
Amplification by Shuffling:
From Local to Central Differential Privacy via Anonymity

Úlfar Erlingsson∗ Vitaly Feldman∗ Ilya Mironov∗ Ananth Raghunathan∗

Kunal Talwar∗ Abhradeep Thakurta†

November 2018

Abstract

Sensitive statistics are often collected across sets of users, with repeated collection of reports done
over time. For example, trends in users’ private preferences or software usage may be monitored via
such reports. We study the collection of such statistics in the local differential privacy (LDP) model, and
describe an algorithm whose privacy cost is polylogarithmic in the number of changes to a user’s value.

More fundamentally—by building on anonymity of the users’ reports—we also demonstrate how the
privacy cost of our LDP algorithm can actually be much lower when viewed in the central model of dif-
ferential privacy. We show, via a new and general privacy amplification technique, that any permutation-
invariant algorithm satisfying ε-local differential privacy will satisfy (O(ε

√
log(1/δ)/n), δ)-central dif-

ferential privacy. By this, we explain how the high noise and
√
n overhead of LDP protocols is a con-

sequence of them being significantly more private in the central model. As a practical corollary, our
results imply that several LDP-based industrial deployments may have much lower privacy cost than
their advertised ε would indicate—at least if reports are anonymized.

1 Introduction

A frequent task in data analysis is the monitoring of the statistical properties of evolving data in a manner
that requires repeated computation on the entire evolving dataset. Software applications commonly apply
online monitoring, e.g., to establish trends in the software configurations or usage patterns. However, such
monitoring may impact the privacy of software users, as it may directly or indirectly expose some of their
sensitive attributes (e.g., their location, ethnicity, gender, etc.), either completely or partially. To address
this, recent work has proposed a number of mechanisms that provide users with strong privacy-protection
guarantees in terms of of differential privacy [DMNS06, Dwo06, KLN+08] and, specifically, mechanisms
that provide local differential privacy (LDP) have been deployed by Google, Apple, and Microsoft [EPK14,
App17, DKY17].

The popularity and practical adoption of LDP monitoring mechanisms stems largely from their simple
trust model: for any single LDP report that a user contributes about one of their sensitive attributes, the user
will benefit from strong differential privacy guarantees even if the user’s report becomes public and all other
parties collude against them.

However, this apparent simplicity belies the realities of most monitoring applications. Software moni-
toring, in particular, near always involves repeated collection of reports over time, either on a regular basis
∗Google Research – Brain, {ulfar, vitalyfm, mironov, kunal, pseudorandom}@google.com.
†UC Santa Cruz and Google Research – Brain, aguhatha@ucsc.edu.

1

ar
X

iv
:1

81
1.

12
46

9v
1

 [
cs

.L
G

]
 2

9
N

ov
 2

01
8

or triggered by specific software activity; additionally, not just one, but multiple, software attributes may
be monitored, and these attributes may all be correlated, as well as sensitive, and may also change in a
correlated fashion. Hence, a user’s actual LDP privacy guarantees may be dramatically lower than they
might appear, since LDP guarantees can be exponentially reduced by multiple correlated reports (see Tang
et al. [TKB+17] for a case study). Furthermore, lower accuracy is achieved by mechanisms that defend
against such privacy erosion (e.g., the memoized backstop in Google’s RAPPOR [EPK14]). Thus, to square
this circle, and make good privacy/utility tradeoffs, practical deployments of privacy-preserving monitoring
rely on additional assumptions—in particular, the assumption that each user’s reports are anonymous at each
timestep and unlinkable over time.

In this work, we formalize how the addition of anonymity guarantees can improve differential-privacy
protection. Our direct motivation is the Encode, Shuffle, Analyze (ESA) architecture and PROCHLO imple-
mentation of Bittau et al. [BEM+17], which relies on an explicit intermediary that processes LDP reports
from users to ensure their anonymity. The ESA architecture is designed to ensure a sufficient number of
reports are collected at each timestep so that any one report can “hide in the crowd” and to ensure that those
reports are randomly shuffled to eliminate any signal in their order. Furthermore, ESA will also ensure
that reports are disassociated and stripped of any identifying metadata (such as originating IP addresses) to
prevent the linking of any two reports to a single user, whether over time or within the collection at one
timestep. Intuitively, the above steps taken to preserve anonymity will greatly increase the uncertainty in the
analysis of users’ reports; however, when introducing ESA, Bittau et al. [BEM+17] did not show how that
uncertainty could be utilized to provide a tighter upper bound on the worst-case privacy loss.

Improving on this, this paper derives results that account for the benefits of anonymity to provide
stronger differential privacy bounds. First, inspired by differential privacy under continual observation,
we describe an algorithm for high-accuracy online monitoring of users’ data in the LDP model whose total
privacy cost is polylogarithmic in the number of changes to each user’s value. This algorithm shows how
LDP guarantees can be established in online monitoring, even when users report repeatedly, over multiple
timesteps, and whether they report on the same value, highly-correlated values, or independently-drawn
values.

Second, and more fundamentally, we show how—when each report is properly anonymized—any col-
lection of LDP reports (like those at each timestep of our algorithm above) with sufficient privacy (ε < 1)
is actually subject to much stronger privacy guarantees in the central model of differential privacy. This
improved worst-case privacy guarantee is a direct result of the uncertainty induced by anonymity, which can
prevent reports from any single user from being singled out or linked together, whether in the set of reports
at each timestep, or over time.

1.1 Background and related work.

Differential privacy is a quantifiable measure of the stability of the output of a randomized mechanism in
the face of changes to its input data—specifically, when the input from any single user is changed. (See
Section 2 for a formal definition.)

Local differential privacy (LDP). In the local differential privacy model, formally introduced by Ka-
siviswanathan et al. [KLN+08], the randomized mechanism’s output is the transcript of the entire inter-
action between a specific user and a data collector (e.g., a monitoring system). Even if a user arbitrar-
ily changes their privately held data, local differential privacy guarantees will ensure the stability of the
distribution of all possible transcripts. Randomized response, a disclosure control technique from the

2

1960s [War65], is a particularly simple technique for designing single-round LDP mechanisms. Due to
their attractive trust model, LDP mechanisms have recently received significant industrial adoption for the
privacy-preserving collection of heavy hitters [EPK14, App17, DKY17], as well as increased academic
attention [BS15, BNST17, QYY+16, WBLJ17].

Anonymous data collection. As a pragmatic means for reducing privacy risks, reports are typically
anonymized and often aggregated in deployments of monitoring by careful operators (e.g., RAPPOR [EPK14])—
even though anonymity is no privacy panacea [DSSU17, Dez18].

To guarantee anonymity of reports, multiple mechanisms have been developed, Many, like Tor [DMS04],
are based on the ideas of cryptographic onion routing or mixnets, often trading off latency to offer much
stronger guarantees [vdHLZZ15, TGL+17, LGZ18]. Some, like those of PROCHLO [BEM+17], are based
on oblivious shuffling, with trusted hardware and attestation used to increase assurance. Others make use
of the techniques of secure multi-party computation, and can simultaneously aggregate reports and ensure
their anonymity [CGB17, BIK+17]. Which of these mechanisms is best used in practice is dictated by what
trust model and assumptions apply to any specific deployment.

Central differential privacy. The traditional, central model of differential privacy applies to a centrally-
held dataset for which privacy is enforced by a trusted curator that mediates upon queries posed on the
dataset by an untrusted analyst—with curators achieving differential privacy by adding uncertainty (e.g.,
random noise) to the answers for analysts’ queries. For differential privacy, answers to queries need only be
stable with respect to changes in the data of a single user (or a few users); these may constitute only a small
fraction of the whole, central dataset, which can greatly facilitate the establishment of differential privacy
guarantees. Therefore, the central model can offer much better privacy/utility tradeoffs than the LDP setting.
(In certain cases, the noise introduced by the curator may even be less than the uncertainty due to population
sampling.)

Longitudinal privacy. Online monitoring with privacy was formalized by Dwork et al. as the problem
of differential privacy under continual observation [DNPR10]. That work proposed a privacy-preserving
mechanisms in the central model of differential privacy, later extended and applied by Chan et al. [CSS11]
and Jain et al. [JKT12].

Continual observations constitute a powerful attack vector. For example, Calandrino et al. [CKN+11]
describe an attack on a collaborative-based recommender system via passive measurements that effectively
utilizes differencing between a sequence of updates.

In the local model, Google’s RAPPOR [EPK14] proposed a novel memoization approach as a backstop
against privacy erosion over time: A noisy answer is memorized by the user and repeated in response to the
same queries about a data value. To avoid creating a trackable identifier, RAPPOR additionally randomizes
those responses, which may only improve privacy. (See Ding et al. [DKY17] for alternative approach to
memoization.) Although memoization prevents a single data value from ever being fully exposed, over time
the privacy guarantees will weaken if answers are given about correlated data or sequences of data values
that change in a non-independent fashion.

More recently, Tang et al. [TKB+17] performed a detailed analysis of one real-world randomized re-
sponse mechanisms and examined its longitudinal privacy implications.

3

1.2 Our contributions

Motivated by the gap in accuracy between central and local differential privacy under continual observations,
we describe a general technique for obtaining strong central differential privacy guarantees from (relatively)
weak privacy guarantees in the local model. Specifically, our main technical contribution demonstrates that
random shuffling of data points ensures that the reports from any LDP protocol will also satisfy central
differential privacy at a per-report privacy-cost bound that is a factor

√
n lower than the LDP privacy bound

established in the local model. Here, n is the total number of reports, which can reach into the billions in
practical deployments; therefore, the privacy amplification can be truly significant.

Privacy amplification by shuffling. An immediate corollary of our amplification result is that composing
client-side local differential privacy with server-side shuffling allows one to claim strong central differential
privacy guarantees without any explicit server-side noise addition.

For this corollary to hold, the LDP reports must be amenable to anonymization via shuffling: the reports
cannot have any discriminating characteristics and must, in particular, all utilize the same local randomizer
(since the distribution of random values may be revealing). However, even if this assumption holds only
partially—e.g., due to faults, software mistakes, or adversarial control of some reports—the guarantees
degrade gracefully. Each set of n′ users for which the corollary is applicable (e.g., that utilize the same local
randomizer) will still be guaranteed a factor

√
n′ reduction in their worst-case privacy cost in the central

model. (See Section 4.1 for a more detailed discussion.)
It is instructive to compare our technique with privacy amplification by subsampling [KLN+08]. As

in the case of subsampling, we rely on the secrecy of the samples that are used in nested computations.
However, unlike subsampling, shuffling, by itself, does not offer any differential privacy guarantees. Yet its
combination with a locally differentially private mechanism has an effect that is essentially as strong as that
achieved via known applications of subsampling [BST14, ACG+16, BBG18]. An important advantage of
our reduction over subsampling is that it can include all the data reports (exactly once) and hence need not
modify the underlying statistics of the dataset.

In concurrent and independent work, Cheu et al. [CSU+18] have also examined an augmented local
model of differential privacy that includes an anonymous channel. In this model they demonstrate privacy
amplification by the same factor for one-bit randomized response. The analysis in this case relies on a direct
estimation of (ε, δ)-divergence between two binomial distributions. This simple case was also the starting
point of our work but its analysis is unrelated to the general case presented here.

We also remark that another recent privacy amplification technique, via contractive iteration [FMTT18]
relies on additional properties of the algorithm and is not directly comparable to results in this work.

Lower bounds in the local model. Our amplification result can be viewed, conversely, as giving a lower
bound for the local model. Specifically, our reduction means that lower bounds in the central model
translate—with a Ω(

√
n) penalty factor in the privacy parameter—to a large class of local protocols. In

particular, this suggests that our results in the local model are near-optimal unless the corresponding results
in the central model can be improved.

LDP monitoring with longitudinal privacy guarantees. We introduce an online monitoring protocol
that guarantees longitudinal privacy to users that report over multiple timesteps, irrespective of whether
their reports are about independent or correlated values. By utilizing our protocol, users need not worry

4

about revealing too much over time, and if they are anonymous, their reports may additionally “hide in the
crowd” and benefit by amplification-by-shuffling, at least at each timestep.

As a motivating task, we can consider the collection of global statistics from users’ mobile devices, e.g.,
about users’ adoption of software apps or the frequency of users’ international long-distance travel. This
task is a natural fit for a continual-observations protocol with LDP guarantees—since both software use and
travel can be highly privacy sensitive—and can be reduced to collecting a boolean value from each user
(e.g., whether they are in a country far from home). However, our protocol can be extended to the collection
of multi-valued data or even data strings by building on existing techniques [EPK14, App17, BNST17].

Concretely, we consider the collection of user statistics across d time periods (e.g., for d days) with each
user changing their underlying boolean value at most k times for some k ≤ d. This is the only assumption
we place on the data collection task. For software adoption and international travel, the limit on the number
of changes is quite natural. New software is adopted, and then (perhaps) discarded, with only moderate
frequency; similarly, speed and distance limit the change rate for even the most ardent travelers. Formally,
we show the following: Under the assumption stated above, one can estimate all the d frequency statistics
from n users with error at most O((log d)2k

√
n/ε) in the local differential privacy model.

Motivated by similar issues, in a recent work Joseph et al. [JRUW18] consider the problem of tracking
a distribution that changes only a small number of times. Specifically, in their setting each user at each time
step t receives a random and independent sample from a distribution Pt. It is assumed that Pt changes at
most k times and they provide utility guarantees that scale logarithmically with the number of time steps.
The key difference between this setting and ours is the assumption of independence of each user’s inputs
across time steps. Under this assumption even a fixed unbiased coin flip would result in each user receiving
values that change in most of the steps. Therefore the actual problems addressed in this work are unrelated
to ours and we rely on different algorithmic techniques.

1.3 Organization of the paper

Section 2 introduces our notation and recalls the definition of differential privacy. Section 3 provides an
algorithm for collecting statistics and proves its accuracy and privacy in the local model under continual
observations. Section 4 contains the derivation of our amplification-by-shuffling result. Section 5 concludes
with a discussion.

2 Technical Preliminaries and Background

Notation: For any n ∈ N, [n] denotes the set {1, . . . , n}. For a vector ~x, x[j] denotes the value of its
j’th coordinate. For an indexed sequence of elements a1, a2, . . . and two indices i, j we denote by ai:j
the subsequence ai, ai+1, . . . , aj (or empty sequence if i > j). ‖~x‖1 denotes

∑
|x[j]|, which is also the

Hamming weight of ~x when ~x has entries in {−1, 0, 1}. All logarithms are meant to be base e unless stated
otherwise. For a finite set X , let x r← X denote a sample from X drawn uniformly at random.

Differential privacy: The notion of differential privacy was introduced by Dwork et al. [DMNS06, Dwo06].
We are using the (standard) relaxation of the definition that allows for an additive term δ.

Definition 1 ((ε, δ)-DP [DKM+06]). A randomized algorithm A : Dn → S satisfies (ε, δ)-differential pri-
vacy (DP) if for all S ⊂ S and for all adjacent D,D′ ∈ D it holds that

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.

5

The notion of adjacent inputs is application-dependent, and it is typically taken to mean that D and D′

differ in one of the n elements (that corresponds to the contributions of a single individual). We will also say
that an algorithm satisfies differential privacy at index 1 if the guarantees hold only for datasets that differ
in the element at index i. We assume the ε parameter to be a small constant, and δ is set to be much smaller
than 1/|D|. We repeatedly use the (advanced) composition property of differential privacy.

Theorem 2 (Advanced composition [DRV10, DR14]). IfA1, . . . ,Ak are randomized algorithms satisfying
(ε, δ)-DP, then their composition, defined as (A1(D), . . . ,Ak(D)) for D ∈ D satisfies (ε′, kδ + δ′) dif-
ferential privacy where ε′ = ε

√
2k log(1/δ′) + kε(exp(ε) − 1). Moreover, Ai can be chosen adaptively

depending on the outputs of A1, . . . ,Ai−1.

A straightforward corollary implies that for ε, ε′ < 1, a k-fold composition of (ε, δ)-DP algorithms leads
to an O(

√
k log(1/δ)) overhead, i.e., ε′ = 2ε

√
2k log(1/δ).

It will also be convenient to work with the notion of distance between distributions on which (ε, δ)-DP
is based more directly. We define it below and describe some of the properties we will use. Given two
distributions µ and µ′, we will say that they are (ε, δ)-DP close, denoted by µ u(ε,δ) µ

′, if for all measurable
A, we have

exp(−ε)(µ′(A)− δ) ≤ µ(A) ≤ exp(ε)µ′(A) + δ.

For random variables X,X ′, we write X u(ε,δ) X
′ to mean that their corresponding distributions µ, µ′ are

(ε, δ)-DP close. We use X u X ′ to mean that the random variables are identically distributed.
For distributions µ1, µ2 and a ∈ [0, 1], we write aµ1 + (1 − a)µ2 to denote the mixture distribution

that samples from µ1 with probability a and from µ2 with probability (1− a). The following properties are
well-known properties of (ε, δ)-DP.

Lemma 3. The notion of (ε, δ)-DP satisfies the following properties:

Monotonicity Let µ u(ε,δ) µ
′. Then for ε′ ≥ ε and δ′ ≥ δ, µ u(ε′,δ′) µ

′.

Triangle inequality Let µ1 u(ε1,δ1) µ2 and µ2 u(ε2,δ2) µ3. Then µ1 u(ε1+ε2,δ1+δ2) µ3.

Quasi-convexity Let µ1 u(ε,δ) µ
′
1 and µ2 u(ε,δ) µ

′
2, then for any a ∈ [0, 1], it holds that (1 − a)µ1 +

aµ2 u(ε,δ) (1− a)µ′1 + aµ′2.

The following lemma is a reformulation of the standard privacy amplification-by-sampling result [KLN+08]
(with the tighter analysis from [Ull17]).

Lemma 4 ([KLN+08, Ull17]). Let q < 1
2 and let µ0, µ1 be distributions such that µ1 u(ε,δ) µ0. For

µ = (1− q)µ0 + qµ1, it holds that µ u(ε′,qδ) µ0, where ε′ = log(q(eε − 1) + 1) ≤ q(eε − 1).

3 Locally Private Protocol for Longitudinal Data

Recall the motivation for collecting statistics from user devices with the intent of tracking global trends. We
remain in the local differential privacy model, but our protocol addresses the task of collecting reports from
users to derive global statistics that are expected to change across time. We consider the simplified task of
collecting a boolean value from each user, e.g., their device being at an international location, far from the
user’s home. However, our protocol can be straightforwardly extended to collecting richer data, such as
strings, by building on existing techniques [EPK14, App17, BNST17].

6

In what follows, we consider a natural model of collecting user statistics across time periods. We make
two minimal assumptions: we are given the time horizon d, or the number of time periods (or days) ahead of
time, and each user changes their underlying data at most k ≤ d times. The first assumption is mild: a loose
upper bound on d suffices, and the error depends only polylogarithmically on the upper bound. The second
assumption can be enforced at the client side to ensure privacy, while suffering some loss in accuracy.

Our approach is inspired by the work on privacy under continual observations by Dwork et al. [DNPR10],
who give a (central) DP mechanism to maintain a counter that is incrementally updated in response to cer-
tain user-driven events. Its (central) differential privacy is defined in respect to a single increment, the
so-called event-level privacy. The naı̈ve solution of applying additive noise to all partial sums introduces
error Θ(

√
d), proportional to the square root of the time horizon. The key algorithmic contribution of Dwork

et al. is an elegant aggregation scheme that reduces the problem of releasing partial sums to the problem of
maintaining a binary tree of counters. By carefully correlating noise across updates, they reduce the error
to O(polylog d). (In related work Chan et al. [CSS11] describe a post-processing procedure that guaran-
tees output consistency; Xiao et al. [XWG11] present a conceptually similar algorithm framed as a basis
transformation.)

We adapt these techniques to the local setting by pushing the tree-of-counters to the client (Algorithm 1
below). The server aggregates clients’ reports and computes the totals (Algorithm 2).

Setup. We more formally define the problem of collecting global statistics based on reports from users’
devices. Given a time horizon d, we consider a population of n users reporting a boolean value about their
state at each time period t ∈ [d]. (Without loss of generality, we assume that d is a power of 2.) Let
~sti = [sti[1], . . . , sti[d]] denote the states of the i’th user across the d time periods with at most k changes.
The task of collecting statistics requires the server to compute the sum

∑
i∈[n] sti[t] for every time periods t.

For the reason that will become clear shortly, it is convenient to consider the setup where users report
only changes to their state, i.e., a finite derivative of ~sti. Let ~xi = [xi[1], . . . , xi[d]] ∈ {−1, 0, 1}d denote
the changes in the i’th user’s state between consecutive time periods. Our assumption implies that each ~xi
has at most k non-zero entries. It holds that sti[t] =

∑
`∈[t] xi[`] for all t ∈ [d]. Let ft =

∑n
i=1 xi[t]. For

the collection task at hand, it suffices to estimate “running counts” or marginal sums {ft}t∈[d].
An online client-side algorithm for reporting statistics runs on each client device and produces an output

for each time period. Correspondingly, the online server-side algorithm receives reports from n clients and
outputs estimates for the marginal ft at each time period t.

Outline. To demonstrate the key techniques in the design of our algorithm, consider a version of the data
collection task with every client’s data known ahead of time. Given ~xi for user i, the client-side algorithm
produces (up to) d reports and the server computes estimates of the marginal sum ft for all t ∈ [d]. Our
algorithm is based on the tree-based aggregation scheme [DNPR10, CSS11] used previously for releasing
continual statistics over longitudinal data in the central model. Each client maintains a binary tree over the
d time steps to track the (up to) k changes of their state. The binary tree ensures that each change affects
only log2 d nodes of the tree. We extend the construction of Dwork et al. [DNPR10] in a natural manner
to the local model by having each client maintain and report values in this binary tree with sub-sampling as
follows.

In the beginning, the client samples uniformly from [k] the κ∗’th change they would like to report on.
Changes other than the κ∗’th one are ignored. The client builds a tree with leaves corresponding to an
index vector capturing the κ∗’th change (0 everywhere except ±1 at the change). The rest of the nodes

7

are populated with the sums of their respective subtrees. The client then chooses a random level of the
tree to report on. Then, the client runs randomized response on each node of the selected level (with noise
determined by ε) and reports the level of the tree along with the randomized response value for each node.
In actual implementations and our presentation of the protocol (Algorithm 1) the tree is never explicitly
constructed. The state maintained by the client consists of just four integer values (κ∗, the level of the tree,
and two counters).

The server accumulates reports from clients to compute an aggregate tree comprising sums of reports
from all clients. To compute the marginal estimate f̃t for the time step t, the server sums up the respective
internal nodes whose subtrees form a disjoint cover of the interval [1, t] and scales it up by the appropriate
factor (to compensate for the client-side sampling).

Notation. To simplify the description of what follows, for a given d (that is a power of two), we let
h ∈ [log2(d) + 1] (and variants such as hi and h∗) denote the h’th level of a balanced binary tree with
2d nodes where leaves have level 1. We let H(h) denote the value d/2h−1, the number of nodes at level
h, and write Hi (resp. H∗) to denote H(hi) (resp. H(h∗)). We let [h, j], for h ∈ [log2(d) + 1] and j ∈
[H(h)] denote the j’th node at level h of the binary tree T , and T [h, j] as the corresponding value stored
at the node. Algorithm 1 describes the client-side algorithm to generate differentially-private reports and
Algorithm 2 describes the server-side algorithm that collects these reports and estimates marginals f̃t for
each time period. Theorems 5 and 6 state the privacy and utility guarantees of the algorithms.

Algorithm 1 (Aclient) : Locally differentially private reports.
1: procedure SETUP(d, k)

Input: Time bound d; bound on the number of non-zero entries in ~x: k ≥ ‖~x‖0.
2: Sample κ∗ r← [k] and h∗ r← [log2(d) + 1]
3: Initialize counters κ← 0 and c← 0

4: procedure UPDATE(t, xt, ε)
Input: Time t ≤ d, xt ∈ {−1, 0, 1}, privacy budget ε.
Effects: Modifies counters κ and c.

5: if xt 6= 0 then
6: κ← κ+ 1 . κ tracks the number of non-zeroes
7: if κ = κ∗ then
8: c← xt
9: if t is divisible by 2h

∗−1 then
10: if c = 0 then
11: u

r← {−1, 1}
12: else
13: b← 2 · B

(
eε/2

1+eε/2

)
− 1 . B(p)—Bernoulli r.v. with expectation p

14: u← b · c
15: c← 0 . c will never be non-zero again
16: report (h∗, t, u)

Theorem 5 (Privacy). The sequence of d outputs ofAclient (Algorithm 1) satisfies ε-local differential privacy.

8

Algorithm 2 (Aserver) : Aggregation of locally differentially private reports (server side)
Input: For every t ∈ [d], reports (hi,t, t, ui,t) from the i’th client running Aclient. (Some of these
reports can be empty.) Privacy budget ε, bound k.

1: Create a balanced binary tree Tsum with d leaves.
2: for t in [d] do
3: for h s.t. 2h−1 divides t do
4: Tsum[h, t/2h−1]←

∑
i : hi,t=h

ui,t . Accumulate all reports from level h and time t

5: for t in [d] do
6: Initialize C ← {[1, 1], [1, 2], . . . , [1, t]}.
7: while h and even i exist s.t. [h, i− 1], [h, i] ∈ C do
8: Remove [h, i− 1], [h, i] from C.
9: Add [h+ 1, i/2] to C.

10: f̃t ← eε/2+1
eε/2−1k(log2 d) ·

∑
[h,i]∈C Tsum[h, i]

11: report privately estimated marginal f̃t

Proof. To show the local differential privacy of the outputs, we consider two aspects of the client’s reports:
(1) the (randomized) values at the nodes output in Step 16, and (2) the timing of the report. The latter
entirely depends on the choice of h∗ which is independent of the client’s underlying data record and hence
does not affect the privacy analysis. Furthermore, κ∗ is also independently sampled and for the rest of the
proof, we fix κ∗ and h∗ and focus only on the randomized values output in Step 16.

By construction, the client chooses only the κ∗’th change to report on. This would imply that two inputs
would affect at most two nodes at level h∗ with each of the values changing by at most one.

This bound on the sensitivity of the report enables us to use standard arguments for randomized response
mechanisms [EPK14] to Steps 13 and 14 to show that the noisy values T [h∗, 1], . . . , T [h∗, H∗] satisfy ε-
local differential privacy.

Theorem 6 (Utility). For ε ≤ 1, with probability at least 2/3 over the randomness of Aclient run on n data
records, the outputs f̃1, . . . , f̃d of Aserver satisfy:

max
t∈[d]

∣∣∣ft − f̃t∣∣∣ = O
(
cε(log d)2k

√
n
)
,

where cε = eε/2+1
eε/2−1 .

Proof. The leaves of the binary tree with nodes T [h, t] in Algorithms 1 and 2 comprise events in each of the
time periods [1, d]. The marginal counts ft and f̃t comprise the exact (resp., approximate) number of events
observed by all clients in the time period [1, t].

Consider the set C constructed in Steps 6–9 of Algorithm 2. We observe that C satisfies the following
properties:

• The setC is uniquely defined, i.e., it is independent of the order in which pairs of intervals are selected
in the while loop.

• The size of the set |C| is at most log2 d.

• The leaf nodes of the subtrees [h, i] in C partition [1, t].

9

The marginal counts ft totaling events in the interval [1, t] can be computed by adding the correspond-
ing log2 d nodes in the tree whose subtrees partition the interval [1, t].

It follows that largest error in any ft is at most log2 d times the largest error in any of the subtree counts.
We proceed to bound that error.

For a node [h, j] in the tree, let S[h, j] denote the sum
∑

i

∑
t∈[h,j] xi[t], i.e., the actual sum of xi[t]

values in the subtree at [h, j], summed over all i. Let z[h,j]i =
∑

t∈[h,j] xi[t] denote the contribution of client
i to S[h, j]. We will argue that |S[h, j]− cεk log2(d) · T [h, j]| is small with high probability, which would
then imply the bound on |ft − f̃t|.

Towards that goal, for a client i, and node [h, j], let u[h,j]i be the contribution of client i to the sum
T [h, j] computed by the server. Thus for any h 6= h∗i , this value is zero, and for h = h∗i , u

[h,j]
i is a

randomized response as defined in steps 10–14 of Algorithm 1. Clearly u[h,j]i ∈ {−1, 0, 1}. We next argue
that cεk log2(d)E[u

[h,j]
i] is equal to z[h,j]i . Indeed, for a specific xi[t] to have an effect on T [h, j], we should

have this be the κ∗’th non-zero entry in xi (which happens with probability 1
k). Further, h should equal

h∗i (which happens with probability 1
log2 d

). Conditioned on these two events, the expected value of u[h,j]i is

determined in step 13 as xi[t] multiplied by 2 eε/2

eε/2+1
−1 = 1

cε
. When one of these two events fails to happen,

the expected value of u[h,j]i is determined in line 11, and is zero. It follows that the expectation of u[h,j]i is as
claimed and thus the expectation of T [h, j] is exactly S[h,j]

cεk log2(d)
.

To complete the proof, we note that T [h, j] is the sum of independent (for each i) random variables that
come from the range [−1, 1]. Standard Chernoff bounds then imply that T [h, j] differs from its expectation

by at most c
√

3E[T [h, j]] log 1
β′ , except with probability β′. This expectation is bounded by Oε(n/ log2 d).

Setting β′ = β/2d, and taking a union bound, we conclude that except with probability β:

∀[h, j] : |T [h, j]− E[T [h, j]]| ≤ cε

√
n log

2d

β
/ log2 d.

Scaling by c′εk log2 d, and multiplying by log2 d to account for the size of C, we conclude that except with
probability β,

∀t ∈ [d] : |ft − f̃t| ≤ cεk(log2 d)
3
2

√
n log

2d

β
.

The claim follows.

4 Privacy Amplification via Shuffling

Local differential privacy holds against a strictly more powerful adversary than central differential privacy,
namely one that can examine all communications with a particular user. What can we say about central DP
guarantees of a protocol that satisfies ε-local DP? Since local DP implies central DP, this procedure satisfies
ε-central DP. Moreover, without making additional assumptions, we cannot make any stronger statement
than that. Indeed, the central mechanism may release the entire transcripts of its communications with all its
users annotated with their identities, leaving their local differential privacy as the only check on information
leakage via the mechanism’s outputs.

10

We show that, at a modest cost and with little changes to its data collection pipeline, the analyst can
achieve much better central DP guarantees than those suggested by this conservative analysis. Specifically,
by shuffling (applying a random permutation), the analyst may amplify local differential privacy by a Θ̃(

√
n)

factor.
To make the discussion more formal we define the following general form of locally differentially private

algorithms that allows picking local randomizers sequentially on the basis of answers from the previous
randomizers (Algorithm 3).

Algorithm 3 : Alocal: Local Responses

Input: Dataset D = x1:n. Algorithms A(i)
ldp : S(1) × · · · × S(i−1) ×D → S(i) for i ∈ [n].

1: for i in [n] do
2: zi ← A(i)

ldp(z1:i−1;xi)

3: return sequence z1:n

Our main amplification result is for Algorithm 4 that applies the local randomizers after randomly per-
muting the elements of the dataset. For algorithms that use a single fixed local randomizer it does not matter
whether the data elements are shuffled before or after the application of the randomizer. We will discuss the
corollaries of this result for algorithms that shuffle the responses later in this section.

Algorithm 4 : Asl: Local Responses with Shuffling

Input: Dataset D = x1:n. Algorithms A(i)
ldp : S(1) × · · · × S(i−1) ×D → S(i) for i ∈ [n].

1: Let π be a uniformly random permutation of [n].
2: π(D)← (xπ(1), xπ(2), . . . , xπ(n))
3: return Alocal(π(D))

Theorem 7 (Amplification by shuffling). For a domain D, let A(i)
ldp : S(1) × · · · × S(i−1) × D → S(i) for

i ∈ [n] (where S(i) is the range space ofA(i)
ldp) be a sequence of algorithms such thatA(i)

ldp is ε0-differentially
private for all values of auxiliary inputs in S(1) × · · · × S(i−1). Let Asl : Dn → S(1) × · · · × S(n) be
the algorithm that given a dataset x1:n ∈ Dn, samples a uniform random permutation π over [n], then
sequentially computes zi = Aldp(z1:i−1, xπ(i)) for i = 1, 2, . . . , n and outputs z1:n (see Algorithm 4). For
any n ≥ 1000, 0 < ε0 < 1/2 and 0 < δ < 1/100, Asl satisfies (ε, δ)-differential privacy in the central

model, where ε = 12ε0

√
log(1/δ)

n .

We remark that while we state our amplification result for local randomizers operating on a single data
element, the result extends immediately to arbitrary ε0-DP algorithms that operate on disjoint batches of
data elements.

A natural approach to proving this result is to use privacy amplification via subsampling (Lemma 4). At
step i in the algorithm, conditioned on the values of π(1), . . . , π(i− 1), the random variable π(i) is uniform
over the remaining (n− i+ 1) indices. Thus the i’th step will be O((eε0 − 1)/(n− i+ 1))-DP. The obvious
issue with this argument is that it gives very little amplification for values of i that are close to n, falling
short of our main goal. It also unclear how to formalize the intuition behind this argument.

Instead our approach crucially relies on a reduction to analysis of the algorithmAswap that swaps the first
element in the dataset with a uniformly sampled element in the dataset before applying the local randomizers

11

(Algorithm 5). We show that Aswap has the desired privacy parameters for the first element (that is, satisfies
the guarantees of differential privacy only for pairs of datasets that differ in the first element). We then show
that for every index i∗, Asl can be decomposed into a random permutation that maps element i∗ to be the
first element followed by Aswap. This implies that the algorithm Asl will satisfy differential privacy at i∗.

To argue about the privacy properties of the Aswap we decompose it into a sequence of algorithms, each
producing one output symbol (given the dataset and all the previous outputs). It is not hard to see that the
output distribution of the i’th algorithm is a mixture µ = (1 − p)µ0 + pµ1, where µ0 does not depend on
x1 (the first element of the dataset) and µ1 is the output distribution of the i’th local randomizer applied
to x1. We then demonstrate that the probability p is upper bounded by e2ε0/n. Hence, using amplification
by subsampling, we obtain that µ is close to µ0. The distribution µ0 does not depend on x1 and therefore,
by the same argument, µ0 (and hence µ) is close to the output distribution of the i’th algorithm on any
dataset D′ that differs from D only in the first element. Applying advanced composition to the sequence of
algorithms gives the claim.

We now provide the full details of the proof starting with the description and analysis of Aswap.

Algorithm 5 : Aswap: Local responses with one swap

Input: Dataset D = x1:n. Algorithms A(i)
ldp : S(1) × · · · × S(i−1) ×D → S(i) for i ∈ [n].

1: Sample I r← [n]
2: Let σI(D)← (xI , x2, . . . , xI−1, x1, xI+1, . . . , xn)
3: return Alocal(σI(D))

Theorem 8 (Amplification by swapping). For a domain D, let A(i)
ldp : S(1) × · · · × S(i−1) × D → S(i) for

i ∈ [n] (where S(i) is the range space ofA(i)
ldp) be a sequence of algorithms such thatA(i)

ldp is ε0-differentially
private for all values of auxiliary inputs in S(1) × · · · × S(i−1). Let Aswap : Dn → S(1) × · · · × S(n) be
the algorithm that given a dataset D = x1:n ∈ Dn, samples a uniform index I ∈ [n], swaps element 1 with
element I and then applies the local randomizers to the resulting dataset sequentially (see Algorithm 5). For
any n ≥ 1000, 0 < ε0 < 1/2 and 0 < δ < 1/100, Aswap satisfies (ε, δ)-differential privacy at index 1 in

the central model, where ε ≤ 12ε0

√
log(1/δ)

n .

Proof. The algorithm Aswap defines a joint distribution between I and the corresponding output sequence
of Aswap, which we denote by Z1, Z2, . . . , Zn. We first observe that Z1:n can be seen as the output of a
sequence of n algorithms with conditionally independent randomness: B(i) : S(1)×· · ·×S(i−1)×Dn → S(i)
for i ∈ [n]. On input s1:i−1 and D, B(i) produces a random sample from the distribution of Zi conditioned
on Z1:i−1 = s1:i−1. The outputs of B(1), . . . ,B(i−1) are given as the input to B(i). By definition, this
ensures that random bits used by B(i) are independent of those used by B(1), . . . ,B(i−1) conditioned on the
previous outputs. Therefore in order to upper bound the privacy parameters of Aswap we can analyze the
privacy parameters of B(1), . . . ,B(n) and apply the advanced composition theorem for differential privacy
(Theorem 2).

Next we observe that, by the definition of Aswap, conditioned on the value of I , Zi is independent of
Z1:i−1. In particular, for i ≥ 2, B(i) can equivalently be implemented as follows. First, sample an index
T from the distribution of I conditioned on Z1:i−1 = s1:i−1. Then, if T = i output A(i)

ldp(s1:i−1;x1).

Otherwise, output A(i)
ldp(s1:i−1, xi). To implement B(1) we sample T uniformly from [n] and then output

A(1)
ldp(xT).

12

We now prove that for every i ∈ [n], B(i) is (2eε0(eε0 − 1)/n, 0)-differentially private at index 1. Let
D = x1:n and D′ = (x′1, x2:n) be two datasets that differ in the first element. Let s1:i−1 denote the input
to B(i). We denote by µ the probability distribution of B(i)(s1:i−1, D), denote by µ0 (or µ1) the probability
distribution of B(i)(s1:i−1, D) conditioned on T 6= i (T = i, respectively) and by p the probability that
T = i (where T is sampled from the distribution of I conditioned on Z1:i−1 = s1:i−1 as described above).
We also denote by µ′, µ′0, µ

′
1 and p′ the corresponding quantities when B(i) is run on D′. By the definition,

µ = (1− p)µ0 + pµ1 and µ′ = (1− p′)µ′0 + p′µ′1.
For i = 1, T is uniform over [n] and hence p = p′ = 1/n. Further, µ0 is equal to µ′0 (since both are equal

to the output distribution of A(1)
ldp(xT) conditioned on T 6= 1). By ε0-local differential privacy of A(1)

ldp and
quasi-convexity of (ε, δ)-DP we obtain that µ0 u(ε0,0) µ1. Therefore, privacy amplification by subsampling
(Lemma 4) implies that µ0 u((eε0−1)/n,0) µ. Similarly, we obtain that µ′0 u((eε0−1)/n,0) µ

′ and therefore, by
the triangle inequality, µ u(2(eε0−1)/n,0) µ

′. In other words, B(1) is (2(eε0 − 1)/n, 0)-differentially private at
index 1.

For i ≥ 2, we again observe that µ0 = µ′0 since in both cases the output is generated byA(i)
ldp(s1:i−1;xi).

Similarly, ε0-local differential privacy of A(i)
ldp implies that µ0 u(ε0,0) µ1 and µ′0 u(ε0,0) µ

′
1.

We now claim that p ≤ e2ε0/n. To see this, we first observe that the condition Z1:i−1 = s1:i−1 is an
event defined over the output space of Alocal. Conditioning on T = i reduces Aswap to running Alocal on
σi(D). Note that for j 6= i, σi(D) differs from σj(D) in at most two positions. Therefore, by ε0-differential
privacy of Alocal and group privacy (e.g. [DR14]), we obtain that

Pr [Z1:i−1 = s1:i−1 | T = i]

Pr [Z1:i−1 = s1:i−1 | T = j]
≤ e2ε0 .

By quasi-convexity of (ε, δ)-DP we obtain that

Pr [Z1:i−1 = s1:i−1 | T = i]

Pr [Z1:i−1 = s1:i−1]
≤ e2ε0 .

This immediately implies our claim since

Pr[T = i | Z1:i−1 = s1:i−1] =
Pr [Z1:i−1 = s1:i−1 | T = i] · Pr[T = i]

Pr [Z1:i−1 = s1:i−1]
≤ 1

n
· e2ε0 .

Privacy amplification by sampling implies that µ0 u(e2ε0 (eε0−1)/n,0) µ. Applying the same argument to
D′ and using the triangle inequality we get that µ u(2e2ε0 (eε0−1)/n,0) µ

′.
Applying the advanced composition theorem for differential privacy with ε1 = 2e2ε0(eε0 − 1)/n and n

steps we get that Aswap satisfies (ε, δ)-DP at index 1 for

ε ≤ ε1
√

2n log(1/δ) + nε1(e
ε1 − 1).

Note that for ε0 ≤ 1/2 we get that ε1 ≤ 8ε0/n and the first term

ε1
√

2n log(1/δ) ≤ 8ε0

√
2 log(1/δ)

n
.

Using the fact that n ≥ 1000 we have that ε1 ≤ 1/250. This implies that eε1−1 ≤ 65
64ε1 and using n ≥ 1000

and δ ≤ 1/100, we get the following bound on the second term

nε1(e
ε1 − 1) ≤ 65

64
nε21 ≤

65ε20
n
≤ 2

3
ε0

√
log(1/δ)

n
.

Combining these terms gives the claimed bound.

13

Finally, we describe a reduction of the analysis of Asl to the analysis of Aswap.

Proof of Theorem 7. Let D and D′ be two datasets of length n that differ at some index i∗ ∈ [n]. The
algorithm Asl can be seen as follows. We first pick a random one-to-one mapping π∗ from {2, . . . , n} →
[n] \ {i∗} and let

π∗(D) = (xi∗ , xπ∗(2), . . . , xπ∗(n)).

Namely, we move xi∗ to the first place and apply a random permutation to the remaining elements. In the
second step we apply Aswap to π∗(D). It is easy to see that for a randomly and uniformly chosen π∗ and
uniformly chosen I ∈ [n] the distribution of σI(π∗(D)) is exactly a random and uniform permutation of
elements in D.

For a fixed mapping π∗, the datasets π∗(D) and π∗(D′) differ only in the element with index 1. There-
fore Aswap(π∗(D)) u(ε,δ) Aswap(π∗(D′)) for ε and δ given in Theorem 8. Using the quasi-convexity of
(ε, δ)-DP over a random choice of π∗ we obtain that Asl(D) u(ε,δ) Asl(D

′).

4.1 Shuffling after local randomization

The proof of Theorem 7 relies crucially on shuffling the data elements before applying the local randomizers.
However implementing such an algorithm in a distributed system requires trusting a remote shuffler with
sensitive user data, thus negating the key advantage of the LDP model. Conversely, even if shuffling is
performed on a set of already-randomized LDP responses, no additional privacy guarantees will be achieved
if some attribute of each report (e.g., the choice of a randomizer) can reveal the identity of the reporting user.

Fortunately, it is possible design software systems where reports are randomized before shuffling and in
which the reports coming from large groups of users are indistinguishable, e.g., because they apply the same
local randomizer. In such constructions, the privacy of each user’s report still have its privacy amplified,
by a factor proportional to the square root of the cardinality of indistinguishable reports. This follows
immediately from the fact that shuffling the responses from the same local randomizers is equivalent to first
shuffling the data points and then applying the local randomizers.

We make this claim formal in the following corollary.

Corollary 9. For a domain D, let A(i)
ldp : S(1) × · · · × S(i−1) × D → S(i) for i ∈ [n] (where S(i) is the

range space of A(i)
ldp) be a sequence of algorithms such that A(i)

ldp is ε0-differentially private for all values of
auxiliary inputs in S(1) × · · · × S(i−1). Let Apost : Dn → S(1) × · · · × S(n) be the algorithm that given
a dataset D ∈ Dn, computes z1:n = Alocal(D), samples a random and uniform permutation and outputs
zπ(1), . . . , zπ(n). Let S ⊆ [n] be any set of indices such that for all i, j ∈ S, A(i)

ldp ≡ A
(j)
ldp. Then for

|S| ≥ 1000, 0 < ε0 < 1/2 and 0 < δ < 1/100 and every i ∈ S, Apost satisfies (ε, δ)-differential privacy at

index i in the central model, where ε = 12ε0

√
log(1/δ)
|S| .

We note that for the conclusion of this corollary to hold it is not necessary to randomly permute all
the n randomized responses. It suffices to shuffle the elements of S. We also clarify that for i < j, by
A(i)

ldp ≡ A
(j)
ldp we mean that for all sequences z1:j−1 and x ∈ D, the output distributions of A(i)

ldp(z1:i−1, x)

and A(j)
ldp(z1:j−1, x) are identical (and, in particular, the output distribution A(j)

ldp does not depend on zi:j−1).

4.2 Lower Bound for Local DP Protocols

The results of this section give us a natural and powerful way to prove lower bounds for protocols in the local
differential privacy model. We can apply Theorem 7 in the reverse direction to roughly state that for any

14

given problem, lower bounds on the error of Ω(α/ε) (for some term α that might depend on the parameters
of the system) of an ε-centrally differentially private protocol translate to a Ω(α

√
n/ε) lower bound on the

error of any ε-locally differentially private protocol of the kind that our techniques apply to.
As an exercise, a lower bound of Ω(

√
k polylog (d)/ε) for the problem of collecting frequency statistics

from users across time in the central DP framework with privacy guarantee ε directly implies that the result
in Theorem 6 is tight. We note here that the results of Dwork et al. [DNPR10] do show a lower bound of
Ω(log(d)/ε) for the setting when k = 1 in the central DP framework. This strongly suggests that our bounds
might be tight, but we cannot immediately use this lower bound as it is stated only for the pure ε-differential
privacy regime. It is an open problem to extend these results to the approximate differential privacy regime.

5 Discussion and Future Work

Our amplification-by-shuffling result is encouraging, as it demonstrates that the formal guarantees of dif-
ferential privacy can encompass intuitive privacy-enhancing techniques, such as the addition of anonymity,
which are typically part of existing, best-practice privacy processes. By accounting for the uncertainty in-
duced by anonymity, in the central differential privacy model the worst-case, per-user bound on privacy cost
can be dramatically lowered.

Our result implies that industrial adoption of LDP-based mechanisms may have offered much stronger
privacy guarantees than previously accounted for, since anonymization of telemetry reports is standard pri-
vacy practice in industry. This is gratifying, since the direct motivation for our work was to better understand
the guarantees offered by one industrial privacy-protection mechanism: the Encode, Shuffle, Analyze (ESA)
architecture and PROCHLO implementation of Bittau et al. [BEM+17].

However, there still remain gaps between our analysis and proposed practical, real-world mechanisms,
such as those of the ESA architecture. In particular, our formalization assumes the user population to be
static, which undoubtedly it is not. On a related note, our analysis assumes that (most) all users send reports
at each timestep and ignores the privacy implications of timing or traffic channels, although both must be
considered, since reports may be triggered by privacy-sensitive events on users’ devices, and it is infeasible
to send all possible reports at each timestep. The ESA architecture addresses traffic channels using large-
scale batching and randomized thresholding of reports, with elision, but any benefits from that mitigation
are not included in our analysis.

Finally, even though it is a key aspect of the ESA architecture, our analysis does not consider how
users may fragment their sensitive information and at any timestep send multiple LDP reports, one for each
fragment, knowing that each will be anonymous and unlinkable. The splitting of user data into carefully
constructed fragments to increase users’ privacy has been explored for specific applications, e.g., by Fanti
et al. [FPE16] which fragmented users’ string values into overlapping n-grams, to bound sensitivity while
enabling an aggregator to reconstruct popular user strings. Clearly, such fragmentation should be able to
offer significantly improved privacy/utility tradeoffs, at least in the central model. However, in both the
local and central models of differential privacy, the privacy implications of users’ sending LDP reports
about disjoint, overlapping, or equivalent fragments of their sensitive information remain to be formally
understood, in general.

References

[ACG+16] Martı́n Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal
Talwar, and Li Zhang. Deep learning with differential privacy. In Proc. of the 2016 ACM

15

SIGSAC Conf. on Computer and Communications Security (CCS), pages 308–318, 2016.

[App17] Apple’s Differential Privacy Team. Learning with privacy at scale. Apple Machine Learning
Journal, 1(9), December 2017.

[BBG18] Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification by subsampling: Tight
analyses via couplings and divergences. CoRR, abs/1807.01647, 2018.

[BEM+17] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghunathan, David
Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard Seefeld. Prochlo: Strong
privacy for analytics in the crowd. In Proc. of the 26th ACM Symp. on Operating Systems
Principles (SOSP), 2017.

[BIK+17] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for
privacy-preserving machine learning. In Proc. of the 2017 ACM Conf. on Computer and
Communications Security (CCS), pages 1175–1191, 2017.

[BNST17] Raef Bassily, Kobbi Nissim, Uri Stemmer, and Abhradeep Thakurta. Practical locally private
heavy hitters. In Advances in Neural Information Processing Systems (NeurIPS), pages 2288–
2296, 2017.

[BS15] Raef Bassily and Adam Smith. Local, private, efficient protocols for succinct histograms.
In Proc. of the Forty-Seventh Annual ACM Symp. on Theory of Computing (STOC), pages
127–135, 2015.

[BST14] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization:
Efficient algorithms and tight error bounds. In Proc. of the 2014 IEEE 55th Annual Symp. on
Foundations of Computer Science (FOCS), pages 464–473, 2014.

[CGB17] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable computation of
aggregate statistics. In Proc. of the 14th USENIX Conf. on Networked Systems Design and
Implementation (NSDI), pages 259–282, 2017.

[CKN+11] Joseph A. Calandrino, Ann Kilzer, Arvind Narayanan, Edward W. Felten, and Vitaly
Shmatikov. “You might also like:” Privacy risks of collaborative filtering. In 32nd IEEE
Symp. on Security and Privacy, pages 231–246, 2011.

[CSS11] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics.
ACM Trans. on Information Systems Security, 14(3):26:1–26:24, November 2011.

[CSU+18] Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev. Distributed
differential privacy via mixnets. CoRR, abs/1808.01394, 2018.

[Dez18] Ryan Dezember. Your smartphone’s location data is worth big money to Wall Street.
The Wall Street Journal, November 2018. https://www.wsj.com/articles/

your-smartphones-location-data-is-worth-big-money-to-wall-street-

1541131260.

16

https://www.wsj.com/articles/your-smartphones-location-data-is-worth-big-money-to-wall-street-1541131260
https://www.wsj.com/articles/your-smartphones-location-data-is-worth-big-money-to-wall-street-1541131260
https://www.wsj.com/articles/your-smartphones-location-data-is-worth-big-money-to-wall-street-1541131260

[DKM+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor.
Our data, ourselves: Privacy via distributed noise generation. In Advances in Cryptology—
EUROCRYPT, pages 486–503, 2006.

[DKY17] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting telemetry data privately.
In Advances in Neural Information Processing Systems (NeurIPS), pages 3574–3583, 2017.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sen-
sitivity in private data analysis. In Proc. of the Third Conf. on Theory of Cryptography (TCC),
pages 265–284, 2006.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion
router. In 13th USENIX Security Symp., pages 21–21, 2004.

[DNPR10] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential privacy un-
der continual observation. In Proc. of the Forty-Second ACM Symp. on Theory of Computing
(STOC), pages 715–724, 2010.

[DR14] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foun-
dations and Trends in Theoretical Computer Science, 9(3–4):211–407, 2014.

[DRV10] Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and differential privacy. In
Proc. of the 51st Annual IEEE Symp. on Foundations of Computer Science (FOCS), pages
51–60, 2010.

[DSSU17] Cynthia Dwork, Adam Smith, Thomas Steinke, and Jonathan Ullman. Exposed! A survey of
attacks on private data. Annual Review of Statistics and Its Application, 4(1):61–84, 2017.

[Dwo06] Cynthia Dwork. Differential privacy. In Proc. of the 33rd International Conf. on Automata,
Languages and Programming—Part II (ICALP), pages 1–12, 2006.

[EPK14] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAPPOR: Randomized aggregat-
able privacy-preserving ordinal response. In Proc. of the 2014 ACM Conf. on Computer and
Communications Security (CCS), pages 1054–1067, 2014.

[FMTT18] Vitaly Feldman, Ilya Mironov, Kunal Talwar, and Abhradeep Thakurta. Privacy amplification
by iteration. In 59th Annual IEEE Symp. on Foundations of Computer Science (FOCS), pages
521–532, 2018.

[FPE16] Giulia Fanti, Vasyl Pihur, and Úlfar Erlingsson. Building a RAPPOR with the unknown:
Privacy-preserving learning of associations and data dictionaries. Proc. on Privacy Enhancing
Technologies (PoPETS), 2016(3):41–61, 2016.

[JKT12] Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta. Differentially private online learning.
In Proc. of the 25th Annual Conf. on Learning Theory (COLT), volume 23, pages 24.1–24.34,
2012.

[JRUW18] Matthew Joseph, Aaron Roth, Jonathan Ullman, and Bo Waggoner. Local differential privacy
for evolving data. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

17

[KLN+08] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and
Adam D. Smith. What can we learn privately? In 49th Annual IEEE Symp. on Foundations
of Computer Science (FOCS), pages 531–540, 2008.

[LGZ18] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Karaoke: Distributed private messaging
immune to passive traffic analysis. In 13th USENIX Symp. on Operating Systems Design and
Implementation (OSDI), pages 711–725, 2018.

[QYY+16] Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao, and Kui Ren. Heavy hitter estima-
tion over set-valued data with local differential privacy. In Proc. of the 2016 ACM Conf. on
Computer and Communications Security (CCS), pages 192–203, 2016.

[TGL+17] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich. Stadium: A
distributed metadata-private messaging system. In Proc. of the 26th ACM Symp. on Operating
Systems Principles (SOSP), pages 423–440, 2017.

[TKB+17] Jun Tang, Aleksandra Korolova, Xiaolong Bai, Xueqiang Wang, and XiaoFeng Wang.
Privacy loss in Apple’s implementation of differential privacy on macOS 10.12. CoRR,
abs/1709.02753, 2017.

[Ull17] Jonathan Ullman. CS7880. Rigorous approaches to data privacy, Spring 2017. http://www.
ccs.neu.edu/home/jullman/PrivacyS17/HW1sol.pdf, 2017.

[vdHLZZ15] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vuvuzela: Scalable
private messaging resistant to traffic analysis. In Proc. of the 25th ACM Symp. on Operating
Systems Principles (SOSP), pages 137–152, 2015.

[War65] Stanley L. Warner. Randomized response: A survey technique for eliminating evasive answer
bias. J. of the American Statistical Association, 60(309):63–69, 1965.

[WBLJ17] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. Locally differentially private
protocols for frequency estimation. In 26th USENIX Security Symp., pages 729–745, 2017.

[XWG11] Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. Differential privacy via wavelet trans-
forms. IEEE Trans. on Knowledge and Data Engineering, 23(8):1200–1214, August 2011.

18

http://www.ccs.neu.edu/home/jullman/PrivacyS17/HW1sol.pdf
http://www.ccs.neu.edu/home/jullman/PrivacyS17/HW1sol.pdf

	1 Introduction
	1.1 Background and related work.
	1.2 Our contributions
	1.3 Organization of the paper

	2 Technical Preliminaries and Background
	3 Locally Private Protocol for Longitudinal Data
	4 Privacy Amplification via Shuffling
	4.1 Shuffling after local randomization
	4.2 Lower Bound for Local DP Protocols

	5 Discussion and Future Work

