
Learning Effective Embeddings for Machine
Generated Emails with Applications to Email

Category Prediction
Yu Sun*

Twitter
ysun@twitter.com

Lluis Garcia-Pueyo*

Facebook
lgp@fb.com

James B. Wendt
Google

jwendt@google.com

Marc Najork
Google

najork@google.com

Andrei Broder
Google

broder@google.com

Abstract—Machine generated business-to-consumer (B2C)
emails such as receipts, newsletters, and promotions constitute
a large portion of users’ inboxes today. These emails reflect
the users’ interests and often are sequentially correlated, e.g.,
users interested in relocating may receive a sequence of messages
on housing, moving, job availability, etc. We aim to infer (and
eventually serve) the users’ future interests by predicting the
categories of their future emails. There are many useful methods,
such as recurrent neural networks, that can be applied for such
predictions, but in all cases the key to better performance is
an effective representation of emails and users. To this end,
we propose a general framework for learning embeddings for
emails and users, using as input only the sequence of B2C
templates users receive and open. (A template is a B2C email
stripped of all transient information related to specific users.)
These learned embeddings allow us to identify both sequentially
correlated emails and users with similar sequential interests. We
can also use the learned embeddings either as input features
or embedding initializers for email category prediction tasks.
Extensive experiments with millions of fully anonymized B2C
emails demonstrate that the learned embeddings can significantly
improve the prediction accuracy for future email categories.
We hope that this effective yet simple embedding learning
framework will inspire new machine intelligence applications that
will improve the users’ email experience.

I. INTRODUCTION

One common question raised in many applications including
recommendation systems, digital assistants, and personalized
content delivery is what users will be interested in next. We
aim to answer this question with users’ email data. Every
day, millions of business-to-consumer (B2C) emails, including
coupons, booking confirmations, payment receipts, etc., are
sent to users. These B2C emails often reflect user interests,
e.g., users interested in investing may receive many emails
on financial market analysis, while others who enjoy online
shopping may receive many coupon emails and shipping noti-
fications. Causal threads [1] also exist among the emails users
receive, e.g., for a travel thread users may first receive emails
regarding flight tickets, then a hotel booking confirmation,
followed by car rental receipts. We propose to exploit the B2C
emails users receive and the correlation among these emails to
predict which B2C emails users will receive next, and hence
discover what users will be interested in next.

* Work done while at Google.

A recent study conducted by Yahoo! Labs reports that 90%
of today’s non-spam Web Mail traffic is machine generated [1].
The majority of B2C emails are also created by automatic
scripts, i.e., by populating a fixed template with transient
components showing, e.g., the name of customers, shipping
date, amount of payment, etc. [2], [3]. By clustering similar
B2C emails together and removing the transient components,
we can extract the underlying template. We propose to use the
extracted template to replace the actual emails, because this
not only protects user privacy, but also retains a higher signal-
to-noise ratio since the templates summarize many emails and
are less noisy.

Given that the template category (e.g., Travel or Sports
News) is an even higher-level abstraction of various templates,
in this paper, we focus on predicting the categories of future
email templates users will receive. In particular, the first
prediction task we study is (i) to predict users’ email categories
in a future time window, say three days, while the second (ii)
is to predict the next email category that users will open and
read.

The email category prediction tasks are of particular inter-
ests because they have a wide range of potential applications,
including improved user experiences (e.g., warning users of
items ordered but not shipped), targeted advertising (users who
recently made a flight reservation may be interested in hotel
reservations), and spam classification (an email that is part of
a legitimate causal thread is unlikely to be spam). We further
investigate the second task because recent studies reveal that
many B2C emails are unread or deleted without being read [4],
[5] and reading suggests a stronger interest.

To solve the above two prediction tasks, many predic-
tors and classifiers such as neural networks can be used,
where the prediction accuracy largely relies on the input
feature representations. Therefore, in this paper, we focus
on (i) obtaining effective representations for email templates,
template categories and users through a simple, general and
unified embedding learning framework, and (ii) investigating
the performance enhancement such representations can bring
to the above two email category prediction tasks. We are
interested in a general representation of the templates and users
such that they can also be used in many other downstream
tasks including identifying and bundling together emails of the

same causal thread and finding users with similar interests.
The way we generate the template and user representations

is inspired by the embedding learning framework that gen-
eralizes the word embedding approach [6] and focuses on
items and their contexts [7]. Specifically, with users’ email
data, we first (i) generate template and user sequences from
which we obtain contexts for each template/user, and then (ii)
adapt the word embedding approach [6], [8], which uses a
single-layer neural network and negative sampling, to learn the
embeddings. With the template embedding, we can discover
templates that are similar or sequentially correlated by finding
their nearest neighbors in the embedding space. For example,
in our experiments the top-3 nearest neighbors of the Travel
category are Hotel, Travel Insurance, and Airport Parking (cf.
Table II for more case studies). Similarly, we can also find
users with similar sequential interests with the user embedding.
We solve the two email category prediction tasks with long
short-term memory (LSTM) and multilayer perceptron (MLP)
architectures, respectively. Empirical experiments demonstrate
that, when we use the learned embeddings as input, the predic-
tive performances for the two tasks are significantly improved
especially for less frequent but more important categories such
as Hotel and Car Rental. The main contributions of this paper
are summarized as follows.
• We propose a general embedding learning framework for

generating representations of templates, template cate-
gories, and users based on email data. With the learned
embeddings, we can discover sequentially correlated tem-
plates or users with similar sequential interests.

• We investigate different ways to use the learned embed-
dings with LSTM and MLP for email category predictions
and establish that it is effective to use the learned embed-
ding either as input features or as embedding initializers.

• We conduct extensive experiments with millions of B2C
emails. The results confirm that with the learned em-
beddings we can find interesting clusters containing se-
quentially correlated templates or users having similar
sequential interests. The results also show that the learned
embedding can significantly improve the predictive perfor-
mances for email category predictions.

II. RELATED WORK

A. Obtaining Email Templates

Inferring the templates of machine generated B2C emails
is an active area of research. Ailon et al. [1] propose finding
such templates by recognizing frequent word sub-sequences
in the email subjects sent by the same source, e.g., Your order
#xxx-xx is on its way. Avigdor-Elgrabli et al. [2] extend this
approach, identifying templates by clustering emails based on
their HTML structure. Proskurnia et al. [9] propose inducing
templates from plain text emails using suffix arrays.

There are also many email-related applications utilizing
such templates. For example, Wendt et al. [10] and Potti
et al. [11] exploit templates for various email classification
tasks. Sheng et al. [12] use induced templates to extract

structured data from email, such as Hotel Confirmations and
Bill Reminders. Bendersky et al. [13] exploit the template
structure and associations between templates and query terms
to improve searching over personal emails.

B. Email Prediction

An important application with email templates is to predict
users’ future emails. Ailon et al. [1] propose to identify B2C
emails that are part of a causal thread, e.g., receipts for online
shopping → a shipment notification → item tracking emails.
They propose to build a causal graph for the templates where
edges indicate potential causal relations and then use a learned
causal relation function to identify future emails’ threads.
Inspired by the causal threads between B2C emails, Gamzu et
al. [14] further study the problem of predicting which email
templates users will receive in future time windows. Their
technique first finds the causality relations between templates
and then with the uses these relations to build a generative
model which is similar in spirit to a k-dependent Markov
chain [15]. Since there could be millions of different templates
while only thousands of template categories, the problem
studied by Gamzu et al. is harder and different than the email
category predictions we concentrate on. The closest work
related to ours is the work of Zhang et al. [15], where they
investigate using neural networks such as LSTM and MLP to
predict the email categories users will receive in future time
windows. We will introduce their work in detail in Section V-A
and compare their approaches in our experiments.

Another thread of work is to predict user actions on received
emails. Di Castro et al. [4] study the problem of predicting
whether a user will read, reply, forward, or delete a received
email using both local features related to the email and inbox
and global features related to the sender (e.g., reply ratio
of emails sent from info@twitter.com). They integrate
vertical learning (i.e., for a specific user) with horizontal
learning (i.e., for a cluster or all users) to address the skewed
distribution of the number of training examples from heavy
and light users. The difference between our work and that
of Di Castro et al. [4] is that we aim to predict the arriving
category of a future unseen email, for which we cannot obtain
either the local or global features. In other words, the email
category prediction is before the arrival of an email, while
predicting the action is after and the arrived email is used as
model input. The integration of vertical and horizontal learning
is in principle similar to our approach of using a pre-trained
embedding in the sense that they both attempt to transfer the
information of some prior representations and aim to alleviate
the imbalance of training data for heavy/frequent and light/rare
users/categories.

C. Embedding Representation

The focus of our work is to learn effective representations
of email templates and users that can be effectively used in
the email category prediction tasks. Obtaining an effective
representation for categorical features, words, or items has
been actively studied for decades [16], [17]. Many widely

used techniques such as matrix or tensor factorization [18],
[19], topic modeling [20], and graph embedding [21] can be
thought of as approaches for obtaining such representations.
The recent success of word embedding [6], [8], [22] and
image captioning [23] draws special attention to the approach
of learning representations using neural networks. The key
methodology is to use vectors of the (last) hidden layers as
the learned representations. The word embedding generation
method proposed by Mikolov et al. [6], [8] uses a word to
predict its surrounding words or its context with a single layer
feed-forward network and train the embedding over a large
corpus with efficient training techniques such as hierarchical
softmax or negative sampling. Rudolph et al. [7] generalize the
above approach to a general embedding learning framework
focusing on an item and its context. Our embedding genera-
tion framework resembles the word embedding approach and
focuses more on constructing the input features (i.e., contexts
of items).

III. PRELIMINARIES

A. Email Template
A large amount of B2C emails are created by filling a

fixed template with transient components related to individual
users (e.g., user names). The underlying templates can be
extracted by clustering similar emails and matching the fixed
components in the same cluster (cf. Section II-A for detailed
discussions). Using the templates instead of actual emails has
several advantages: (i) Since a template is a generalization of
a large amount of emails, the inferred category of a template,
i.e., the majority category of the represented emails, is often
more accurate. (ii) The signal-to-noise ratio is higher, since
templates are normally only extracted when the size of a
cluster is above a chosen threshold (say 100) and hence
random and noisy emails are automatically filtered. (iii) Using
templates protects users’ privacy since all sensitive information
(e.g., names, addresses) is removed. In this paper, we will
use emails and email templates interchangeably since we use
templates to represent all actual emails.

B. Problem Definition
We study the problem of obtaining a dense and continuous

representation of B2C email templates, template categories,
and users from email data and effective ways of applying
such representations to email category predictions. Herein, we
simply use emails to refer to B2C emails since all the emails
we focus on are B2C emails. For email category predictions,
we are interested in the categories of future emails users will
receive and, one step further, will open and read. In particular,
we focus on two types of prediction tasks:
(i) Receiving-based prediction. Given users’ previously re-

ceived emails, predict the email categories users will
receive during the next few days (which many contain
multiple emails).

(ii) Interest-based prediction. Given users’ previously
opened email categories, predict the next email category
(only the next one) users will open and read.

Formally, let each email template e have three attributes: a
category c(e) ∈ C where C is predefined and fixed, a received
timestamp t(e) ∈ R, and an indicator o(e) ∈ {0, 1} of whether
it was opened or not where 1 indicates opened.
(i) Receiving-based prediction. Given a collection of h

received emails {eu1 , eu2 , . . . , euh} for a user u with t(eui) ≤
tp, predict the category c(eu) ∈ C∆ in the set of email
categories C∆ = {c(eu) | t(eu) ∈ (tp, tp + ∆]} user u
receives within time window ∆ (e.g., three days) starting
from the prediction time tp.

(ii) Interest-based prediction. Given a collection of s opened
emails categories {c(eu1), c(eu2), . . . , c(eus)} with o(eui) =
1, predict the category c(eus+δ) of future emails eus+δ that
user u will open and read, i.e., o(eus+δ) = 1 for δ ∈ N+.

IV. EMBEDDING LEARNING

In this section, we first discuss the desired properties of the
embedding and then introduce the framework for embedding
learning. To the best of our knowledge, this is the first work
that studies template and user embeddings derived from email
data.

A. Desired Properties of the Representation

To obtain a dense and continuous representation, we project
the templates/users into a continuous vector space and repre-
sent the templates/users as embedding vectors. In the embed-
ding space, we want the template embedding vectors to have
the following properties: (i) Templates of similar functionality
or category, e.g., food templates about Chinese, Japanese
and Vietnamese cuisine should be close to each other. (ii)
Sequentially correlated templates should also be close to each
other. For example, templates about flight tickets should be
close to those about hotel bookings. We require this property
because such sequential correlation is essential to generate
high quality email category predictions.

We also want the user embedding to have similar properties:
(i) users interested in common email categories (e.g., Invest-
ing, Shopping, Traveling) should be close to each other and (ii)
users who have similar sequential interests, i.e., receiving and
opening similar emails after reading similar previous emails,
should also be in close proximity. Another property for the
template/user embedding learning is (iii) that the learning
process should be efficient and can easily scale to a large
number of templates/users.

B. Embedding Learning Framework

Inspired by the representation learning method [7] that
generalizes the word embedding approach [8], [6], [22], we
develop the following embedding learning framework for
templates, template categories, and users with the desired
properties.

(i) Obtaining item sequences. From users’ email data,
we first obtain sequences of templates, template categories,
or users. The detailed methods of obtaining such sequences
will be discussed in the following sections. In this section, for
convenience, we will simply use an item to refer to a template

xi

Lookup table of
size |V| ×D

Embedding vector for xi

Negative
sampling

Negative
sampling

Negative
sampling

Negative
sampling

.

xi−ω xi−1 xi+1 xi+ω.

Fig. 1. Embedding learning framework

or a user and denote an item by x. A sequence of length L is
denoted by x1, x2, . . ., xL.

(ii) Predicting the context. A key method of the word
embedding approach [8] is to use an item to predict its
surrounding items, which is referred to as the context of the
item [7]. The objective for this approach is to maximize the
average log probability of the context items given the center
item, i.e.,

max
1

L

L∑
i=1

∑
−ω≤j≤ω,j 6=0

log p(xi+j |xi) ,

where L is the length of a given sequence and ω is the size of
the context. Let V be the vocabulary and D the dimension
of the embedding space. Let Mx be the row vector of
matrix M corresponding to item x. The conditional probability
p(xi+j |xi) can be computed by the following softmax function

p(xi+j |xi) =
exp

(
Wxi+j

ETxi
+ bxi+j

)∑|V|
k=1 exp

(
Wxk

ETxi
+ bxk

)
where W ∈ R|V|×D is the weight matrix (where the rows are
indexed by items), E ∈ R|V|×D is the item embedding matrix,
and b ∈ R|V|×1 is the bias vector.

(iii) Negative sampling. The above formulation to com-
pute the conditional probability p(xi+j |xi) can be inefficient
because the denominator involves all the items in the vocab-
ulary and we need to compute this conditional probability
for every learning step, which makes the approach above
inapplicable to a large number of sequences. Therefore, we
use the technique of negative sampling [8], which is adapted
from the Noise Contrastive Estimation (NCE) that presumes an
effective model should be able to differentiate true labels from
noise [24]. When learning the embedding, negative sampling
helps to differentiate the true context items from several
randomly sampled negative items when making predictions
with the centered item using logistic regression. Negative
sampling computes the log probability in the objective function
by

log p(xi+j |xi) = log σ
(
Wxi+j

ETxi
+ bxi+j

)
+
∑K
n=1 Exn∼Pneg(x)

[
log σ

(
−WxnE

T
xi
− bxn

)]

where σ(x) = 1/[1 + exp−x] is the sigmoid function, K is
the number of negative samples, and Pneg(x) is the distribution
with which we sample the negative items. Figure 1 illustrates
the process of embedding learning. By the end of this process,
the embedding matrix E contains the learned representations
for each item.

C. Template Embedding

To generate email template embeddings bearing the de-
sired properties described in Section IV-A, we propose to
exploit the collective and common sequential behavior patterns
among a large number of users. In particular, we propose
to utilize the email template chains generated by each user.
A template chain is a series of email templates one user
receives sequentially. Each template chain (i) reflects the
sequential causality among email templates obtained from that
user’s sequential behaviors and (ii) retains template similarity
information obtained from that user’s continuous interests.
Specifically, the templates eui user u receives form a template
chain

Eu = eu1 → eu2 → . . .→ eu|Eu| ,

where the templates are ordered by their received timestamps,
i.e.,

t(eui) < t(eui+1) for i = 1, 2, . . . , |Eu| − 1 .

We use the collection of all the sequences {Eu|u ∈ U} as
input (features) to the embedding learning process described
above.

The obtained template representation using such template
sequences will have the desired properties described in Sec-
tion IV-A because: (i) Similar templates often appear in
the same contexts, e.g., various types of video games of-
ten appear in the context of ordering gaming consoles and
purchasing other video games. In the embedding learning
process, templates frequently appearing in the same contexts
will be projected to positions with close proximity. Therefore,
similar templates will be close to each other. In other words,
the frequent occurrence of such template-context patterns
helps the learning of an effective representation despite of
the interleaving of different email causal threads (e.g., order
received→ air-ticket receipt→ item shipped→ hotel booking
confirmed → item review request → dinner reservation).
(ii) By utilizing the contexts obtained from template chains,
templates frequently appearing in the same context are often
sequentially correlated. For example, Car rental and Sight-
seeing are sequentially correlated, and they often appear in
the same context of Hotel booking and Air-tickets purchase.
Therefore, sequentially correlated templates will also be close
to each other. (iii) Using negative sampling to replace the full
softmax function will significantly improve the computation
efficiency and hence enable the embedding learning for a large
amount of templates.

To learn embeddings of template categories, we can simply
replace the templates with their categories in the template
sequence.

D. User Embedding

Next, we discuss the approach to obtaining user embed-
dings. B2C emails are sent from companies to users and com-
panies send the same email templates to users when users have
the same requests or interests. Therefore, for email category
predictions, it indicates a type of close connection among users
when they receive the same email template around the same
time. For example, some users may frequently shop online
during weekends or like purchasing items that are on-sale
(within a limited period) and thus they will receive payment
confirmation and item shipping emails around the same time.
Some users may enjoy taking vacations during holiday seasons
(e.g., Christmas) and hence receive flight check-in and hotel
check-out emails at similar times. Based on this observation,
we collect together the users who have received and opened
the same B2C email templates and organize these users into a
sequence where the users are ordered by the time they received
the template. Formally, for a template e, the user sequence
formed by e is

Ue = ue1 → ue2 → . . .→ ue|Ue| ,

where t(eui) ≤ t(eui+1) and o(eui) = 1 .

Note that a user may appear multiple times in the sequence
if she has received and opened the template multiple times.
The learned user embedding using such user sequences as
input will have the desired properties because the contexts
are formed by users with connections due to similar behaviors
or interests and such connections also consider the temporal
or sequential information.

Comparing the user sequence and template sequence, we
can observe that user sequences are the inverse or transpose
of template sequences in that: (i) the template sequences are
formed for individual users while the user sequences are for
each template; (ii) the template sequences represent emails
received by each user while the user sequences are formed
by emails sent by companies; (iii) the template sequences
are created partially due to the causality of users’ sequential
behavior while the user sequences are in part created by the
strategy of companies sending notifications or confirmations.
Using both the template and user sequences, the majority of
the information from users’ email sequences is exploited.

V. EMBEDDING FOR EMAIL PREDICTION

In this section, we describe prediction models for email
category predictions, with which we show how the learned
embeddings can be used in downstream applications.

A. Embedding for Receiving-based Prediction

Recall that given users’ previously received emails, the
receiving-based email category prediction is to predict the
email categories users will receive in the next few days.
For this prediction task, an existing work [15] has shown
that the long short-term memory (LSTM) produces better
prediction performance than the Markov-chain based method.
The used LSTM [25] has multiple layers of memory blocks

e1 e2 eE

feature processing feature processing feature processing
+ + +

template embedding template embedding template embedding

LSTM LSTM LSTM
memory memory memory

softmax softmax softmax

. . .

Fig. 2. LSTM for email category prediction

and applies the dropout technique [26] to the connections
between different layers. Specifically, let hlt be the vector of a
hidden state at layer l at time step t. The transformation from
input hl−1

t and hlt−1 to output hlt by an LSTM block at layer
l is:

hdt = D(hl−1
t)

it = σ
(
Wih

d
t + Uih

l
t−1 + bi

)
ft = σ

(
Wfh

d
t + Ufh

l
t−1 + bf

)
ot = σ

(
Woh

d
t + Uoh

l
t−1 + bo

)
ct = ft � ct−1 + it � tanh

(
Wch

d
t + Uch

l
t−1 + bc

)
hlt = ot � tanh(ct)

where D is the dropout operator that sets a random subset
of the input hl−1

t to zero, it, ft, and ot are the input, forget,
and output gate vectors, ct is the cell state vector, and W, U
and b are the weight matrices and bias vector, respectively.
The operators σ and tanh represent the sigmoid activation
function σ(x) = 1/[1 + exp(−x)] and hyperbolic tangent
activation function tanh(x) = [1−exp(−2x)]/[1+exp(−2x)]
respectively, and � represents the Hadamard product (i.e.,
element-wise multiplication).

The output layer uses an affine transformation and a softmax
function to compute the probability distribution over all cate-
gories (detailed in the Section V-B). We can train this LSTM
with back propagation through time.

The input layer (i.e., features) consists of the template
category feature and several temporal features. The category
feature is represented as a one-hot encoding vector (i.e., a
|C|-dimensional vector where the c(e)-th component equals 1
while all others are 0 for a category c(e) ∈ C). The temporal
features are the day of week, period of month, and timestamp
gap, which are represented as a 7-dimensional one-hot vector,
3-dimensional one-hot vector, and a real value, respectively.

For this task, we can add the email template embedding
as an additional feature, i.e., append the template embedding
vector to the input layer. Figure 2 illustrates such a configura-
tion. Since the template embedding contains the information
of similarity and sequential correlation among templates, the
pre-trained embedding will be an informative feature for this
prediction task.

B. Embedding for Interest-based Prediction

Different from the receiving-based prediction, given users’
previously opened email categories, the interest-based predic-
tion task is to predict the next email category users will open.
To the best of our knowledge, there is no existing model
designed specifically for this task. Therefore, to explore a
different type of network infrastructure, we propose to use
a multilayer perceptron (MLP) for this prediction task. MLP
is the simplest form of a deep network and has shown to be
effective in many applications [27].

Specifically, the MLP we use for the interest-based pre-
diction task is as follows. The connections between layers
are fully connected, and the neurons are rectified linear units
(ReLUs), i.e.,

hl = max(Wl−1hl−1 + bl−1,0) ,

where hl is the state of the neurons at layer l and W and b
are the weight matrix and bias vector, respectively. Let ho be
the state of the output layer. We obtain a |C|-dimensional logit
vector z from ho with another affine transformation

z = Wzho + bz .

The predicted probability r of being opened by users over the
|C| categories is computed by a softmax function

r = σ(z) , where σ(z)i =
exp(zi)∑|C|
j=1 exp(zj)

.

We also apply the dropout technique at the last hidden layer
during training. We use the cross-entropy loss and train this
MLP with back propagation.

In the previous receiving-based prediction task, we use the
template embedding as an additional feature, to investigate the
predictive power and effectiveness of the learned embedding,
we use only the embedding vectors as features for this interest-
based prediction task. We also use the user embedding as
features for this task since the user embedding is obtained
from open emails. Figure 3 illustrates the configuration of the
prediction model.

In this setting, there are two approaches to using the
learned embeddings. One approach is to use the embeddings as
features, which means the embedding is fixed during training
and the update through back propagation is not applied to the
embedding (i.e., input) layer. The other approach is to use
the learned embeddings as initializers for the corresponding
sparse feature embeddings, which are model parameters and
normally apply random initialization (with this approach we
can also obtain a new embedding that is adapted to the task
at hand). We will investigate the different ways of using the
learned embeddings in the next section.

VI. EXPERIMENTS

Data sets. The data set we use for experiments is from
Gmail, and consists of data from 273,000 anonymized users
and 35 million B2C emails spanning 90 days. Each email has
an artificial identifier (ID), an anonymized artificial user ID,

user embedding
category

embedding
category

embedding

softmax

u c(eu1) c(eus)· · ·

· · ·

.

...

...

...

Fig. 3. MLP for email category prediction

a template ID, a category label, a received timestamp, and an
indicator of whether the corresponding email was opened or
not. All other information and attributes including the entire
content of the email are removed to protect users’ privacy. The
email template is obtained using the techniques introduced in
Section II (i.e., by clustering email subjects and matching the
fixed components in the same cluster). The category label is
from a pre-defined taxonomy used by Gmail.

Embedding learning. For all embedding learning, we use
the unigram (item frequency) distribution with the frequency
raised to the 3/4rd power as the negative distribution Pneg(x)
(since empirical experiments show that this distribution out-
performs unigram and uniform distributions [8]). We use the
mini-batch stochastic gradient decent method to train the
embedding. Unless stated otherwise, the number of negative
samples is set to 100, the context size (i.e., number of left or
right items to be considered context) is set to 1, and we train
the embedding with a batch size of 128 and an initial learning
rate of 0.05 with linear decay for 100 epochs. We implement
all the algorithms with TensorFlow.

A. Experiment on Receiving-based Prediction

We first conduct experiments for the receiving-based pre-
diction.

Setup. To compare with the existing work [15], we use
the email templates of 18 categories including coupon, event,
shopping, etc. We split the data into training and testing data
at the 45 day midpoint. We use a prediction time window
of 3 days and generate about 1.7M training and 490k testing
instances with the data of 43k users. We learn the template
embedding with template ID sequences and use the learned
template embedding as an additional feature. To investigate
the effectiveness of an embedding learned with general data,
we sample another 64k users and use the template sequences
in the training half of (in total) 107k users to learn the template

TABLE I
PERFORMANCE WITH TEMPLATE EMBEDDING

Category SR@1 MRR

LSTM LSTM+Emb LSTM LSTM+Emb

Overall 0.8808 0.8853 0.9270 0.9301

Coupon 0.8018 0.8003 0.8803 0.8790
Event 0.2892 0.2863 0.5413 0.5422
Shopping 0.2692 0.2800 0.5071 0.5125
Tracking 0.0860 0.0895 0.2919 0.3051
Newsletter 0.4540 0.4631 0.6556 0.6519
Flight 0.0428 0.0649 0.2114 0.2345
Hotel 0.0267 0.0648 0.1675 0.2042
Restaurant 0.0162 0.0243 0.1221 0.1460
Car Rental 0.0244 0.0320 0.1105 0.1314

embedding. The template embedding dimension is set to 200,
context size set to 5, and training epochs set to 10. We use
an LSTM with one hidden layer and set the dropout ratio
to 0.1 since in such setting the LSTM model has the best
performance [15]. We train the LSTM with 10 epochs and a
batch size of 50.

Metrics. We use the success rate at one (SR@1) and
mean reciprocal rank (MRR) to measure the performance. Let
T be the set of testing instances. Let c(τ)

1 , c
(τ)
2 , . . . , c

(τ)
|C| be

the predicted categories in decreasing probability for testing
instance τ ∈ T , and let L(τ) be the set of true categories
the user receives within the predictive window. The SR@1
measures the portion of instances where the first predicted
category is one of the true categories, i.e.,

SR@1 =
|{τ | c(τ)

1 ∈ L(τ)}|
|T |

.

The MRR evaluates the ranking quality of the predicted
categories and is computed by the mean of the inverse rank
of the first correct prediction, i.e.,

MRR =
1

|T |
∑
τ

1

min{k | c(τ)
k ∈ L(τ)}

.

1) Results: Table I reports the results of the LSTM model
(LSTM) proposed by [15] and the LSTM model with the
additional template embedding feature (LSTM+Emb). We
can see that overall (for all the 18 categories, shown at the
third line of Table I), after adding the template embedding
feature, the performances measured by both SR@1 and MRR
are improved. This demonstrates that the information carried
by the template embedding on the similarity and sequential
correlation among templates is indeed helpful for predicting
the future email categories.

To investigate the effect on each category, we also train a
separate model for each of a few randomly selected categories.
The results, in decreasing category frequencies, are listed in
the lower half of Table I. We can see that, for high frequency
categories such as Coupon and Event, adding the template
embedding even slightly deteriorates the performance. This
might be due to the fact that a high frequency category
corresponds to many templates, which in turn results in many

similar or sequentially correlated templates, and this large
amount of templates imposes much noise which distracts
the LSTM. For many low frequency categories, however, the
performance is significantly improved. Although this may be
in part due to the usage of more features, another possible
reason is that with the template embedding we can find many
similar templates which also have correspondence with the low
frequency category, and this indirectly increases the number
of low frequency categories. For some categories, e.g., Flight
and Hotel, the improvement is relatively larger than other
ones. This may be because these categories have a stronger
sequential correlation with other categories and the sequential
information carried by the template embedding helps more
for their predictions. Many of these low frequency categories
are often of higher interest and importance because they often
correspond to more important personal activities than close-
to-spam advertisements. Predicting the arrival of these low
frequency categories is also in general more difficult than
those high frequency ones. The fact that using the pre-trained
embedding can significantly enhance the prediction for these
low frequency categories demonstrates the effectiveness of the
proposed techniques. For the Newsletter category, although
the number of training instances is lower than Event etc., the
model’s predictive performance for this category is better. This
may be because many news letters are sent out periodically
and the used temporal features can be quite informative in this
respect. For this category, adding the template embedding still
improves the performance in terms of SR@1.

B. Experiment on Interest-based Prediction

Next, we evaluate the effectiveness of the learned embed-
ding with the interest-based prediction task.

Setup. For this task, we consider only the emails opened
by users and use 80% of the opened emails for training, 10%
for validation, and 10% for testing. We use the previous 30
opened categories to predict the next 1 category that will be
opened and generate 5.6M training, 720k validation, and 680k
testing instances. To investigate more fine-grained correlations
among email categories, we use more than 1,400 template
categories such as Jobs, Football, and Computer Components.
We obtain template category sequences only with the training
data and set the dimension of template category embedding
to be 32. Unless stated otherwise, by default, we use an MLP
with 3 hidden layers with all the hidden layer sizes set to
512 and use a dropout ratio of 0.1. We train the MLP with
the Adagrad stochastic gradient descent [28] with an initial
learning rate of 0.005 and a batch size of 4096 for 150,000
steps (approximately 110 epochs).

Metrics. We measure the performance by accuracy
(accuracy) and recall at 5 (recall@5). Let ζ(τ) be the true
category that the user opens next for a testing instance τ ∈ T .
The accuracy measures the portion of correct predictions and
is computed by

Accuracy =
|{τ | c(τ)

1 = ζ(τ)}|
|T |

.

TABLE II
NEAREST NEIGHBORS OF CATEGORY EMBEDDING

Email category Top-3 nearest neighbors in the embedding space

Travel Hotel Travel Insurance Airport Parking
Open Source Scripting Language Data Management Machine learning
Weight Loss Nutrition Low Carbohydrate Diet Fitness
Babies Baby Care Baby Feeding Pregnancy
Career Planning Internship Jobs Recruitment
Basketball Sports Training Sports News Football
Computer Hardware Monitors Flash Drives Computer Components

0.454

0.456

0.458

0.460

0.462

50 80 100

R
e
c
a
l
l
@
5

Portion of Users (%)

PEAF
UETIP
PUEAI
PUEAF

Fig. 4. Cold-start situations

0.200

0.202

0.204

0.206

0.208

0.210

1 2 3 4

V
a
l
i
d
a
t
i
o
n

A
c
c
u
r
a
c
y

Number of Hidden Layers

ETIP PEAI PEAF

(a) Validation accuracy

 0.41

 0.42

 0.43

 0.44

 0.45

 0.46

1 2 3 4

V
a
l
i
d
a
t
i
o
n

R
e
c
a
l
l
@
5

Number of Hidden Layers

ETIP PEAI PEAF

(b) Validation recall@5

Fig. 5. Effect of the number of hidden layers

The recall@5 evaluates the predictions at the first five positions
and equals

Recall@5 =
|{τ | ζ(τ) ∈ {c(τ)

i | i = 1, . . . , 5}}|
|T |

.

Compared methods. We compare the methods of (i) using
a sparse feature embedding trained in the training process
(ETIP), (ii) using the pre-trained (learned) embedding as an
initializer for the sparse feature embedding (PEAI), and (iii)
using the pre-trained embedding as fixed f eatures (PEAF), as
discussed in Section V-B.

1) Results: We first investigate the category embedding in
the embedding space. Table II shows case studies for a few
randomly selected categories, where we list their top-3 nearest
neighbors in the embedding space. We can see that the results
are quite interesting and the category embedding does present
the desired properties described in Section IV-A, which require
that similar and sequentially correlated items are close to each
other. For example, for users interested in Weight Loss, they
may also be interested in Nutrition and Low Carbohydrate
Diets and they may later or have already registered as a
Fitness gym member. With the learned embedding, we can also
discover interesting patterns, e.g., the sequential correlation
between Travel Insurance and Airport Parking.

We then study the effect of hyper-parameters of MLP.
Figures 5 and 6 show the validation performances of different
methods when we vary the number and size of hidden layers,
respectively. From Figure 5, we can see that the performances,
measured by both accuracy and recall@5, of ETIP first in-
crease and then decrease with the increase of the number of
hidden layers, while the performances of PEAI and PEAF
keep increasing with a slower increase rate. We can also see
from Figure 6 that with the increase of hidden layer sizes the

0.190

0.195

0.200

0.205

0.210

128 512 1024V
a
l
i
d
a
t
i
o
n

A
c
c
u
r
a
c
y

Hidden Layer Size

ETIP
PEAI
PEAF

(a) Validation accuracy

 0.41

 0.42

 0.43

 0.44

 0.45

 0.46

128 512 1024V
a
l
i
d
a
t
i
o
n

R
e
c
a
l
l
@
5

Hidden Layer Size

ETIP PEAI PEAF

(b) Validation recall@5

Fig. 6. Effect of hidden layer sizes

accuracy and recall@5 of all the three methods increase with
a slower increase rate. These experiments indicate that it is a
valid choice to set the number and size of hidden layers to be
3 and 512, respectively. We can also see that, under all these
different settings, the relative validation performances of the
three methods remain consistent, with PEAI and ETIP having
the best and worst performances respectively and PEAF lying
in between.

Figure 7 plots the training loss of different methods against
the training steps. We can see that the training loss of PEAI
and PEAF is on average smaller that of ETIP. This indicates
that using the pre-trained embedding, either as an initializer
or features, can help obtain a model that fits the training data
better. We can also observe that PEAI and PEAF achieve
convergence much faster than ETIP, which indicates that using
the pre-trained embedding can significantly reduce the training
time.

Figures 8(a), 8(b), and 8(c) present the validation loss,
accuracy, and recall@5 against the training steps, respec-
tively. We can observe that, by all evaluation metrics, PEAI
and PEAF consistently outperform ETIP, with PEAI slightly
outperforming PEAF. As the training process goes on, the
validation performances of ETIP become closer to those of
PEAI and PEAF, but are still inferior to PEAI and PEAF.
This again demonstrates that using the pre-trained embedding
can help obtain a better model in a shorter time.

Table III reports the accuracy and recall@5 of different
methods on the testing set. The Overall column shows the
results on all categories. The remaining columns show the
testing results on a few randomly selected categories in
descending frequency (from left to right). We can see that,
overall, PEAI has the highest accuracy and recall@5, ETIP
has the lowest, and PEAF’s performances lie in between. This

3.5

4.0

4.5

5.0

5.5

30k 90k 150k 210k 270k

T
r
a
i
n
i
n
g

L
o
s
s

Steps

ETIP
PEAI
PEAF

Fig. 7. Training loss

4.0

4.2

4.4

4.6

4.8

30k 90k 150k 210k 270k

V
a
l
i
d
a
t
i
o
n

L
o
s
s

Steps

ETIP
PEAI
PEAF

(a) Validation loss

0.17

0.18

0.19

0.20

0.21

30k 90k 150k 210k 270k

V
a
l
i
d
a
t
i
o
n

A
c
c
u
r
a
c
y

Steps

ETIP
PEAI
PEAF

(b) Validation accuracy

0.32

0.36

0.40

0.44

0.48

30k 90k 150k 210k 270k

V
a
l
i
d
a
t
i
o
n

R
e
c
a
l
l
@
5

Steps

ETIP
PEAI
PEAF

(c) Validation recall@5

Fig. 8. Validation performance

TABLE III
TESTING PERFORMANCE FOR TEMPLATE CATEGORY EMBEDDING

Category Overall Coupon Hotel Restaurant Basketball

Model Accuracy Recall@5 Accuracy Recall@5 Accuracy Recall@5 Accuracy Recall@5 Accuracy Recall@5

ETIP 0.20509 0.43456 0.54333 0.87637 0.29346 0.63730 0.04234 0.09830 0.0 0.00763
PEAI 0.21074 0.45350 0.53278 0.87754 0.27280 0.63787 0.05280 0.12287 0.01527 0.04580
PEAF 0.20831 0.44809 0.52302 0.87175 0.27343 0.62051 0.05328 0.12457 0.01781 0.03562

reveals that using the pre-trained embedding as the initializer
for the sparse featured embedding can help obtain a much
better model. This also signals that the pre-trained embedding
carries helpful information that can not be obtained from the
training instances. Even making the pre-trained embedding
fixed as features can still provide more information than a
specifically trained sparse feature embedding for this task.

Inspecting from individual categories, for high frequency
categories such as Coupon and Hotel, the accuracy of ETIP
is better than the other two methods using the pre-trained
embedding, but they all have similar recall@5. This indicates
that the model that uses a freshly trained embedding tends to
rank those high frequency categories highest, while the models
using the pre-trained embedding tend to rank them slightly
lower but still within top-5. For low frequency categories
such as Restaurant and Basketball, as with the receiving-based
prediction task, using the pre-trained embedding helps improve
the model’s performances on these low frequency categories,
and making the pre-trained embedding fixed as features gives
slightly better performances. This phenomenon indicates that
letting the embedding be free (trainable) parameters during
training will make the model favor high frequency categories.
Using the pre-trained embedding as an initializer for the
trainable embedding achieves a good trade-off between the
high frequency and low frequency categories.

2) User Embedding: We also investigate the effect of using
the user embedding for this task.

Setup. We split each user’s templates by time and use
the first 70% for training and the remaining for testing.
As a result, we generate 4.4M training and 1.6M testing
instances. We set the dimension of user embedding to 64 and
learn a new category embedding with the training data. All
other parameters for embedding generation and MLP training
remain the same. To focus on the effect of user embedding, we
make the category embedding fixed as features. We compare
the methods of (i) PEAF, (ii) PEAF with user embedding

trained in the training process (UETIP), (iii) PEAF with pre-
trained user embedding as initializer (PUEAI), and (iv) PEAF
with pre-trained user embedding as fixed f eature (PUEAF).
All the models in the remaining experiments are repeatedly
trained and tested three times and the average results are
reported.

Figure 9 plots the accuracy and recall@5 of different
methods. We can see that after adding the user embedding,
compared with PEAF, the model performances are further
improved. Given that there are more than 1.5 million test-
ing instances, the improvement, albeit small, is statistically
meaningful (we will further investigate this in the next set of
experiments). We can also see that using the pre-trained user
embedding gives better performances than training a fresh user
embedding especially in terms of recall@5. Since the previous
experiments have shown that training a fresh embedding
tends to favor more frequent items, UETIP will also favor
power users with many opened templates and hence more
training instances. This essentially makes the model resemble
the behavior of power users and hence less diverse, which
decreases the recall@5. That the performance of PUEAF is
better than PUEAI indicates that the distribution of the number
of opened emails (i.e., training instances) across users is less
skewed (i.e, more even) than that of the category frequencies,
which leads to that it is less beneficial to make the model favor
power users. Overall, using the pre-trained user embedding can
help improve the performance.

In the last set of experiments, we study whether the user
embedding will help cold-start users, i.e., users whose email
open patterns are not seen by the MLP during training. We
simulate the cold-start situation by (i) training the MLP with
only a portion of users’ data (user embedding is still trained
with all users’ data) and (ii) testing the performance of MLP
with all users’ data (i.e., all 1.6M testing instances). Figure 4
presents the recall@5 of different methods when the portion
of users’ data used for MLP training is varied from 50% to

0.2096

0.2098

0.2100

0.2102

0.2104

PEAF
UETIP

PUEAI
PUEAF

A
c
c
u
r
a
c
y

0.20978

0.21014
0.21017

0.21031

(a) Testing accuracy

0.4614

0.4616

0.4618

0.4620

PEAF
UETIP

PUEAI
PUEAF

R
e
c
a
l
l
@
5

0.46156
0.46158

0.46188
0.46191

(b) Testing recall@5

Fig. 9. Performance with user embedding

100%. We can see that when we use only half of the users’
data for training, the performances of all the models using
user embedding are even worse than that of PEAF which
does not use any user related features. This indicates that
users’ email opening behavior is quite diverse since 50% of
the users cannot represent the majority behavioral patterns,
and utilizing user similarity at this level will distract the MLP.
The situation is changed when we use 80% of the users for
training. The performances of PUEAI and PUEAF are better
than that of PEAF, which means considering personalization
and user similarity at this level is beneficial and the pre-trained
embedding can help the prediction of both seen and unseen
users. The performance of UETIP is still worse than PEAF,
indicating using a freshly trained user embedding is not a
good choice at this level. Another interesting phenomenon is
that although using 100% of the data for training can achieve
a better performance than using only 50%, the performance
measured by recall@5 only increases from around 0.455 to
around 0.462, which in turn indicates that the improvement by
using user embedding, albeit small, is statistically significant.

VII. CONCLUSIONS

We have proposed a simple yet efficient and effective
framework for learning embeddings of templates, template
categories, and users from email data. The framework only
requires obtaining item sequences with which we identify item
contexts. Using only a single-layer neural network and the
negative sampling technique, the embedding can be trained
with large-scale data in a short time and can carry a large
amount of desired information. For either the receiving-based
email category prediction with LSTM or the interest-based
prediction with MLP, the pre-trained embedding can be ef-
fectively utilized and can be conveniently used as either fixed
features or embedding initializers. Extensive experiments with
thousands of users and millions of emails have demonstrated
that with the learned embedding, we can find clusters of
templates with interesting correlations or users with similar
interests. The experiments have also shown that with the
pre-trained embedding the predictive performances of LSTM
and MLP for the two email category prediction tasks can
be significantly improved and that the pre-trained embedding
can be used to address cold-start problems. We hope that
the simple and efficient framework and interesting results can
attract more attention to email intelligence.

REFERENCES

[1] N. Ailon, Z. S. Karnin, E. Liberty, and Y. Maarek, “Threading machine
generated email,” in WSDM, 2013, pp. 405–414.

[2] N. Avigdor-Elgrabli, M. Cwalinski, D. Di Castro, I. Gamzu,
I. Grabovitch-Zuyev, L. Lewin-Eytan, and Y. Maarek, “Structural clus-
tering of machine-generated mail,” in CIKM, 2016, pp. 217–226.

[3] Y. Maarek, “Web mail is not dead!: It’s just not human anymore,” in
WWW, 2017, pp. 5–5.

[4] D. Di Castro, Z. Karnin, L. Lewin-Eytan, and Y. Maarek, “You’ve got
mail, and here is what you could do with it!: Analyzing and predicting
actions on email messages,” in WSDM, 2016, pp. 307–316.

[5] Y. Maarek, “Is mail the next frontier in search and data mining?” in
WSDM, 2016, pp. 203–203.

[6] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” CoRR, vol. abs/1301.3781, 2013.

[7] M. Rudolph, F. Ruiz, S. Mandt, and D. Blei, “Exponential family
embeddings,” in NIPS, 2016, pp. 478–486.

[8] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in
NIPS, 2013, pp. 3111–3119.

[9] J. Proskurnia, M.-A. Cartright, L. Garcia-Pueyo, I. Krka, J. B. Wendt,
T. Kaufmann, and B. Miklos, “Template induction over unstructured
email corpora,” in WWW, 2017, pp. 1521–1530.

[10] J. B. Wendt, M. Bendersky, L. Garcia-Pueyo, V. Josifovski, B. Miklos,
I. Krka, A. Saikia, J. Yang, M.-A. Cartright, and S. Ravi, “Hierarchical
label propagation and discovery for machine generated email,” in
WSDM, 2016, pp. 317–326.

[11] N. Potti, J. B. Wendt, Q. Zhao, S. Tata, and M. Najork, “Hidden in plain
sight: Classifying emails using embedded image contents,” in WWW,
2018, pp. 1865–1874.

[12] Y. Sheng, S. Tata, J. B. Wendt, J. Xie, Q. Zhao, and M. Najork,
“Anatomy of a privacy-safe large-scale information extraction system
over email,” in KDD, 2018, pp. 734–743.

[13] M. Bendersky, X. Wang, D. Metzler, and M. Najork, “Learning from
user interactions in personal search via attribute parameterization,” in
WSDM, 2017, pp. 791–799.

[14] I. Gamzu, Z. Karnin, Y. Maarek, and D. Wajc, “You will get mail!
predicting the arrival of future email,” in WWW, 2015, pp. 1327–1332.

[15] A. Zhang, L. Garcia-Pueyo, J. B. Wendt, M. Najork, and A. Broder,
“Email category prediction,” in WWW Companion, 2017, pp. 495–503.

[16] J. L. Elman, “Distributed representations, simple recurrent networks, and
grammatical structure,” Machine learning, vol. 7, no. 2-3, pp. 195–225,
1991.

[17] G. E. Hinton, “Distributed representations,” 1984.
[18] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for

recommender systems,” Computer, vol. 42, no. 8, 2009.
[19] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”

SIAM review, vol. 51, no. 3, pp. 455–500, 2009.
[20] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”

Journal of Machine Learning Research, vol. 3, no. Jan, pp. 993–1022,
2003.

[21] P. Goyal and E. Ferrara, “Graph embedding techniques, applications,
and performance: A survey,” arXiv preprint arXiv:1705.02801, 2017.

[22] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation.” in EMNLP, vol. 14, 2014, pp. 1532–1543.

[23] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A
neural image caption generator,” in CVPR, 2015, pp. 3156–3164.

[24] M. U. Gutmann and A. Hyvärinen, “Noise-contrastive estimation of
unnormalized statistical models, with applications to natural image
statistics,” Journal of Machine Learning Research, vol. 13, no. Feb,
pp. 307–361, 2012.

[25] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network
regularization,” arXiv preprint arXiv:1409.2329, 2014.

[26] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting.” Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[27] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[28] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

