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We introduce a new family of dynamic mechanisms that restricts sellers from using
future distributional knowledge. Since the allocation and pricing of each auction period
do not depend on the type distributions of future periods, we call this family of dynamic
mechanisms non-clairvoyant.

We develop a framework (bank account mechanisms) for characterizing, designing,
and proving lower bounds for dynamic mechanisms (clairvoyant or non-clairvoyant).
We use the same methods to compare the revenue extraction power of clairvoyant and
non-clairvoyant dynamic mechanisms.
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1. INTRODUCTION

DYNAMIC MECHANISM DESIGN OPTIMIZES A REPEATED AUCTION across its different
time periods, rather than optimizing each period individually. Dynamic mechanisms yield
more revenue and produce better allocation efficiency—so why are they not more widely
adopted?

While dynamic mechanisms are powerful, three main considerations have limited their
adoption in practice. First, dynamic mechanisms tend to be excessively detail dependent:
They require the designer to have reliable forecasts of valuation distributions in all pe-
riods. Second, they often require all buyers to share their beliefs. Third, dynamic mech-
anisms are descriptively complex, with nonintuitive allocation and pricing rules. In this
paper, we present a way to overcome these limitations and design more practical dynamic
mechanisms.

To illustrate a concrete application for dynamic mechanisms, we consider the design
of a sequential auction. Suppose that a firm wants to sell 7 products, one per period,
over T time periods. Each product has public features, observable to the seller and all
buyers, and a set of private features for each buyer, observable only to that buyer. Each
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buyer’s valuation is a function of the publicly observable features and her set of privately
observable features. For each period ¢, the publicly observable feature vector induces a
common-knowledge distribution F, over the buyer’s valuations. In this model, there is no
higher level prior from which the distributions are generated. The distributions Fi, ..., Fr
are adversarially chosen in the beginning and then gradually revealed to the seller.

Jackson and Sonnenschein (2007) and Manelli and Vincent (2007) observe that even
when the valuation samples drawn from Fj, ..., Fr are independent, the seller can opti-
mize the auction by linking the decisions. For example, the seller can benefit by offering
a buyer a higher price today in exchange for a discount tomorrow. In reality, many sellers
implement this technique by offering discounts to buyers who have previously purchased
their products. Papadimitriou, Pierrakos, Psomas, and Rubinstein (2016) quantified the
revenue gap between the optimal Myerson auction, which sells a single item optimally
in each time period, and an optimal auction that links the decisions across time periods.
They showed that the latter auction could perform arbitrarily better than the former.

In this paper, we describe a concrete economic scenario and argue that the fully
Bayesian uncertainty model of traditional dynamic mechanism design is insufficiently ro-
bust to address it in practice. We then describe a way to design more robust dynamic
mechanisms by removing dependence on distributional beliefs about the future, using a
mixed uncertainty model in which the seller has Bayesian uncertainty about the present
and Knightian uncertainty about future periods.

Motivation and Economic Application. Consider a scenario in which advertisers (the
buyers) use an advertising platform (the seller) to repeatedly purchase display advertise-
ments (the products) on web pages such as news sites and blogs. For each page view,
the advertising platform sends to a set of advertisers a real-time bid request containing
the publicly observable features of that page view. The public features of the page view
include the user’s geolocation, device, and browser as well as the originating web page.
Importantly, the public features also include a unique identifier (Userld) for the user
who initiated the page view. The platform and the advertisers can independently verify
the page-view data; hence, the public features are common knowledge among all agents.

Each advertiser also has a set of private features—derived from information they have
collected previously—associated with the initiating Userld. An online merchant, for ex-
ample, typically maintains a data base containing the Userlds of recent visitors to its own
website. Upon receiving a bid request from the advertising platform, an advertiser can
check whether the Userld in the bid request is one of its recent visitors and bids accord-
ingly. This is called remarketing, and is one of the main sources of information asymmetry
between the advertisers and the advertising platform.

Mixed Uncertainty Model. The scenario above introduces two sources of uncertainty
into an auction: the public features (derived from the page view) and each advertiser’s set
of private features (derived from their own data bases).

A set of private features is collected by a single advertiser and includes demographic
and behavioral information about the user who initiated the page view. This kind of infor-
mation, once conditioned on the contextual information provided by the public features,
is relatively stable. Therefore, it is possible to build good machine learning models that
predict the distribution of bids as a function of contextual information—the public fea-
tures, on which both parties can agree. Hence, a common Bayesian belief forms that is
derived from the public features.

In contrast, an auction’s public features depend on internet traffic patterns, which can
change suddenly as a result of real-world events. For example, the exchange rate between



NON-CLAIRVOYANT DYNAMIC MECHANISM DESIGN 1941

dollars and euros affects the magnitude of advertiser bids, an unexpected celebrity death
generates spikes in search terms, or a major product launch by Apple generates a large
number of queries for entirely new search terms. The unpredictable nature of internet
traffic means that it is almost impossible to design a good Bayesian prior over public
features. Hence, we can build more robust models of public features with Knightian un-
certainty.

Non-Clairvoyance. If the seller cannot develop good forecasts, how can he verify that a
mechanism is dynamic incentive compatible? To address this limitation, we introduce the
concept of non-clairvoyance. Since the buyer’s value distribution F, only becomes available
at time ¢ when the publicly observable features of the product are revealed, a natural class
of mechanisms is one in which the allocation and payment do not depend on distributional
information about the future. We call such mechanisms non-clairvoyant. Conversely, we
call mechanisms that do depend on knowledge of future distributions clairvoyant. For-
mally, a mechanism is non-clairvoyant if, for each period ¢, it maps distributions Fi, ..., F,
and their resulting sampled types 6, ..., 6, to an allocation and a set of payments.

How is dynamic incentive compatibility (DIC) defined in the non-clairvoyant sense? In
traditional mechanism design, a mechanism is dynamic incentive compatible if the buyer
is incentivized to truthfully report her current type in expectation over her types in future
periods. A mechanism is non-clairvoyant dynamic incentive compatible if, for any period ¢
and continuation future F, 4, ..., Fr, the buyer is incentivized to truthfully report her type
in period ¢, assuming that she will report truthfully in future periods. This is a very strong
notion, since we do not even require the agents and the designer to agree on the forecasts
for future periods. However, the designer and the agents still agree on the distribution
of the current period because they share the common Bayesian beliefs about the present.
Recall from the example scenario above that all parties observe contextual information
(the auction’s public features) about the item being sold and use that information to form
their beliefs about the present.

To understand the relative power of non-clairvoyant and clairvoyant mechanisms, we
must consider two scenarios:

scenario A: Fy,..., F,, F/

410

R A scenarioB: Fy, ..., F,, F/

410

1"
.., Fl.

The designer of a non-clairvoyant mechanism must make the same allocations and pay-
ments for the first ¢ periods in both scenarios, while the designer of a clairvoyant mecha-
nism can tailor his allocation and payments to his knowledge of whether he is in scenario
A or B.

Importance of ex post Individual Rationality. We depart from traditional dynamic
mechanism design and impose ex post individual rationality (IR) instead of the more
usual interim constraints. As a requirement for participation, the usual interim IR con-
straints would suffice. The stronger ex post version is rather a self-imposed constraint mo-
tivated by practical aspects of internet advertising. Most internet advertising contracts
contain provisions that allow buyers to specify a hard limit on the maximum amount they
will pay for any given item. This is crucial from a business perspective, as it allows ad-
vertisers to explicitly and reliably control their risk and thus lowers a barrier that might
otherwise prevent new advertisers from joining the system.

In addition, ex post constraints are distribution independent and therefore more robust
than interim constraints, which are taken in expectation over the type distributions.
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Techniques. To design non-clairvoyant mechanisms and find the upper bound for the
revenue of any clairvoyant mechanism, we use a framework that we call bank account
mechanisms.

We show that for any clairvoyant mechanism that is dynamic incentive compatible and
ex post individually rational, there is a bank account mechanism with the same properties
that produces at least the same revenue (Lemma 3.3).

Bank account mechanisms have three important properties. First, bank account mech-
anisms are dynamic incentive compatible by design (Lemma 3.2). Second, the revenue
produced by a bank account mechanism naturally decomposes into two parts: the intrape-
riod revenue, which can be bounded by the Myerson revenue for that period, and the in-
terperiod revenue, which we call bank account spend (Lemma 4.1). Third, bank account
mechanisms naturally lend themselves to the design of non-clairvoyant mechanisms. For-
mally, any non-clairvoyant dynamic mechanism can be written as a non-clairvoyant bank
account mechanism (Lemma 5.2).

As a result, bank account mechanisms are a class of clairvoyant (or non-clairvoyant)
dynamic mechanisms with simple structures. We can design bank account mechanisms to
achieve the optimal revenue and welfare without loss of generality.

Main Results. Using bank account mechanisms, we characterize the optimal non-
clairvoyant mechanism for selling one item per period, for two periods, to multiple buyers
(Theorem 6.3). The mechanism is optimal in the sense that it guarantees 1/2 of the op-
timal clairvoyant revenue—the best achievable ratio. We present an impossibility result
(Theorem 5.1) showing that no non-clairvoyant mechanism can guarantee a better than
1/2 fraction of the revenue of the optimal clairvoyant mechanism for all sequences of
distributions.

The result described above is a special case of a more general construction that holds
for any number of periods (Theorem 6.1). We describe a non-clairvoyant mechanism for
selling one item per period, for any number of periods, which we call the NONCLAIR-
VOYANTBALANCE mechanism. The NONCLAIRVOYANTBALANCE mechanism produces at
least 1/5 of the revenue achievable by the optimal clairvoyant mechanism. Since the op-
timal dynamic mechanism can produce arbitrarily many times more revenue than the op-
timal static mechanism, 1/5 of the revenue of the optimal dynamic auction is often much
more revenue than the optimal static auction can produce.

In each period, the NONCLAIRVOYANTBALANCE mechanism sells 1/5 of the item us-
ing the Myerson auction for the distribution in that period and 2/5 of the item in a plain
second-price auction. We use a dynamic mechanism to sell the remaining 2/5 of the item.
For each agent, we compute a parameter b’ to represent her bank balance as a function
of her previous reports and the previous distributions. Then we run a modification of
the optimal money-burning auction of Hartline and Roughgarden (2008). The Myerson
auction component captures the revenue that can be obtained within each individual pe-
riod. A combination of the second-price and the money-burning components captures the
gains from interperiod interactions.

Finally, in Theorem 5.4, we demonstrate how to overcome the impossibility result in
Theorem 5.1 when the number of periods (7') is large, the distributions have a uniform
upper bound, and their expectations are bounded away from zero. For that regime, we
present an asymptotically optimal non-clairvoyant bank account mechanism.

Roadmap. We spend the first half of the paper discussing the single-agent environ-
ment, since the analysis is simpler and the notation lighter. In Section 2, we describe
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our model and introduce the notion of a non-clairvoyant mechanism. In Section 3, we
describe a framework (bank account mechanisms) for designing dynamic non-clairvoyant
mechanisms. In Section 4, we instantiate this framework to obtain a non-clairvoyant three-
approximation for a single agent. In Section 5, we show that there is no better than two-
approximation without additional assumptions on the distributions. In the same section,
we show that with a large number of periods and well behaved distributions, it is possi-
ble to obtain asymptotically optimal mechanisms. Finally, we extend our construction to
multiple agents in Section 6.

2. REPEATED AUCTIONS MODEL

Notation. Given a vector (xy, ..., xr), we will use subscript x, to denote a single ele-
ment and superscript x’ to denote a prefix (xy, ..., x,).

Auction Setup. The standard dynamic mechanism design setting with a finite time hori-
zon describes an economic setup in which a designer repeatedly selects an outcome over
T periods based on the reports by strategic agents. For the sake of clarity, the first part of
our paper focuses on the single-agent case and then extends it to the multiple-agent case
in Section 6. In each period ¢ € [T], the agent has type 6, € ® C R, which is drawn from
a distribution F, independently across time steps. Her valuation for outcome x, € [0, 1] is
given by 6, - x,.!

Our assumption that the agent types are independent across time steps is inspired by
our main application in internet advertising: Each time a page view arrives, the adver-
tiser’s value is a function of the publicly observable features from the page view (e.g., as
geographic and demographic information) plus some private features observable to the
advertiser (e.g., browser cookies).? The publicly observable features determine the distri-
bution from which the agent’s type is sampled, while the private features determine the
realization of the type. Unless the advertiser is starting a new campaign, she already has
an established notion of value for the combination of cookie and demographic informa-
tion, so the allocation for one page view will not affect the value of others. We consider
implementing dynamic mechanisms with a short span (say a few hours or a day) in which
there is a large enough volume of queries that we can reap the benefit of dynamic queries,
but the time span is short enough for the valuations to remain stable. Concerns about val-
uations that shift over time arise when we try to apply dynamic mechanisms over large
time spans when the market is likely to move. This issue, however, lies beyond the scope
of the current paper.

Continuing the description of the model, the following events occur in each period ¢:

(i) The agent learns her type 6, ~ F,.

(ii) The agent reports type 6, to the designer.
(iii) The designer implements an outcome x, € [0, 1] and charges the agent p,.
(iv) The agent obtains utility u, = 0, - x, — p,.

'Note that the methodology in this paper extends to a generic outcome space O as long as the valuation
function v: ® x O — R has a convex structure: Given two outcomes x1, X, € O and a parameter A € (0, 1),
there is one outcome x, € O such that for every type 6 € @, we have v(6, x,) = A-v(0, x1) + (1 — A) - v(6, x3).

2Browser cookies are small pieces of data sent from websites and stored in the user’s web browser so that
when the user revisits the same website, the cookies can be used to identify the user’s previous actions. Such
data are encrypted and can only be read by the website that placed them. For example, if a user visits an online
merchant, a cookie is placed on his browser. In an auction, only the advertiser corresponding to that merchant
will be able to read that cookie, making it a private signal.
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The final utility of the agent is additive and without discounting across all periods, that is,

Yot
A mechanism can be described in terms of an outcome and a pricing function, which
map the distributional knowledge of the designer F” = (Fy, F, ..., Fr) and the history of

reports o = (91, 92, e, 9,) to an outcome x, and a payment p,,

e outcome, x,: 0’ x (AO)T — [0, 1],

e payment, p,: 0" x (A®)" - R,
where @ is the space of types for the agents and A® is the set of distributions over 6.
We use a semicolon to separate the report and distribution parameters: x,(8'; F”) and
pt(?)’ ; FT). We omit the distributional parameters F” when clear from the context and
write the outcome and payments simply as x,(6") and p,(6").

We define the utility of the agent with type 6, in step ¢ given a history of reports 6’ and
the designer distribution knowledge F” as

ut(et; ét, FT) - et . xt(ét, FT) - pt(é[; FT).
Again, we omit F” when clear from context.

Incentive Constraints. We adopt the traditional notion of incentive compatibility (IC)
in dynamic settings, namely dynamic incentive compatibility (DIC), where agents have in-
centives to report their types truthfully in each period. This can be defined easily by back-
ward induction: In the last period, regardless of the history to date, it should be incentive
compatible for an agent to report her true type. This corresponds to the usual notion of
IC in (static) mechanism design:

67 = argmax ur(6r; 67", Oy F') Vo' 0, O,
br
In the penultimate period, it should be incentive compatible for the agent to report her
true type given that she will report her true type in the following period:
0r_1 =arg maX[qul (97712 éT_z, éT—l; FT)
br_1
+Eo~r; [UT(9T§ éT*z, éT—la 0r; FT)]] VéT*z, 07, €O
Proceeding by backward induction for all periods, we require
0, = argmaxut(et; 0. 0, FT) + U,(ét_l, 0,: FT) vie[T], 0", 0,c6, (DIC)
e

where the second term is the continuation utility, that is, the expected utility obtained from
the subsequent periods of the mechanism:

T
Ut(él;FT) :E9,+1 ..... O7~Fi11,.0s FT|:Z uT(eT; éta 0!+1""7 HT;FT)}~

T=t+1

By the time consistency of optimal choices in multiperiod decision theory, the agent’s

expected overall utility Uy = E[)_, u,(0,; 0, F )] under DIC mechanisms is maximized
when the agent reports truthfully in each period.



NON-CLAIRVOYANT DYNAMIC MECHANISM DESIGN 1945

Individual Rationality. We also enforce individual rationality (IR) constraints, which
require that the total payments never exceed the total declared values. Inspired by our
main motivation, we enforce those constraints ex post, that is, in every realization of the
agent types. The stronger ex post version is a self-imposed constraint that allows advertis-
ers to explicitly control their risk. We refer to this constraint as ex post individual rational-

ity:

T
> u(6:6:F)=0 vo' O (EPIR)
=1

Revenue Optimization. 'We focus on the problem of maximizing revenue subject to the
(DIC) and (EPIR) constraints. Fixing a set of distributions F”, we can define the revenue-
optimal mechanism for those distributions as

REV*(F") = maxEyr_pr |:2T: pi(6"; FT):| s.t. (DIC) and (EPIR). (RMAX)

t=1

Static Mechanisms. Informally, a mechanism is static if the allocation and pricing func-
tions x,, p; at time ¢ depend only on the distributional knowledge F” and the reported
type 6, in that period.

Under this definition, the revenue optimization problem restricted to static mechanisms
becomes separable: The optimal solution consists of applying for each period ¢ the opti-
mal mechanism for that period, that is, the mechanism x,(6,; Fr), p,(6,; F,) that maxi-
mizes Eq, [ p.(6,, F,)] subject to single-period IC and IR.

We define REV®(FT) as the revenue of the optimal static mechanism. Since the static
problem is more constrained, we clearly have REV*(FT) > REVS (FT). Papadimitriou et al.
(2016) show that the ratio REV*(F")/REV®(FT) can be arbitrarily large.

2.1. Non-Clairvoyant Mechanism Design

Informally, a mechanism is non-clairvoyant if it depends on distributional knowledge
about the present and past, but not the future. In other words, the contract offered by
the designer cannot condition the outcome of a certain period on the information about
future periods.

Non-Clairvoyant Direct Mechanism. To make this notion precise, we define the notion
of a non-clairvoyant direct mechanism that corresponds to a direct mechanism where the
allocation and pricing function depends only on the types and type distributions up to the
current period,

e outcome, x,: O’ x (A®)" — [0, 1],

e payment, p,: 0" x (A@)" — R.

Note that the only change with respect to the previous definition is the superscript of A@.
This can alternatively be phrased as a progressive measurability restriction imposed on
top of standard direct mechanisms.

Non-Clairvoyant DIC. In the non-clairvoyant setting, the designer is constrained not
to condition on future type distributions. Agents, however, are allowed to choose strate-
gies that depend on knowledge they have over the anticipated future type distributions.
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In a non-clairvoyant dynamic incentive compatible mechanism, the agents should weakly
prefer to report their true type 6; given past reports 6!, realized distributions F’, and
anticipated future distributions (F,,4, ..., Fr). In other words, condition (DIC) should
hold for any continuation future,

6, = argmaxu, (6;; 61,0, F') + U,(é‘_l, 0,; F')
0 (NCDIC)
VFT, te[T], 67", 6, €6,

where the second term, U,, is the non-clairvoyant continuation utility.?

Non-Clairvoyant Revenue Maximization. We defined REV*(FT) as the optimal rev-
enue of a dynamic auction for a sequence of distributions F” without imposing the non-
clairvoyant constraints. We call this quantity the optimal clairvoyant revenue for F7.

The optimal non-clairvoyant revenue for a sequence F is not well defined because,
due to the non-clairvoyance constraint, the incentive constraint is not separable across
different distribution sequences. Instead, we will define a non-clairvoyant revenue ap-
proximation.

Given a certain non-clairvoyant DIC mechanism M, we define its revenue on a se-
quence of distributions F” in the natural way:

REVM(F") =Eyrpr [Z pM(0"; F‘)].

We say that the non-clairvoyant dynamic mechanism M is an a-approximation to the
clairvoyant benchmark if, for all sequences of distributions F7,

REVM(FT) >

RIr

-REV*(FT).

The main question in this paper is whether we can design non-clairvoyant mechanisms
that provide good approximations. The optimal static mechanism is non-clairvoyant, but
the example on the first page of Papadimitriou et al. (2016) shows that it fails to guarantee
any approximation «. Given that fact, it is not clear in principle if we can obtain & < oo at
all.

Finally, while there is no notion of the optimal non-clairvoyant mechanism for a se-
quence FT, we can define optimality in a maximin sense. Given T and a family of distri-
butions F, we define the maximin optimal non-clairvoyant mechanism as (where 0/0 = 1)

.. ReVY(F") )
sup inf ————=s.t. (NCDIC), (EPIR), M non-clairvoyant. (MAXIMIN)
m FTerT REV*(FT)

In Section 5, we derive the optimal maximin mechanism for two periods and an asymp-
totically optimal maximin mechanism for 7" — ooc.

3Note that we slightly abused the notation of U, here, because the non-clairvoyant continuation utility
should be defined with the periodic utilities not depending on any future distributions.
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3. BANK ACCOUNT MECHANISMS

In this section, we define a general family of auctions called bank account mechanisms.
We choose this name since they are based on a thought experiment in which a buyer
“deposits” part of her utility in an account as an investment, which will result in a more
favorable auction in future periods. The idea of a bank account is only an abstract device
used in the construction of the mechanism and not a real entity that buyers reason about.
We initially present our definition in the standard clairvoyant setting, where there is a
fixed sequence of distributions F”, and the functions of the mechanism can depend on all
these distributions. To avoid excess notation, we omit distribution dependence.

Our auction will have two salient features: (i) Each period depends on the previous
periods only through a single scalar variable called the balance, and (ii) in this frame-
work, the designer needs to specify single-period auctions that are single-period incentive
compatible together with a valid balance update policy. That is, once a valid balance up-
date policy is in place, all the designer needs to worry about are the single-period IC
constraints.

We have a bank account mechanism B in terms of the following functions for each
period.

e A static single-period mechanism x%(6,, b), p?(0,,b) parameterized by a balance

b € R, that is (single-period) incentive compatible for each b, that is,
0, - x7(0,,b) — pf (6, b) = 6, - x7(6;,b) — p/(6;, ) 1)
VbeR,, 0,6 0.

Note that we do not require the mechanism to be (single-period) individually ratio-
nal. We also require the utility of the agent to be balance independent in expectation,
that is,

Egt[e, . xf(@t, b) — pf(@,, b)] is a nonnegative constant (BI)
not depending on b.

e A balance update policy b?(6,, b) that maps the previous balance and the report to
the current balance, satistying the balance update conditions

0<bP0,b)<b+6,-x2,,b)— p?0,,b) VbeR,,0,cO. (BU)
Given the balance update functions, we can define b, : ®' — R, recursively as
by=0 and b,(6;)=b}(6,,0) and b,(8')=0b7(6,b’,(6'")),
which allows us to define a dynamic mechanism in the standard sense as
5 (0) =X (0br(07). (0= PP(01 b (0°)).

The following example illustrates how a bank account mechanism works.

EXAMPLE 3.1: Consider a setting with a single buyer, two periods, and one item being
sold per period. The following outline describes a non-clairvoyant, incentive compatible
bank account mechanism,

e Period 1: Elicit type 6, of the buyer, give the item for free, and update the balance as

b1:01.
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e Period 2: Charge s, = min(EEy,-£,[6,], by) in advance, and run a second-price auction
with reserve r such that

Eo,~F, [max((), 0, — r)] = 5.

First, we note that the mechanism is non-clairvoyant since it uses no information about
F; in the first period. To verify that it satisfies non-clairvoyant DIC, we note that for any
anticipated type distribution F,, the agent weakly prefers to report her true type 6; in
the first period. Since reporting truthfully is optimal for any distribution F,, reporting
truthfully is also optimal without knowledge of F,.

This phenomenon is a general one: In any non-clairvoyant DIC mechanism, agents
weakly prefer to report truthfully even if they have F-Knightian uncertainty about the
future distributions, that is, the buyer knows the distribution F, from which her type at
time ¢ is drawn, but for future types at time ¢ > ¢, the buyer only knows that F,, € F for a
certain feasible set of distributions F.

In what follows, we will abuse notation by dropping the superscript B and refer to x,(6")
and x,(6,, b,_;) interchangeably. Our first theorem is that any bank account mechanism
satisfies (DIC) and (EPIR). In fact, it also satisfies slightly stronger versions of those prop-
erties, which we discuss in Appendix A.1 of the Supplemental Material (Mirrokni, Paes
Leme, Tang, and Zuo (2020)).

LEMMA 3.2: Any bank account mechanism satisfying (1C), (BI), and (BU) is dynamic
incentive compatible (DIC) and ex post individually rational (EPIR).

A formal proof of Lemma 3.2 is given in Appendix A.2 of the Supplemental Material.
Here we highlight the intuition for why this mechanism is incentive compatible. We note
that when deciding on a strategy in each period, the agent needs to worry about two
things: (i) the utility she obtains in this period, which corresponds to 6, - x, — p,, and (ii)
how her strategy in this period will affect the subsequent periods.

The condition (IC) guarantees that reporting her true type maximizes the agent’s util-
ity in the current period. The only reason that the agent might consider deviating is to
improve her utility in future periods.

The only way that the agent can affect a future period is through the balance. The
key idea behind bank account mechanisms is that the (BI) condition makes the agent
indifferent (in expectation) to what the balance b, will be in future periods. Those two
facts together guarantee that the mechanism is (DIC).

Finally, (EPIR) follows from summing the condition (BU) over all periods.

The reason that we focus on bank account mechanisms and why they are useful both
in designing optimal dynamic mechanisms and proving lower bounds is that any dynamic
incentive compatible and ex post individually rational mechanism can be converted into
a bank account mechanism without loss of revenue or welfare. Therefore, in designing or
characterizing the revenue-optimal mechanism, it is enough to focus on the subclass of
bank account mechanisms. Formally, we have the following lemma.

LEMMA 3.3: Given any dynamic mechanism (x,, p,); satisfying (DIC) and (EPIR), there
exists a bank account mechanism with at least the same revenue and at least the same welfare.

The proof has three main components: (i) We start by transforming a generic (DIC) and
(EPIR) mechanism into a mechanism that is still (DIC) and in which the agent has zero
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utility in all but the last period, where her utility is nonnegative. We call this a payment
frontloading mechanism. (ii) The next step is a symmetrization lemma that transforms the
mechanism such that if two histories result in the same expected total utility in subsequent
periods, their allocation and payments are also the same. (iii) The final step shows an
isomorphism between payment-frontloading symmetric mechanisms and bank account
mechanisms. In all those transformations, the revenue and welfare of the mechanism are
guaranteed to never decrease.

4. ANON-CLAIRVOYANT THREE-APPROXIMATION

We describe the central mechanism used in the paper for a single-buyer case and any
number of periods. The mechanism is a non-clairvoyant three-approximation to the rev-
enue of the optimal clairvoyant mechanism. In Section 5, we adapt this mechanism to ob-
tain the maximin optimal mechanism for two periods as well as an asymptotically optimal
mechanism for T — oo periods with well behaved distributions. Below in Section 6, we
generalize this result to the case of multiple buyers. Our main result is a non-clairvoyant
mechanism that is a three-approximation to the revenue of the optimal clairvoyant mech-
anism.

NONCLAIRVOYANTBALANCE Mechanism. The mechanism is a combination of three
bank account mechanisms. In each period ¢, we have a uniform combination of the fol-
lowing three mechanisms.

(i) Give for free. Allocate the item regardless of agent type and charge her nothing.
Increase the balance by her value:

xF =1, pr=0, bf =b, 1 +9,.

(ii) Posted price. Define a target expected utility to be s, = min(Ey,~r,[6,],3b,_1).
Charge the agent this amount in advance independent of her report and deduct
this amount from the balance. Then choose a price r, such that the expected utility
of the agent under r, is s, that is, Eg,5 [(6, — r,)"] = s,. Since s, < E[6,], the price
r, must be nonnegative. Run a posted-price auction with this price:

x{=16,>r}, pl=s+r-UH0=r}, bl =b_i—s.

(iif) Myerson’s auction. Find the posted price r; that maximizes the revenue that can be
obtained from this period, that is, r/ = argmax, r - Pr[6, > r] and post price r;:

=16,>rr},  pl=r-16,=r7}, b'=b._,.

We describe the mechanism in each period as a uniform combination of those three,

=[x ] p=glpfEplhpl] b= BBl B,
where the functions above are functions of 6,, b,_, and F,, that is, x,(0,, b,_y; F,),
pi(0,,b,_; F,),and b,(0,, b,_y; F,).

It is straightforward that this mechanism is non-clairvoyant, since the allocation and
payment rule in period ¢ depends only on 6,, F,, and the balance b, ; carried from the
previous periods, which is itself a function of 6'~!, F'~!. The mechanism is also ex post
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individually rational and dynamic incentive compatible, since it is a bank account mecha-
nism.

Next, we show that this mechanism is a three-approximation. It will be useful to define
the notion of the spend and use it to show a revenue decomposition lemma. We define the
spend as

si(bi—y) = maX(O, - rgin 0;-x,(6,b,_1) — pi(6y, bz—l))- (Spend)

LEMMA 4.1—Revenue Upper Bound: The revenue of any bank account mechanism with
a spend function s, can be bounded by E[),s,(0")] plus the revenue of the optimal static
mechanism.

PROOF: Letting p, = p, —s,, we have REV < E[}_, 5.(0)] + E[>_, p/(0")]. Since s, is
constant with respect to 6', (x,, p}) is a single-period incentive compatible mechanism.
Moreover, by the definition of s,, we have 6, -x, — p, =0, -x, — p, + 5, >0, so (x,, p})
is single-period individually rational. Therefore, its revenue E,,.f,[p,(6,,b,_1)] can be
bounded by the revenue of the optimal single-period static mechanism for that distri-
bution. QO.E.D.

THEOREM 4.2: The revenue of the NONCLAIRVOYANTBALANCE mechanism is at least
1/3 of the revenue of the optimal dynamic mechanism.

PROOF: The revenue of the NONCLAIRVOYANTBALANCE mechanism is

REV = E[Z %[pf(@t) +pr(0) + py(e’)]]

t

Clearly, E[Y_, pM(6")] is the revenue of the optimal static mechanism, in this case the
Myerson auction. Thus, by Lemma 4.1, all we need to prove is that E[Y_, p”(6") + pF(6")]
is greater than the sum of the spends of any optimal bank account mechanism. We will
show the stronger statement that for any realization of types 67, we have

sz )+ P ()= Y si(bia(671). (+)

t

Since the realization of the random variables is fixed, let us abbreviate the balance, pay-
ment, and spend in the generic bank account mechanism by b,, p,, and s,. If u, is the
utility of the buyer in period ¢, define u, = u, + s,. By equations (BU), (Spend), and (BI),
we know that 0 < u, < 6,5, <b, y,and s, < A\, =E; . [u,(8"", §,)] so

b, <b_ 1+ u; — S u; <6,,s, <min(A,, b,_y). (BAL)

The way to select «, and s, to optimize ) _, s, subject to (BAL) is to use the greedy algorithm
that always makes u, as large as possible, that is, u, = 6,, and always spend as much as
possible, that is, s, = min(A,, b,_;). It should be clear from the principle of local optimality
that it is never useful to delay spending the outstanding balance. Finally, note that the
NONCLAIRVOYANTBALANCE mechanism exactly implements the optimal greedy policy
scaled by a factor of 1/3: The give for free mechanism adds %Ot to the balance, and the

posted-price mechanism consumes min(b,_;, %/\,), proving (x). These two facts together
prove the theorem. Q.E.D.
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5. MAXIMIN OPTIMAL MECHANISMS

Here we derive the maximin optimal mechanism for two periods. We start by show-
ing that there is an inherent gap between clairvoyant and non-clairvoyant mechanisms.
Formally, we show that no non-clairvoyant mechanism can provide a better than two-
approximation to the clairvoyant benchmark. Then we present a two-period mechanism
that achieves this approximation. Later, we also present an asymptotically optimal non-
clairvoyant bank account mechanism for 7'— oo when the distributions are well behaved.

Our lower bound is based on the following idea. Consider a pair of distributions Fi, F,
and two possible situations: (i) only one item with distribution F; and (ii) an item with
distribution F; followed by another item of distribution F,. The non-clairvoyant mecha-
nism must allocate the same way in both cases. If the non-clairvoyant mechanism receives
a second item, it can allocate and charge a payment for it; however, if not, its revenue will
be that obtained from the first item.

Recall that given a sequence of distributions F7, we denote by REV*(FT) the revenue
of the optimal clairvoyant mechanism. Given a non-clairvoyant mechanism M defined
by x,(0'; F') and p,(0'; F'), we define its revenue on a sequence of distributions F” by
REVY (FT). Given the definitions, we prove the following lower bound.

THEOREM 5.1—Lower Bound: For every 6 > 0, there are distributions Fy, F, such that
for every non-clairvoyant mechanism M,

1+6 1+6
either REVM(Fl)S%REV*(Fl) or REVM(Fl,Fz)g%REv*(Fl,FZ).

In particular, if a non-clairvoyant mechanism is an a-approximation to the clairvoyant bench-
mark, then o > 2.

The central ingredient in the proof (given in Appendix C of the Supplemental Material)
is a characterization of non-clairvoyant mechanisms as bank account mechanisms. We
define a non-clairvoyant bank account mechanism as a bank account mechanism with the
restriction that the allocation and payment function at time ¢ must depend only on the
balance b,, the reported type 6,, and the sequence of distributions F’ until the current
period. In other words, it is simply a bank account mechanism that is not allowed to
depend on distributional knowledge about the future.

Our main characterization is that any non-clairvoyant mechanism can be written as a
non-clairvoyant bank account mechanism with the same revenue:

LEMMA 5.2: Given any non-clairvoyant dynamic mechanism satisfying (NCDIC) and
(EPIR), there exists a non-clairvoyant bank account mechanism with the same revenue.

The characterization in Lemma 5.2 is a non-clairvoyant analogue of Lemma 3.3. Al-
though their proofs share some similarities, there are new challenges to overcome due
to the restrictions imposed by non-clairvoyance: Notably, the proof of Lemma 3.3 starts
by changing the original mechanism to an equivalent payment-frontloading mechanism.
This clearly violates non-clairvoyance; thus, any non-clairvoyant reduction must avoid this
step. Additionally, in the proof of Lemma 3.3, we symmetrize the mechanism around the
concept of partially realized utility, which is not well defined for non-clairvoyant mecha-
nisms. To overcome these problems, we will use two ideas. The first is a strong property
implied by non-clairvoyance, which is the fact that the continuation utility must be con-
stant in the reported type (Lemma C.1). The second idea is to symmetrize the mechanism
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by resampling types of previous periods conditioned on a certain event, which in a way
resembles the Myersonian ironing procedure.

Maximin Optimal Mechanism. We now present a two-period non-clairvoyant bank ac-
count mechanism that achieves the optimal approximation for two periods. The mecha-
nism uses the same components as the NONCLAIRVOYANTBALANCE mechanism in Sec-
tion 4, but with different probabilities. In the first period, we run a uniform combination
of the give for free and Myerson mechanisms,

1 1 1
n=sl+x], p=3lpr+p]l bi=3[br+ 0],
using the notation defined in Section 4. For the second period, we use a uniform combina-
tion of Myerson and the posted-price auction, with the difference that s, in the posted-price
mechanism is now defined as s, = min(2by, Ey,r,[6,]). We have

1 1 1
n=sle ] p=sln e b=glb 0]
THEOREM 5.3: The mechanism above is a non-clairvoyant two-approximation to the two-
period clairvoyant benchmark. Hence, it is an optimal solution to the problem (MAXIMIN)
for T =2 periods.

PROOF: By Theorem 5.1, the solution of the problem (MAXIMIN) is at most 1/2, so to
show that the mechanism defined above is optimal, we need to argue that it is a two-
approximation. This follows from using the same revenue decomposition used in the
proof of Theorem 4.2. For two periods, it is easy to explicitly write the revenue upper
bound of any (clairvoyant) mechanism in Lemma 4.1: It is at most the static revenue (i.e.,
E[p}Y(61)]+E[p}(602)]) plus Er, [min(6;, Er,[6,])], which corresponds to the maximum of
E[s; +s,] subject to the constraint (BAL) in the proof of Theorem 4.2. The non-clairvoyant
mechanism described obtains exactly half of that revenue, where the Myerson component
obtains half of the optimal static revenue and the posted-price mechanism in the second
period obtains at least s, [min(8;, Er,[6,])]. Q.E.D.

In Theorem 6.3, we show that it is also possible to obtain a two-period maximin optimal
mechanism for any number of buyers.

Asymptotically Optimal Mechanism. The lower bound in Theorem 5.1 holds when the
number of periods is small or when there are many periods, but the distributions change
dramatically over time. In contrast, we show that it is possible to design non-clairvoyant
mechanisms that are asymptotically optimal as T — oo as long as the distributions are
reasonably well behaved. We will focus on the class of bounded distributions with means
bounded away from zero. For constants 0 < € < v, consider

Fei:={F € AR}) s.t. Ey-p[6] > € and GPE[G > 9] =0}.

The asymptotically optimal mechanism will be a combination of the give for free mech-
anism defined in Section 4 and a throttled allocation based on the balance, which we call
the spend mechanism, defined as

by

¥ =min{l, ———
! (1- qi) s

R R R RS R
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where u, = Ey,r[6,] and g, = V¢tInt — /(¢ — 1) In(¢ — 1). Given the two components,
we define the ASYMPOPTIMAL mechanism as a combination of give for free and the spend
mechanism with proportions g, and 1 — g,, respectively:

xi=q-xt +(1—gq)-x5, pi=q-pr+1—q)-p}, bi=q, bl +(1—gq,)-b’.

From the structure, it is simple to see that ASYMPOPTIMAL is a non-clairvoyant bank
account mechanism and hence satisfies (NCDIC) and (EPIR) by default. The next theorem
shows that it obtains asymptotically optimal revenue.

THEOREM 5.4: For any positive numbers € < v, there is a constant C. ; depending only on
those parameters such that the revenue of the ASYMPOPTIMAL mechanism is at least

T
REV > Z,ut —C.;-VTInT (5.1)
=1

whenever F, € F_; for all t. In particular, the optimal solution to (MAXIMIN) tends to 1 as
T — oo when the distributions are restricted to F ;.

We highlight that while the bound in Theorem 5.4 depends on the parameters € and v,
the mechanism itself does not require any knowledge of those parameters. The key obser-
vation in the proof is that the stochastic process defined by the balance is a submartingale
with bounded differences,

E[b,] =E[b,_1]+ q: - M b, — b,q| <.

Therefore, the Azuma-Hoeffding inequality will guarantee that for sufficiently large ¢,
the balance will be above (1 — g,)u,, and the spend mechanism will be able to allocate
with probability 1, extracting the full surplus.

PROOF OF THEOREM 5.4: We start by observing that the balance is a submartingale
with bounded differences since

b,—b_1=q0,+1—-gq) .xf (0, — o).

As the second term has zero expectation, we have that E[b,|b,_1] = b,_; + q,u,. For the
difference bound, observe that V6, € [0, v],

—1—-gom < bi—b_1<v—(1- q) M-

Therefore, the random variable b,=b, — Z;:l gsits is @ martingale with |l5[ — 15,,1| <.
Applying Azuma-Hoeffding inequality (Azuma (1967)) for any y > 0,

t 2
Pr|:bt < ;qsm — y:| =Prlb, < —y] < exp(—#). (5.2)

Next, we use this concentration result to argue that the spend mechanism is throttled
with vanishing probability. The mechanism is only throttled when b,_; < (1 — g,)u, < 0.
For t > exp(4v*/€*), the expected balance is much larger than v:

Elb]=) g =€) q.=eVilnt>20Vtlnt > ovtlnt + 0. (5.3)

s=1 s=1



1954 MIRROKNI, PAES LEME, TANG, AND ZUO

The concentration inequality in (5.2) can be used to guarantee that the balance will be
above v with very high probability and the allocation of the spend mechanism will not be
throttled:

s=1

t—1
Pr[x} <1]=Pr[b_ < (1 —q)p] = Pr|:15,1 <(1—=qg)pm — qu,u,s]

<Pr [6,_1 <-— (Z Gstbs — v):| <63 Pr(b,_; < —ov/tIn 1]

s=1
<G exp(—1Int/2) =1//1.

The expected revenue of the mechanism given history (F, ..., Fr) can be bounded by

REvV = Z(l_Qt)Ex ,U«t Z,U«t Z%IJ«:_UZPYX <1

t=1

The first term Z[TII u, corresponds to the highest achievable welfare, and it is a clear
upper bound on the performance of any mechanism. We now bound the remaining terms.
For the second term, we have

T T
Zq,/u, < DZq, —9/TInT.
=1 =2

For the third term, we only have a meaningful bound of Pr[x¥ < 1] when ¢ > £, :=
exp(4v%/€®). For the earlier periods, we use the trivial bound of Pr[x? < 1] < 1, obtaining

ZPrx <1] =0+ Z 1/t <2VT + exp(49°/€%).

t=ty+1

The last three inequalities together conclude the proof of the bound in equation (5.1).
To see that the mechanism is asymptotically optimal, note that the optimal revenue is at
most 3°,_, pt, and that 3", u, > €T Therefore,

REV _ REV _ WTInT +20vT + vexp(49°/€?)

REV' — T~ T
2 2
t=1 =1
OWTInT + 20T + vexp(40°/€) InT
>1- z1-Coo—=.
el JT Q.E.D.

6. MULTIPLE BUYERS

In this section, we extend our results to multiple-buyer cases. Our decision to focus on a
single buyer was driven by the desire to keep the notation as simple as possible and focus
on the complications introduced by non-clairvoyance. Once the single-buyer case is un-
derstood, most of the results presented thus far extend to the multiple-buyer setting. Our
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characterization results (Lemma 3.3 and Lemma 5.2) extend with essentially no change
in the proofs. The lower bound also naturally extends. The only major difference is in the
extension of the NONCLATRVOYANTBALANCE mechanism. We need to keep a balance for
every buyer, so the state will be a vector. As a consequence, we must reason about utility
trade-offs not only across time periods, but also across buyers. In the single-buyer case,
we solved this problem by decreasing the posted price of the buyer based on her bank bal-
ance in a greedy manner. Here, instead, we will need to be more careful and decide which
auction to use based on the result of an optimization program. This program will resem-
ble what is often called the optimal money-burning auction (Hartline and Roughgarden
(2008)).

A formal definition of the mechanism design problem for multiple buyers is given in
Appendix D.1 of the Supplemental Material. It is the natural extension of the single-buyer
model with the incentive notion, which we call dynamic Bayesian IC,

0; = argmaxE, . [u}(60}: 0", (0,7, 61): F") + UI(6"", (6,7, 03): F")]
O (DBIC)
Vie([n],te[T], 6,6 €6,

where U’ (6'; FT) is the expected total utility of a buyer from periods ¢ + 1 to 7T if her

history of reports up to period  is §" and all the buyers report truthfully from period 7 + 1
onward.

The notion of the bank account mechanism can also be naturally extended to multi-
ple buyers. The balance is now an n-dimensional variable b € R’}, and the mechanism
in each period is a static incentive compatible mechanism parameterized by b satisfying
the multiple-buyer version of conditions (BI) and (BU). We refer to Appendix D.2 of the
Supplemental Material for the details.

6.1. A Non-Clairvoyant Five-Approximation for Multiple Buyers

We then extend the NONCLAIRVOYANTBALANCE mechanism defined in Section 4 to
multiple-buyer cases.

We start by observing that Lemma 4.1 still holds in the multiple-buyer case. The rev-
enue of any bank account mechanism can be bounded by the revenue of the optimal static
mechanism plus the sum of spends E[Y_, >, si(6")] (see Appendix D.2 of the Supplemen-
tal Material). A natural strategy given this lemma is to combine the optimal static mech-
anism (in this case, the Myerson auction) with the mechanism that tries to spend as much
as possible from the bank accounts. To this end, we replace the give for free mechanism by
a second-price auction, and we replace the posted-price by the money-burning mechanism
(Hartline and Roughgarden (2008)).

We then define the multiple-buyer version of the NONCLAIRVOYANTBALANCE mecha-
nism. As before, we will define three mechanisms that are parameterized by the balance
b, together with a balance update policy. As done in Section 4, we will count the spend as
part of the payment:

(i) Second-price auction. Allocate the item to the buyer with the highest type (break-
ing ties arbitrarily). Increase the balance of the top bidder by her utility. In other
words, if we order the buyers such that 6; > > > --- > 67, then

S1 _ S _ . S1__ p2 S.j_ 0.
xt _1’ Xy _07 pt _61’ pt _09

X 5. .
b?’l =b, 46, - 0?: b’ =b;_,
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for j > 2. The mechanism guarantees the largest possible increase in bank bal-
ance.

(i) Money-burning auction. Given the bank account states b, ;, we compute the single-
period mechanism that maximizes the sum of the expected utilities of the buyers
subject to each buyer i having utility of at most 2b!_,. That is, we want to com-
pute the allocation and payment rule x%, p? satisfying Bayesian IC and IR and
maximizing

bi_, Vie€|[n], BIC, and IR.

N

max Y B, [@(6)] st E[if] <

Money-burning mechanisms have this name since they correspond to the wel-
fare maximization problem when the revenue obtained is burned. Hartline
and Roughgarden (2008) provided a comprehensive study of such mechanisms
and showed that they can be written as a virtual value maximization for a
different notion of virtual values. In fact, we can deduce from their result
that the solution to the problem above corresponds to the auction where
we transform the values to the space of virtual values for utilities and run
a (scaled) second-price auction in that space. Thus, in that sense, it is not
very different from Myerson’s auction other than the fact that the notion of
virtual values is nonstandard. Given such a solution, we define the money-
burning mechanism using the allocation and payment obtained from the pro-
gram, that is, if’i, ﬁf’i. Then its allocation, payment, and balance are defined
as
=R pP= B[], b= b~ E[a],
(iii) Myerson’s auction. Run the static optimal auction given by x* and p". Bank ac-
counts are unchanged, that is, pM = b .

The non-clairvoyant balance mechanism is the mechanism defined by

ol 2 2, 2 2
¥p=gxt Rt o pi=op el + 5Pl

1 2 2
b; = gb?/[’l + gbf’l + gb?’l.

In Appendix E of the Supplemental Material, we argue that each component of the
NONCLAIRVOYANTBALANCE mechanism can be implemented as a virtual value max-
imizer. Next, we provide an approximation guarantee with respect to the clairvoyant
benchmark.

THEOREM 6.1: The multiple-buyer version of the NONCLAIRVOYANTBALANCE mecha-
nism is a non-clairvoyant five-approximation to the clairvoyant benchmark.

Stronger Incentive Guarantees. While our mechanism produces at least 1/5 of the rev-
enue of any dynamic Bayesian incentive compatible (DBIC) mechanism, it actually satis-
fies a stronger notion of IC: It is optimal for each agent to report her true type even if she
knows the types of other agents in the period when she is reporting. This corresponds to
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the notion of strong dynamic Bayesian IC:

0; = argmaxu! (613 0", (6;", 0); F™) + U/, (6;", 0Y); F7)

t 2t

b (SDBIC)
Vielnl,te[T],07",0,c0.

LEMMA 6.2: The NONCLAIRVOYANTBALANCE mechanism satisfies (SDBIC).

The proof is straightforward, but we include it in Appendix D.4 of the Supplemental
Material for completeness.

6.2. Maximin Optimal Multiple-Buyer Mechanism for Two Periods

Finally, we adapt the two-period mechanism in Section 5 to multiple-buyer cases and
demonstrate that it is still a two-approximation and is therefore maximin optimal. The
mechanism has the same three components we used for the multiple-buyer version of
NONCLAIRVOYANTBALANCE, except that the money-burning auction differs slightly in
the coefficients (2 instead of 5/2) in the spend constraints:

maXZEgt[ﬁf(O,)] st. E[a’]<2b)_, Vie[n], ICandIR.

Then the two-period version of the NONCLAIRVOYANTBALANCE mechanism is defined
as

xi = l[lew’i +x7], pi=

: 457

[Pt b=

—_ N =

[P+ P2 by=3[B" 027

N = N =

R .
xl = _|x sL _|_ X st , - —

2 2[ 2 2 ] P> )
THEOREM 6.3: The two-period version of the NONCLAIRVOYANTBALANCE mechanism

is a non-clairvoyant two-approximation to the two-period clairvoyant benchmark. Hence, it is
an optimal solution to problem (MAXIMIN) for T = 2 periods.

A proof is included in Appendix D.4 of the Supplemental Material.

7. DISCUSSION

An important modeling assumption made in this paper is that the private information
of the buyer is drawn independently in each period such that what the auctioneer learns
about the buyer’s valuation in past periods becomes irrelevant given the distribution F,.
In particular, the model does not allow for persistent values. An important avenue of in-
vestigation is to define the notion of non-clairvoyance in a setting with correlations across
time and determine whether it is still possible to approximate the optimal clairvoyant
mechanism in such cases.

Another open problem is to design a single mechanism that is simultaneously a constant
approximation to the optimal for a small number of periods and asymptotically optimal
as T — oo. This paper shows that it is possible to obtain each property separately by using
a different mechanism.
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8. RELATED WORK

Dynamic Mechanism Design. The literature on dynamic mechanism design is too ex-
tensive to survey here: We refer to the survey by Bergemann and Said (2011) and another
recent survey by Bergemann and Véliméki (2019) for comprehensive treatments of the
subject. Here, we discuss a few representative papers in the literature.

For efficiency (social-welfare) maximization, Bergemann and Véliméki (2010) propose
the dynamic pivot mechanism, which is a natural generalization of the Vickrey—Clarke—
Groves (VCG) mechanism to a dynamic environment where agents receive private infor-
mation over time, and Athey and Segal (2013) propose the team mechanism to achieve
budget-balanced outcomes (see also Bergemann and Viliméki (2003, 2006), Cavallo,
Parkes, and Singh (2006, 2009), Cavallo (2008)).

For revenue maximization, a line of research was initiated by Baron and Besanko (1984)
and Courty and Li (2000) that studies the setting where the private information of agents
varies over time. The latter show an optimal dynamic contract that “screens” the agents
twice in a setting where agents initially have private information about the future distri-
bution of their values (see also Boleslavsky and Said (2013), Akan, Ata, and Dana (2015)
for “screening” in dynamic mechanism design).

Esé and Szentes (2007) study a closely related two-period model, where the agents
only have a rough estimation of their private values of the item in the first round, and
the seller can release additional signals to affect their values before selling the item in the
second round. In a particular setting, they propose a handicap auction that shares some
similar ideas with our bank account mechanism in each period: In a handicap auction, the
agents buy their premiums from a menu offered by the seller in the first round based on
their rough estimation of private values and then compete with each other under unequal
conditions (premiums) in the second round after receiving additional signals from the
seller. It is similar to our bank account mechanism in the sense that in both settings, the
agents first buy some advantages/discounts for the next round via either premium costs
(in handicap auctions) or spends (in bank account auctions) based on rough estimations
of their values (prior distributions of each period in our case), and then compete under
different levels of advantage after observing their realized values.

Pavan, Segal, and Toikka (2009, 2010, 2014) generalize the idea of Myerson (1981) to a
multiperiod setting with dynamic private information and characterize IC in terms of nec-
essary conditions and some sufficient conditions. Kakade, Lobel, and Nazerzadeh (2013)
propose the virtual-pivot mechanism by combining ideas of “virtual values” for static op-
timal mechanism design (Myerson (1981)) and “dynamic pivot mechanisms” for dynamic
efficient mechanism design (Bergemann and Viliméki (2010)). In particular, they show
that the virtual-pivot mechanisms are optimal in certain dynamic environments that are
“separable,” satisfy periodic ex post IC and IR, and have simple structure in multi-armed
bandit settings (see also Battaglini (2005), Deb (2008) for settings with private values
evolving through Markovian processes). Devanur, Peres, and Sivan (2019) and Chawla,
Devanur, Karlin, and Sivan (2016) study the repeated selling of fresh copies of an item to
a single buyer who has either fixed private value (Devanur, Peres, and Sivan (2019)) or
evolving values (Chawla et al. (2016)) of the copies.

One major difference between our setting and that with dynamic private information we
just discussed above is that we have no initial private types for the agents, and the private
types/values are independent of previous outcomes. Instead, we are able to guarantee ex
post IR for a very general setting in our case, while weaker notions of IR (i.e., interim IR
or individually rational in expectation) are adopted in most of the previous studies (except
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for Kakade, Lobel, and Nazerzadeh (2013), which guarantees ex post IR for environments
satisfying a separability condition).

There are more works primarily focused on the setting with dynamic populations and
fixed information (Parkes and Singh (2003), Gallien (2006), Board (2008), Pai and Vohra
(2008), Said (2008), Gershkov and Moldovanu (2009), Board and Skrzypacz (2010), Ger-
shkov and Moldovanu (2010), Said (2012)). In particular, the notion of non-clairvoyance
we introduced is similar in spirit to the online mechanism design setting studied by
Parkes and Singh (2003) (for welfare maximization) and Pai and Vohra (2008) (for rev-
enue maximization) in the sense that the designer has restricted information about dy-
namic arrival/departure (for online mechanisms) or dynamic prior distributions (for non-
clairvoyant mechanisms) in future periods. In contrast to the settings with dynamic pop-
ulations discussed above, however, our setting emphasizes the dynamic arrivals of perish-
able goods (e.g., ad impressions), while it is still general enough to capture the dynamic
attendance of agents by setting periodic prior distributions to be Pr[v = 0] = 1 when they
are absent from the auction except that the agents have unlimited demands. Hock (2003)
studies the revenue-maximization problem for selling homogeneous items to unit-demand
buyers when the demand curve is unknown. In particular, he considers an approach of se-
quentially selling the items and setting the optimal price for the current buyer based on
the demand curve estimated from bids of previous buyers, which is also related to our
notion of non-clairvoyance.

Our work is closer to the line of inquiry initiated by Papadimitriou et al. (2016), who
seek to design revenue-optimal auctions in the setting where items are sequentially sold
to the same set of buyers over time. They first show that the problem of designing the
optimal deterministic auction is NP-hard even for one agent and two periods, but they
provide a polynomial time algorithm for the optimal randomized auction via a linear pro-
gramming formulation for a constant number of buyers and correlated valuations. The
formulation is exponential in the number of buyers and the support of the distribution
of agent type profiles over time. If agents have independent types over periods, this also
causes their formulation to become exponential in the number of periods. This problem
is addressed by Ashlagi, Daskalakis, and Haghpanah (2016), who replace the linear pro-
gramming formulation by a dynamic program and obtain a (1 + €)-approximation that
is polynomial in the number of periods for a single buyer with independent valuations.
For multiple buyers, they provide a mathematical characterization but not an algorithm
to solve it. Simultaneously and independently, we also provide a (1 + €)-approximation
for agents with independent valuations using dynamic programming in our unpublished
manuscript (Mirrokni, Paes Leme, Tang, and Zuo (2016)).

Another closely related stream of literature is on the design of the dynamic mechanism
in a time-discounted model where valuations of the buyers are drawn from an identical
distribution in each step. This line was initiated by Biais, Mariotti, Plantin, and Rochet
(2007) and Krishna, Lopomo, and Taylor (2013). Belloni, Chen, and Sun (2015) provide a
characterization of the optimal mechanism by extending Myerson’s ironing technique to
dynamic settings. Balseiro, Mirrokni, and Paes Leme (2018) study the effect of imposing
stronger constraints on the utilities of buyers and design closed-form mechanisms that
approach the optimal in the limit. This line of literature is not comparable with our work:
Their settings are independent and identically distributed (i.i.d.) over time (while we only
assume independence), focus on a single buyer, and are based on a fixed-point formula-
tion that is only possible in time-discounted models. While their model is more restricted,
they are able to provide stronger guarantees and closed-form mechanisms.
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Dynamic Mechanism Design Frameworks. One major contribution of our paper is the
bank account framework, which provides a general framework to design (traditional or
non-clairvoyant) dynamic mechanisms. In particular, incorporating this framework with
ex post IR is technically challenging. Another major step in the development of the bank
account framework is to show that all non-clairvoyant mechanisms can be cast in it. There
have been other very interesting and useful frameworks, the oldest of which seems to be
the promised utility framework of Thomas and Worrall (1990) (see Belloni, Chen, and Sun
(2016) or Balseiro, Mirrokni, and Paes Leme (2018) for recent applications). In a more
recent work, Ashlagi, Daskalakis, and Haghpanah (2016) design a framework based on
revenue-utility trade-off functions. The results in both Thomas and Worrall (1990) and
Ashlagi, Daskalakis, and Haghpanah (2016) accommodate ex post IR and are universal
in the sense that the optimal mechanism is always contained in their class.

The main difference between bank accounts and promised utilities or revenue-utility
trade-offs is that while the latter two are forward-looking (i.e., they define an optimal
form for one period, given the optimal solution for the next), the bank account frame-
work is backward-looking. It defines an allocation and pricing rule based on the past and
not the future. To the best of our knowledge, this is the only framework capable of accom-
modating non-clairvoyance.

Online Supply and Scheduling. The term clairvoyant is borrowed from the scheduling
literature, where it is typically used to refer to an algorithm that can “see the future” in the
sense that it can know, for example, the total execution time of jobs not yet completed. It is
also often used to describe an adversary that can predict all the algorithm actions, present
and future. The concept of non-clairvoyance is typically used to refer to an algorithm that
can perform a certain task well, regardless of having all the information.

In that sense, one can see our paper as an online algorithm approach to dynamic mech-
anism design. The study of incentives in problems where items arrive over time in an on-
line manner was initiated by Babaioff, Blumrosen, and Roth (2010), who design auctions
(and prove lower bounds) for problems where incentives are required to be maintained
and we are required to allocate goods without information about what the total supply
is. Goel, Mirrokni, and Paes Leme (2015) extend this to budgeted settings. The online
supply problem is also studied from the perspective of revenue in both the Bayesian and
prior-free settings by Mahdian and Saberi (2006) and Devanur and Hartline (2009). In
this line of work, however, agents review their types at the beginning of the period, and
the challenge is to guarantee a monotone allocation. Since types are only reported once,
incentive constraints do not need to be enforced dynamically.

Robustness and Detail Independence. Non-clairvoyance can be seen as a form of ro-
bustification of dynamic mechanisms. By requiring the mechanism not to use any distri-
butional information from future periods, we obtain mechanisms that are much less detail
dependent, in the spirit of Wilson’s doctrine (Wilson (1987)). In this sense, we share the
philosophy of Bergemann and Morris (2012) in their theory of robust dynamic mech-
anism design, which seeks to design mechanisms that work irrespective of beliefs that
agents might have. While we make the mechanisms free of beliefs about the future, we
still assume beliefs about the present (i.e., the seller in period ¢ has forecast F, for de-
mand during that period). In that sense, we are more in line with Yogi Berra, who says,
“It’s tough to make predictions, especially about the future.”
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Simpler Mechanisms Without Backward Induction. 'The constraints imposed by non-
clairvoyance naturally produce simpler mechanisms. To illustrate the simplicity of the
NONCLAIRVOYANTBALANCE mechanism, it is useful to compare it with previous ap-
proaches to designing dynamic mechanisms. All previous approaches require some form
of expensive preprocessing step. In Papadimitriou et al. (2016), the allocation and pric-
ing are determined by the solutions of a large linear program that has one variable for
each sequence of reports. If the distributions are independent, this requires a number of
variables that are exponential both in the number of buyers and the number of periods.
Another approach is to replace the linear program by a dynamic program that is solved via
backward induction. This is the approach taken by Ashlagi, Daskalakis, and Haghpanah
(2016) and by Mirrokni et al. (2016). The mechanism extracts a (1 — €) fraction of the
optimal revenue, but it is no longer exponential in the number of periods. In both cases,
it is only analyzed for a single buyer. The mathematical characterization of the optimal
mechanism for multiple buyers is also presented in Ashlagi, Daskalakis, and Haghpanah
(2016), but it is not made algorithmic beyond a single buyer. Ashlagi, Daskalakis, and
Haghpanah (2016) also propose a second mechanism that extracts at least 1/2 of the
optimal revenue but requires solving a simpler dynamic program and produces a sim-
pler allocation rule; however, it still requires backward induction and only applies to one
buyer.

Non-clairvoyance clearly prevents the designer from using any form of backward in-
duction, since at period ¢, we do not know the distributions in future periods. In fact,
we do not even know how many more items we will have to allocate. The NONCLAIR-
VOYANTBALANCE mechanism requires no backward induction: In each period ¢, it uses
the distributions of the buyers in that period to construct an optimal auction (which is
based on virtual values, following the Myersonian approach), a second-price auction, and
a money-burning auction (which also admits a virtual value description).

In summary, we obtain an auction that requires no preprocessing and no backward
induction. Moreover, each of its components is a virtual value maximizer.
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