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Abstract. Predicting the future to anticipate the outcome of events
and actions is a critical attribute of autonomous agents. In this work, we
address the task of predicting future frame segmentation from a stream
of monocular video by leveraging the 3D structure of the scene. Our
framework is based on learnable sub-modules capable of predicting pixel-
wise scene semantic labels, depth, and camera ego-motion of adjacent
frames. Ultimately, we observe that leveraging 3D structure in the model
facilitates successful positioning of objects in the 3D scene, achieving
state of the art accuracy in future semantic segmentation.
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1 Introduction

Previous attempts at forecasting future video scene have centered around the
task of predicting the RGB video frames [6, 9]. Prediction in RGB pixel space is
difficult because of inherent ambiguities, and is unnecessary for many tasks. Al-
ternatively, future semantic segmentation [7] aims to predict pixel-wise semantic
labels of future frames given a stream of past video frames. Prior work on future
semantic segmentation [7, 5] focuses on future prediction by directly mapping the
inputs to the future frame in an unstructured manner. In this paper, we propose
a novel, and complementary to prior work, approach for future segmentation, by
introducing 3D scene and motion information and by proposing algorithms for
learning each component, such as future ego-motion (Figure 1).

2 Related Work

Future frame segmentation was introduced in a video scene parsing method by
Luc et al.[7], in which the primary task was pixel-wise semantic labeling of future
frames by learning and using features, which enforce temporal consistency. This
was accomplished with a network that was trained to directly predict the next
2D future frame segmentation from a series of four preceding frames. Luc et
al. [7] further introduce an autoregressive convolutional neural network that is
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Fig. 1. High-level overview of our method. The input RGB frame plus a segmentation
mask predicted from it are used to construct a 3D point cloud (via a learnable depth
estimation). This point cloud is then transformed according to a prediction for future
motion. Projecting the predicted point cloud into 2D space produces a segmentation
prediction for the future without access to the future RGB frame or motion data

trained to iteratively generate multiple future frames. In our work we instead
break down the problem into learnable structured sub-modules to construct a 3D
segmentation prediction and use a projection to produce the 2D segmentation
prediction. Jin et al [5] propose leveraging temporal consistency to enhance the
segmentation task itself; future frames were used jointly with past frames, to
produce the highest quality segmentation possible. Unlike this work we focus
on producing future frame segmentation masks without employing future frame
information.

3 3D Future Semantic Segmentation

To predict the segmentation of a future frame (t+ 3j) for j ∈ {1, 2, 3, 4, 5} from
the current frame (t), we propose to reconstruct the scene in 3D using learnable
sub-modules as described below. An overview of the method is shown in Figure 2.

3.1 Baseline Segmentation Model

We train a baseline segmentation model based on DeepLab ResNet-101 [1, 4], or
employ a pre-trained Xception-65 model [2]. Both models produce a segmenta-
tion map Sij

t with a 19 dimension one-hot class label vector (corresponding to
Cityscapes classes), at each pixel i, j in the frame, from the starting frame Xt.

3.2 3D Segmentation Transformation

To cast the segmentation prediction task as a 3D problem, we learn to predict
static scene depth and inter-scene ego-motion using the unsupervised method of
[8] on the Cityscapes dataset.
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Fig. 2. An overview of our method: to predict the segmentation of a future frame
(t + 3), we first compute the segmentation of the current frame (t) and estimate its
depth (which is also learned). Together this allows us to generate a segmented 3D
point cloud of the current frame (t). Additionally, we use the current frame (t) and its
preceding frames to estimate the ego-motion of the future frames (t + 3), (t + 6), etc.
We then use the predicted ego-motion to transform the segmented point cloud from
frame (t) to generate the segmentation of the future frame (t + 3), and apply iterative
transformations to produce subsequent frames (t + 6), (t + 9), etc.

Given a current RGB frame Xt, we apply the trained depth model to produce
an estimated depth map for the current frame, Dt. The camera intrinsics are
then used to obtain a structured 3D point cloud Qt from the estimated depth
map Dt. We attach to each coordinate i, j in Qij

t the one-hot segmentation class
vector at the same coordinates in Sij

t .
In parallel, given Xt, and Xt−3, the frame three time steps in the past, we

apply the trained ego-motion model to estimate the motion between frames
Tt−3→t and copy this ego-motion as an estimate of future ego-motion T̃t−3→t.
Ego-motion is treated as an SE3 transform represented by a 6D vector describing
the camera’s movement as translation in x, y, z and rotation described by pitch,
yaw, and roll.

The estimated future ego-motion T̃t−3→t is applied as a transformation on
the current point cloud Qij

t , to generate a predicted point cloud for the future
Q̂ij

t+3. We then project the 3D point cloud prediction to 2D space via a forward
warp using previously attached segmentation vectors, to construct a future frame

segmentation prediction S îĵ
t+3. To predict more than one transformation step into

the future, the above-mentioned ego-motion transformation is applied iteratively.

3.3 Learning Future Ego-Motion

In this section we describe our proposed algorithm which learns to predict the
future ego-motion vectors as a function of the prior trajectory. Using our estimate
of ego-motion from previous frames, e.g. Tt−3j−3−→t−3j , for j ∈ {0, 1, 2}, we can
produce a prediction for future motion as:

T̂t→t+3 = µ(Tt−9→t−6, Tt−6→t−3, Tt−3→t), (1)

where µ is a nonlinear function, to be learned from the observed motion se-
quences. We use past given frames, Xt−9, Xt−6, Xt−3, and Xt to generate
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the three past network-estimated3 ego-motion vectors, Tt−9−→t−6, Tt−6−→t−3,
Tt−3→t. To learn the unknown nonlinear function µ, we train a three-layer recur-
rent LSTM; each layer consists of a basic LSTM cell with six units, corresponding
to the 6D ego-motion vector. The output from the last layer is then considered
the future ego-motion, T̂t→t+3 (which can be fed back to a final frozen network
to estimate T̂t+3→t+6, so on.) The l1 loss between the originally estimated ego-
motion Tt→t+3 and the RNN-predicted ego-motion T̂t→t+3 is used for training:

L`1(T̂t→t+3, Tt→t+3) =

6∑
i=1

‖Tt→t+3i − T̂t→t+3i‖ (2)

3.4 Inpainting Projected Segmentation

Since some parts of the future scene may have been occluded or out of the field
of view in the starting frame, transforming and projecting segmentation maps
will yield undesirable missing pixels. To address this problem, an inpainting
step is applied in the segmentation space after every motion transformation by
replacing every missing pixel with the most frequent segmentation class from its
surrounding pixels.

4 Experiments

4.1 Dataset and Evaluation Metric

We use the Cityscapes dataset [3] which contains video sequences of city streets
as captured by driving a car. Each video stream is 1.8 seconds long, and contains
30 frames with a ground truth segmentation mask available for the 20th frame.
The primary evaluation metric employed is the average IOU (intersection over
union) mean, across the full validation dataset of 500 sequences.

4.2 3D Transformation Model and Inpainting

The results of the main pipeline are reported in Table 1 starting from frame 5 i.e.
5→ 20 up to 17→ 20. Results are reported for the baseline segmentation model,
the initial ego-motion (copy based) transformation method, and application of
inpainting. For the ego-motion ’copy’ method, we use the learned estimate of
camera motion from t − 3 to t, to approximate future motion as T̃t→t+3 =
Tt−3→t for all future transformations. While this approach is rough, it can be
applied with very few available prior frames. As such, we evaluate predictions
as far as 15 frames in advance (prior work [7] only reports results for 3 and 9
future frames). The motion transformation model and inpainting method provide
significant successive improvements over the static baseline segmentation model.
Inpainting most notably improves accuracy for longer-term predictions since the
more transformations are done, more missing values need to be filled.

3 The ego-motion vectors are previously learned in an unsupervised way from the
monocular video and are not provided as ground truth in the data.

4 Model normally uses frame t− 6, ego-motion estimate may be inaccurate here.
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Fig. 3. Results of the 3D future segmentation model. From left to right: RGB input
frame (top two rows 11, bottom rows 17), corresponding segmentation, predicted seg-
mentation for 20, the ground truth segmentation of 20, and the RGB image of 20

Table 1. IOU mean results for future segmentation predictions for 3 - 15 frames into
the future (i.e. 0.18 to 0.9 seconds). The future ego-motion model is a copy of prior
ego-motion, as a temporary proxy

Input Frame Target Frame (GT) # Motion Transforms Segmentation Copy (Baseline) Motion Transform (Ours)
Motion Transform
with Inpainting (Ours)

5 20 5 0.3126 0.2840 0.30594

8 20 4 0.3391 0.3341 0.3531

11 20 3 0.3683 0.3854 0.3993

14 20 2 0.4095 0.4434 0.4501

17 20 1 0.4910 0.5335 0.5353

4.3 Application of Future Ego-Motion Learning

In this section we apply the learning of the future ego-motion trajectory, as
described in Section 3.3, together with the main model. More specifically in the
experimental setup we use three prior ego-motion vectors as input to future
ego-motion predictions. This is in accordance with prior work which use 4 prior
frames as input. With that setup however, only mid- to short-term predictions,
namely 11 → 20 and 17 → 20 can be evaluated. Table 2 shows the results
for mid- to short-term predictions with learning of future ego-motion. As seen,
learning the future trajectory has a positive effect by improving the future scene
segmentation estimates further than the 3D transformation and inpainting model
alone, and examples of the full method are depicted in Figure 3.

4.4 Enhanced baseline segmentation

We replace our weak baseline segmentation model (IOU 0.6298) with a more
powerful Xception-65 model (IOU 0.800). As seen in Table 3, medium and short
term predictions are improved, achieving SOA accuracy at short term. We com-
pare to previous SOA method by Luc et al. [7] but not to Jin et al.[5] as this
work did not report numerical results for their predictive parsing network alone.
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Table 2. Application of Learned Future Ego-Motion: IOU mean results for future
segmentation predictions, when the future ego-motion vectors are learned from the
history of prior trajectory

Method 11→ 20 17→ 20

Baseline 0.3683 0.4910

Motion Transform 0.3913 0.5335

Motion Transform + Inpainting 0.3993 0.5353

Motion Transform + Inpainting
+ Learning Future Ego-Motion 0.4120 0.5370

Table 3. Application of Enhanced Segmentation: IOU for full method with Xception

Method 11→ 20 17→ 20

Baseline 0.3956 0.5461

Motion Transform + Inpainting
+ Learning Future Ego-Motion 0.4540 0.6147

Luc et al. 0.4780 0.5940

5 Conclusions

We introduce a novel method for producing future semantic segmentation, by
employing the 3D information of the scene. We incorporate learnable sub-modules
for scene depth, ego-motion, and for future ego-motion prediction. We demon-
strate improvements of future frame prediction accuracy, and future frame seg-
mentation results up to 0.9 seconds away from the starting frame.
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