chea, Y. K. Thu, C. Ding, M. Utiyama, A. Finch, and
E. Sumita, “Khmer Word Segmentation using Conditional Ran-
dom Fields,” Khmer Natural Language Processing, pp. 62–69,
2015.

[9] P. Taylor, Text-to-Speech Synthesis. Cambridge University Press,
2009.

[10] B. Roark, R. Sproat, C. Allauzen, M. Riley, J. Sorensen, and
T. Tai, “The OpenGrm Open-source Finite-state Grammar Soft-
ware Libraries,” in Proceedings of the ACL 2012 System Demon-
strations, ser. ACL ’12. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2012, pp. 61–66.

[11] “Apache license, version 2.0,”
http://www.apache.org/licenses/LICENSE-2.0.

[12] “Creative Commons Attribution 4.0 International License,”
https://creativecommons.org/licenses/by/4.0.

[13] “Installing Bazel,” https://docs.bazel.build/versions/master/ in-
stall.html.

[14] “Google Internationalization Language Resources,”
https://github.com/googlei18n/language-resources.

[15] A. W. Black and P. A. Taylor, “The Festival Speech Syn-
thesis System: System documentation,” Human Commun-
ciation Research Centre, University of Edinburgh, Scot-
land, UK, Tech. Rep. HCRC/TR-83, 1997, avaliable at
http://www.cstr.ed.ac.uk/projects/festival.html.

[16] “Integrating Sparrowhawk with Festival,”
https://github.com/google/sparrowhawk/tree/master/
documentation#integrating-sparrowhawk-with-festival.

151

