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Abstract

We study the problem of designing dynamic double auctions for two-sided markets in which
a platform intermediates the trade between one seller offering independent items to multiple
buyers, repeatedly over a finite horizon, when agents have private values. Motivated by online
advertising and ride-hailing markets, we seek to design mechanisms satisfying the following
properties: no positive transfers, i.e., the platform never asks the seller to make payments
nor buyers are ever paid and periodic individual rationality, i.e., every agent should derive a
non-negative utility from every trade opportunity. We provide mechanisms satisfying these
requirements that are asymptotically efficient and budget-balanced with high probability as the
number of trading opportunities grows. Moreover, we show that the average expected profit
obtained by the platform under these mechanisms asymptotically approaches first best (the
maximum possible welfare generated by the market).

Keywords: Double auctions, two-sided markets, dynamic mechanism design, internet advertis-
ing, revenue management.
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1 Introduction

Two-sided markets that enable sellers and buyers to trade have received considerable attention

in the last decade. Prominent examples include online advertising markets where publishers (the

sellers) offer advertising opportunities to advertisers or ride-hailing markets where drivers (the

service providers) provide transportation services to passengers (the customers). In these markets,

trade is coordinated by an intermediating platform that determines which parties should trade,

collects payments from buyers and transfers payments to sellers. When one buyer and one seller

trade a single item, the seminal paper Myerson & Satterthwaite (1983) characterized a profit-

maximizing mechanism for the platform when agents (the buyer and seller) have private valuations

for the item. Because the platform needs to pay information rents to both parties for inducing

truthful revelation of preferences, the platform is not able to extract the gains from trade. The

same paper shows that, because of agents’ incentives, a platform seeking to maximize social welfare

cannot allocate efficiently without subsidizing trade.

In many markets, however, the same set of agents trade independent items repeatedly over time.

For example, in internet advertising platforms, each user visiting a publisher’s website triggers an

auction in which multiple advertisers can bid to show an ad, which results in an abundant number

of trading opportunities per day. Thus, instead of offering independent trading mechanisms for each

item, the platform can design dynamic mechanisms that link decisions across time. It is well-known

that by linking decisions across time, it is possible to mitigate the impact of agents’ incentives and,

when the number of trading opportunities is large, the platform can asymptotically achieve any

Pareto efficient outcome (see, e.g., Jackson & Sonnenschein 2007).

In this paper, we study the problem of designing a dynamic double auction for two-sided mar-

kets in which a platform intermediates the trade between one seller offering independent items

to multiple buyers, repeatedly over a finite horizon.1 The seller and buyers have private values

drawn independently over time from a common-knowledge joint distribution (we allow values to

be arbitrarily correlated across agents). Agents’ values are sequentially revealed as items become

available for sale and agents are uncertain about their value for future items.

Motivated by the markets we study, we design incentive compatible mechanisms (in the dynamic

sense) satisfying the following additional properties. Firstly, the platform can not withhold or create

items, i.e., every item sold by the seller should be allocated to one buyer. In ride hailing, it is only

1We emphasize that our techniques do not rely on the finite horizon model. Our analysis and results can easily
be adapted to a discounted infinite horizon model.
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possible to allocate a ride to a driver if we also allocate a ride to a passenger and vice versa. In

internet advertising it is only possible to fill an ad request from a publisher if we allocate an ad of

a buyer. Secondly, mechanisms should have no positive transfers, i.e., the platform never asks the

seller to make payments nor buyers are ever paid. This property is meant to exclude designs that

are unappealing from the practical perspective – in ride-hailing, for example, drivers are typically

not requested to make payments and buyers do not receive payments. Thirdly, the mechanism

should be periodic individually rational, i.e., every agent should derive a non-negative utility from

every trade opportunity. This is a common property enforced in the dynamic mechanism design

literature. Krähmer & Strausz (2015) use it to model markets where regulations specify withdrawal

rights, i.e., each party is able to cancel a transaction at any point in time. Ashlagi et al. (2016) and

Mirrokni, Paes Leme, Tang & Zuo (2018) use it to exclude impractical designs such as demanding

large participation fees at the beginning of the horizon. Balseiro, Mirrokni & Leme (2017) and

Bergemann, Castro & Weintraub (2017) motivate it in the context of exchange markets for internet

advertisement.

A profit-optimal mechanism satisfying these properties can be characterized, in theory, via

dynamic programming using agents’ promised utilities as state variables. The promised utility

framework, which was introduced three decades ago by Green (1987), Spear & Srivastava (1987)

and Thomas & Worrall (1990), provides an approach to design mechanisms that are dynamic

incentive compatible when values are independent over time. Because of the so-called curse of

dimensionality, this approach is not tractable because the state space grows exponentially with

the size of the problem (given, for example, in terms of the number of players). Moreover, even

determining an optimal mechanism when optimal value functions are provided is challenging since,

in general, the traditional approach of optimizing the objective point-wise is not applicable.

Our goal is to design approximation mechanisms, i.e., incentive compatible mechanisms satisfy-

ing all our design requirements that are efficient to compute and, at the same time, have provable

performance guarantees. We benchmark our mechanisms with “first best,” the maximum possible

welfare generated by the market when agents’ private values are observed by the platform. In

particular, we seek to design relatively simple mechanisms whose average expected profit (for the

platform) achieve first best asymptotically as the number of time periods grows large.
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1.1 Our results and techniques

A challenge faced in designing mechanisms using the promised utility framework is to guarantee that

promise utilities are achievable by a feasible mechanism. Specifically, promise utilities should be

non-negative and, because of the no positive transfer constraint, not too large. Our main strategy is

to design mechanisms that carefully control the stochastic process followed by the promised utilities

by appropriately coupling these processes.

We address this challenge in three steps. Firstly, in Section 3, we consider a setting with

multiple buyers where the seller has a degenerate (deterministic) valuation. This case is simpler

since there is no need to elicit the seller’s private information. We design the mechanism so that

the buyers’ promise utilities are only coupled by the allocation, which, in turn, is only dependent

on the competitors values (but not on their states). As a result, these processes are only weakly

coupled and we can analyze each buyer independently. Secondly, in Section 4, we consider a market

with only one seller and one buyer (this is the bilateral trade setting of Myerson & Satterthwaite

1983) both with non-degenerate valuations. Since the decision of allocating to the seller and to the

buyer are completely entangled (we allocate to one if and only if we allocate to the other) it is no

longer possible to decouple the stochastic processes of their promised utilities. Instead, we design

the mechanism so that their promised utilities are perfectly coupled.

Thirdly, in Section 5, we consider the general case with multiple buyers and a seller, all with

non-degenerate valuations. The challenge in designing mechanisms for two-sided settings is that if

the promised utility of a certain agent ever becomes zero, then the mechanism has no alternative

other than stop allocating altogether to that agent. This is particularly problematic if the agent

whose promised utility hits zero is the seller, since this would force the mechanism not to allocate

to any of the remaining buyers. In Section 5.1, we tackle this challenge by constructing a novel

mechanism that perfectly couples the promised utilities of all agents (seller and buyers).

In all cases we show, using martingale concentration arguments, that the mechanisms are asymp-

totically efficient, i.e., they allocate optimally in all but sublinearly many periods. Moreover, the

average expected profit obtained by the platform approaches first best asymptotically and, in the

limit, the platform is able to fully extract the gains from trade.

We describe briefly the mechanisms for the first two cases. Our mechanisms attempt to max-

imize gains from trade by allocating efficiently as much as possible, where the efficient allocation

involves allocating the item to the buyer that values it the most whenever the highest value exceeds
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the seller’s cost. Initially, the platform extracts all gains from trade by implementing a first-price

rule in which the buyer with the highest value pays his value, and the seller is paid his cost. Truth-

ful reporting is guaranteed by promising agents higher rents in the future if they report “higher”

types. When the cumulative payments of buyers exceed a certain threshold, the platform delivers

promises by switching to a second-price rule in which the buyer with the highest value pays the

second-highest value and the seller is paid the value of the highest buyer. Moreover, we prove that

as the length of the horizon gets larger, the fraction of time periods in which the first-price rule is

implemented can be made larger, and the platform’s profit converges to first best.

Finally, our mechanisms are not weakly budget balanced per period in the sense that the

platform might need to subsidize trade in some periods. This should not be surprising given

the impossibility result of Myerson & Satterthwaite (1983). However, on aggregate over all time

periods, our mechanisms are both budget balanced in expectation and with high probability. Thus,

our results imply that, in repeated settings, it is asymptotically possible for multiple parties to

trade efficiently without subsidizing trade.

The paper is structured as follows. In Section 2 we introduce our model and some preliminary

results. In Section 3 we study one-sided markets with multiple buyers and a seller with deterministic

cost, in Section 4 we consider the case of a single buyer and a single seller, and in Section 5 we

study two-sided markets with multiple buyers and a single seller.

1.2 Related work

Our paper lies in the intersection of revenue management, dynamic mechanism design, and double

auctions. The study of double auctions started with the seminal paper of Myerson & Satterthwaite

(1983) and since then there has been a long stream of work trying to overcome their impossibility

results. A way to counter the impossibility is to consider settings in which a large number of items

are traded. McAfee (1992) shows that it is possible to obtain close to optimal efficiency as the

number of items being traded simultaneously grows large. Azevedo & Budish (2017) argue that such

mechanism are strategyproof in large markets. Another avenue to counter the impossibility is by

designing approximation mechanisms and bounding the efficiency and revenue loss. This approach

was started by McAfee (2008) and has generated a very fruitful stream of results: Segal-Halevi

et al. (2016), Blumrosen & Mizrahi (2016), Colini-Baldeschi et al (2017), and Colini-Baldeschi et

al (2017). In this paper, we counter the impossibility by considering a dynamic setting in which

items arrive repeatedly over time and enforcing incentive constraints across time. Finally, McAfee
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& Reny (1992) show that the impossibility result of Myerson-Satterthwaite can by bypassed, in the

bilateral trade of a single item, when information is correlated and the joint distribution of types

satisfies certain stochastic dominance and hazard rate conditions. In contrast, our paper requires

no such assumptions on the distribution of values.

Our work is close to Guo & Hörner (2015), Gorokh et al. (2017), Balseiro et al. (2018), who

overcome inefficiency in allocation problems by moving to repeated settings. These papers, however,

focus on allocation problems without monetary transfers in which the objective of the platform is

to maximize social welfare, while we focus on allocation problems with monetary transfers in which

the objective of the platform is profit maximization, i.e., maximizing total transfers. Jackson

& Sonnenschein (2007) show that by linking decisions across identical and independent decisions

problems, the principal can asymptotically achieve any Pareto efficient outcome as the number of

time periods grows large. They introduce a budget-based mechanism in which each agent can report

each type a limited number of times. The information structure in Jackson & Sonnenschein (2007)

is different to ours in that they assume that the agents know their types for all future periods at

time zero. Nevertheless, their budget-based mechanism can be implemented in our dynamic setting

in which values are revealed sequentially over time. This mechanism, however, is not feasible for

our setting as it does not satisfy our more stringent participation constraints.

Designing optimal auctions for intermediaries have been an active area of research especially

for static double auctions (Gomes & Mirrokni 2014, Niazadeh et al. 2014). These studies are partly

motivated by applications in ad exchanges and identify optimal revenue sharing schemes, but are

still restricted to the same limitations identified in the seminal work of Myerson & Satterthwaite.

Recently, there has been a study of revenue sharing in repeated auctions by Balseiro et al. (2017).

In their setting, they relax the budget balance constraint to hold in aggregate over time, but still

enforce the incentive constraints in each period. A second main difference is that they do not

account for the seller’s incentives.

The other important line of related work is on dynamic mechanism design for revenue manage-

ment problems. Kakade et al. (2013) and Pavan et al. (2014) provide a framework for designing

optimal mechanisms when the value of agents change over time. Vulcano et al. (2002), Gallien

(2006), Board & Skrzypacz (2015) and Gershkov & Moldovanu (2014) study the problem of sell-

ing non-perishable goods using dynamic pricing. For social welfare maximization, Bergemann &

Välimäki (2010) provide a framework generalizing the VCG mechanism to dynamic environment.

Athey & Segal (2013) show how efficiency can be obtained together with budget balance. Given
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our motivation of ride-hailing and internet advertising our setting is closer to papers that study

revenue optimal auctions where goods are perishable and valuations are independent across peri-

ods (Ashlagi et al. 2016, Mirrokni et al. 2016a,b, Mirrokni, Paes Leme, Ren & Zuo 2018, Mirrokni,

Paes Leme, Tang & Zuo 2018, Mirrokni et al. 2019). Those papers mentioned above provide ap-

proximation guarantees with respect to the optimal mechanism but do not compare against the

first-best benchmark. Our benchmark is closer to the one of Balseiro, Mirrokni & Leme (2017),

who also compare against the first best benchmark. However, their construction only works for a

single buyer and a non-strategic seller. The other major difference is that they consider an infinite

horizon model with discounting, which makes the decision problem stationary across periods, while

we consider a finite horizon setting without discounting.

2 Preliminaries

We consider the problem of a platform designing a dynamic mechanism for a two-sided market

with one seller a0 and multiple buyers {a1, . . . , an} over a finite2 horizon with periods t = 1 . . . T .

In each period t, the seller has an item with private opportunity cost vt0 ∈ R+ for sale and each

buyer has private value vti ∈ R+, ∀i ∈ [n] for getting this item (we refer to vt0 as the opportunity

cost or seller’s value interchangeably). The vector of values vt = (vt0, v
t
1, . . . , v

t
n) for each period t

is independently and identically distributed according to a joint cumulative distribution function

F(·). In other words, the cost and valuations are arbitrarily correlated among buyers and seller

but are independent across time. Values are supported in the bounded set V = [0, v̄]n+1 and the

distribution of values is common-knowledge. The cost of the t-th item vt0 is privately observed by

the seller and the value vti is privately observed by buyer i.

We assume the platform can commit at the beginning of the horizon to a dynamic mechanism

that spans the whole time horizon. A (direct) mechanism, with the reports of the private values

v̂t = (v̂t0, v̂
t
1, . . . , v̂

t
n) as input, determines the allocation of the item, qt = (qt0, q

t
1, . . . , q

t
n) ∈ [0, 1]n+1,

and the monetary transfer zt = (zt0, z
t
1, . . . , z

t
n) ∈ Rn+1. We further allow the mechanism to

be dynamic in the sense that the allocation qt and the monetary transfer zt may depend on all

the historical reports as well, i.e., v̂τ for all τ ≤ t. In other words, qti = qti(v̂
1, . . . , v̂t) and

2Our model can accommodate a random number of time periods by allowing dummy arrivals that are valued at
zero by every buyer. For example, we could discretize the horizon into small periods (say, fractions of a second) so
that with high probability there is at most one item arriving per period. Denoting by α the probability that an item
arrives at a given period, we would set the distribution of values to 1− α+ αF(x), where F(x) is the distribution of
values in the original model. This modification does not impact our results.

6



 Electronic copy available at: https://ssrn.com/abstract=3213460 

zti = zti(v̂
1, . . . , v̂t). Often it will be convenient to abbreviate v̂1..t = (v̂1, . . . , v̂t) to denote a

sequence of reports.

An allocation qti ∈ [0, 1] corresponds to the probability that buyer i gets allocated the t-th item.

For the seller, it will be convenient to define qt0 as the probability that the seller sells the item.

Since the platform cannot create items or destroy them, we impose the feasibility (Fsb) constraint

that the probability that item is sold is the same probability that the item is bought:

qt0 =
n∑
i=1

qti . (Fsb)

The constraint that the platform cannot create items is very natural in most contexts, since items

are provided by sellers. The fact that a platform cannot destroy items is important in settings like

ride hailing, where the probability that a driver is allocated a ride must be exactly the same as

the sum of probabilities that riders are allocated. Similarly in internet advertising, the platform

displays an ad from a buyer in the seller’s webpage, so for this transaction to happen there must

exist one seller and one buyer. This is in sharp contrast to one-sided markets where the mechanism

designer can decide when to withhold items exclusively based on buyers reports.

The next constraint we establish is related to the payments zti . For buyers, zti will consist of

payments from the buyers to the platform, while for the seller, zt0 will consist of payments from

the platform to the seller. We impose that mechanisms should have no positive transfers, i.e., the

platform never asks the seller to make payments nor buyers are ever paid. The no positive transfers

(NPT) constraint is formulated as follows:

zti ≥ 0,∀i ∈ [n]; zt0 ≥ 0. (NPT)

Next we will impose an individual rationality constraint. We will enforce this constraint peri-

odically, i.e., for each t, agents are no worse off than their outside option (which we normalize to

zero). Buyers measure their period utility as vti · qti − zti , while the seller measures his period utility

as zt0 − vt0 · qt0. Precisely, the seller’s utility is the seller’s gains over his opportunity cost. We can

formulate the periodic individual rationality (PIR) as follows:

vti · qti − zti ≥ 0,∀i ∈ [n]; zt0 − vt0 · qt0 ≥ 0. (PIR)

This constraint guarantees that each buyer pays at most his value for the item, the seller is pays at
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most his cost, and precludes the platform from charging upfront fees. The (PIR) constraint implies

ex-post individual rationality, i.e., the cumulative payoff of each agent is at least his outside option

in every realization; thus, our mechanisms still apply if we impose this weaker requirement.

We will consider direct incentive compatible mechanisms in which agents are incentivized to

report their values truthfully. To this end, the final constraint we impose is dynamic incentive

compatibility, i.e., buyers and the seller should be better off reporting truthfully in each period.

Unlike the previous constraints that were defined in each time period, incentive compatibility is

defined across time. Given a history of reports v̂1, . . . , v̂t−1 until period t, agent i should be better

off reporting his true value in the current period (i.e., v̂ti = vti) assuming all agents report truthfully

in the future and regardless of the competitors’ reports for the current time period. Denote by

φti(v
t
i ; v̂1..t) the utility of agent i in period t when his value is vti and the reported values are v̂1..t:

φti(v
t
i ; v̂1..t) = vti · qti(v̂1..t)− zti(v̂1..t) , ∀i ∈ [n] ,

φt0(vt0 ; v̂1..t) = zt0(v̂1..t)− vt0 · qt0(v̂1..t) .

A mechanism satisfies dynamic incentive compatibility if:

vti ∈ argmax
v̂ti

{
φti(v

t
i ; v̂1..t−1, (v̂ti , v̂

t
−i))+ (DIC’)

E
vt+1..T

[∑T

τ=t+1
φτi (vτi ; v̂1..t−1, (v̂ti , v̂

t
−i),v

t+1..τ )
]}

,

for every vector of competitions’ reports v̂t−i, agent i, and time period t. We impose the incentive

compatibility constraint in an ex-post sense over current reports: reporting truthfully is a dominant

strategy for each agent regardless of the competitors’ reports for the current time period. We believe

this constraint is more appealing than interim incentive compatibility as agents do not need to form

beliefs about the reports of competitors for the current time period (though they do need to hold

beliefs for future time periods). Condition (DIC’) guarantees, by backwards induction, that at any

point in time, the optimal strategy for each agent is to report truthfully in the current period and

keep reporting truthfully from that point on.

Finally, we write the utility of an agent as the sum of the utilities in each period:

Ui = E
v

[
T∑
t=1

φti

]
.
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Similarly, the profit of the platform is simply the sum of all agents’ payments:

Π = E
v

[
T∑
t=1

(
n∑
i=1

zti − zt0

)]
.

Promised utility framework The task of designing dynamic mechanisms appears at first daunting

given the enormous design space. When values are independently distributed across time, however,

it is without loss of optimality3 to formulate the mechanism design problem using the promised

utility framework, which we will adopt here. The main idea of the promised utility framework is to

restrict attention to mechanisms that employ the expected utility of each buyer for the remainder

of the horizon as states variables (in the language of dynamic programming, the expected utility-

to-go). The state, which is referred to as the promised utility, for buyer i at time period t is given

by wti = Evt..T

[∑T
τ=t φ

τ
i

]
.

We will redefine a dynamic mechanism as a mapping of the current report vt and a state vector

wt ∈ Rn+1
+ . We use the same notation for the actual valuations and the reported valuations since

the mechanism is set to provide incentives for agents to report truthfully. A dynamic mechanism

is then redefined as a tuple (q, z,u,w1) where w1 ∈ Rn+1
+ is an initial state, q = (qti)it, z = (zti)it

and u = (uti)it are sequences of functions for each agent i and each period t, such that each of

those functions maps (vt;wt) where vt = (vt0, . . . , v
t
n) is the vector of reported valuations and

wt = (wt0, . . . , w
t
n) is the vector of promised utilities (to be defined next) to the real line.

Given such functions, the mechanism is executed as follows: in period t and based on the

state wt of promised utilities, the mechanism starts by collecting valuations vti from each agent,

then allocates to agent i according to qti(v
t;wt), executes transfers according to zti(v

t;wt), and

determines the state wt+1 for the next period according to:

wt+1
i = uti(v

t;wt) .

With some abuse of notation, we will use φti(vi, v̂
t;wt) to denote the utility of agent i in period

t when his value is vi, the reported values are v̂i and the promised utilities are wt:

φti(vi, v̂
t;wt) = vti · qti(v̂t;wt)− zti(v̂t;wt) , ∀i ∈ [n] ,

φt0(v0, v̂
t;wt) = zt0(v̂t;wt)− vt0 · qt0(v̂t;wt) .

3In the sense that for every dynamic mechanism there is a dynamic mechanism in the promised utility framework
achieving at least the same revenue and welfare
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We next define when a promised utility mechanism is dynamic incentive compatible. A mecha-

nism is said to be incentive compatible if it satisfies two properties. Firstly, the mechanism should

satisfy the promise keeping (PK) constraint:

wti = E
vt

[
φti(vi,v

t;wt) + uti(v
t;wt)

]
, (PK)

∀i ∈ {0, 1, . . . , n}, t ≤ T and wT+1
i = 0,

which says that wti corresponds to the aggregate utility obtained by agent i from periods t, t +

1, . . . , T assuming that he and the other agents report truthfully. This guarantees that the mech-

anism delivers the utility promised to each agent. Secondly, the mechanism should satisfy the

dynamic incentive compatibility (DIC) constraint:

φti
(
vti , (v

t
i , v̂

t
−i);w

t
)

+ uti
(
(vti , v̂

t
−i);w

t
)
≥ (DIC)

φti
(
vti , (v̂

t
i , v̂

t
−i);w

t
)

+ uti
(
(v̂ti , v̂

t
−i);w

t
)
,

which says that each agent maximizes the current period utility plus the expected utility over future

periods by reporting truthfully in this period.4

In this model, we are interested in designing (q, z,u,w1) to maximize the profit of the platform,

which can be informally stated as follows:

maximize Π (Opt)

subject to (DIC) (PIR) (PK) (Fsb).

First-best benchmark The profit benchmark that we will consider is the “first best,” which cor-

responds to the maximum possible welfare achievable when agents’ private values are observed by

the platform:

ΠFB = T · E

[(
max
i=1..n

vi − v0

)+
]
,

where we denote by (x)+ = max(x, 0) the positive part of a number x ∈ R. We will study

mechanisms that have a sublinear additive approximation to the first best benchmark, i.e., Π =

ΠFB − o(T ) which implies that Π/ΠFB → 1 as T →∞.

4If a mechanism in the promised utility framework satisfies (PK) and (DIC) then its associated dynamic mechanism
in usual form qt(v̂1, . . . , v̂t) = qt(v̂t;ut−1(v̂t−1,ut−2(v̂t−2, . . .))) and similarly for zt satisfies (DIC’).
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2.1 Dynamic programming formulation

Invoking the Principle of Optimality, the platform’s problem can be, in theory, solved recursively by

backwards induction. Although this reduction is standard in the theory of dynamic programming,

we supply the details here for completeness. Define Πt(w) to be the optimal profit-to-go that can

be obtained from periods t to T if the promised utility at period t is equal to w. We solve the

following programs back from t = T to t = 1. The Bellman equation is:

Πt(wt) = max
qt,zt,ut

E
vt

[
Πt+1(ut(vt;wt)) (DP)

+
n∑
i=1

zti(v
t;wt)− zt0(vt;wt)

]
s.t. (DIC), (PIR), (PK), (Fsb), (NPT),

ut(vt;wt) ≥ 0, for period t

with the boundary condition that ΠT+1(w) = −w0 if wi = 0 for all i ∈ [n] and ΠT+1(w) = −∞

otherwise. This boundary condition reflects that, by (NPT), no transfers are allowed to the buyers

at the end of the horizon and thus the promise utilities of all buyers should be zero at that point.

The platform, however, can refund the seller at the end of the horizon. This is equivalent to adding

the constraint uTi (vT ;wT ) = 0 for i ∈ [n] and using the boundary condition ΠT+1(w) = −
∑n

i=0wi.

Because the state space of the value function grows exponentially with the number of agents, this

dynamic program can not be efficiently solved in practice. Thus motivated, we design approximation

mechanisms that are easy to implement and have provable performance guarantees.

3 One-sided markets

Our strategy will be to propose a mechanism, show that it satisfies the constraints, and bound

its profit with respect to first best. We will do in three stages of increasing complexity. We

start in this section with a one-sided market where buyers have non-degenerate valuations (i.e.,

not deterministic) and the seller has a constant value. Then we move in Section 4 to a setting

with a single buyer and a single seller where both the buyer and the seller have non-degenerate

valuations. Finally, in Section 5 we study the general case with one seller and multiple buyers, all

with non-degenerate valuations.

For the mechanisms in Sections 3 and 4, we will use the following notation. For buyers i = 1..n

11
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we define:

wi = E
v

[
(vi −maxv−i)

+
]
, wti = (T − t+ 1)wi ,

where maxv−i := maxj=0...n:j 6=i vj stands for the maximum of all other valuations except vi. In-

tuitively, wi captures agent’s i expected surplus from efficient trade achieved, for example, by the

VCG auction. The upper bound wti captures, in turn, the expected surplus from efficient trade

achievable from period t until the end of the horizon. Those values define a desirable range [wi, w
t
i]

for the promised utility wti . We will set up the mechanism in such a way that we will be able to

allocate efficiently whenever wi is in this range and will argue that by setting the initial promise

properly, each buyer will remain in the desirable range with high probability for all but a sublinear

number of periods.

For simplicity, we start with the case where the valuation of the seller is equal to a constant

v0 with probability one. In that case, the platform is always able to purchase the item from the

seller at a price v0 whenever needed. There is no need to elicit information from the seller or worry

about his incentive constraints, so we focus on providing the adequate incentives for the buyers.

3.1 Envelope formula

In designing our approximation mechanisms, we first design the allocation and payment rule and

then construct a promise utility function to guarantee incentive compatibility. Before moving

forward, we discuss briefly how this approach works in the one-sided case. Given a mechanism

(q, z,u), let Ui(v;w) = vi · qi(v;w)− zi(v;w) +ui(v;w) the utility-to-go of buyer i when the state

is w and agents report v. Using the envelope formula (see, e.g., Myerson 1981) we obtain that a

necessary and sufficient condition for a mechanism to be dynamic incentive compatible is that the

allocation qi(v;w) is monotone in vi and

Ui(v;w) = Ui(x,v−i;w) +

∫ vi

x
qi(v,v−i;w)dv.

where x is the “lowest” type, which is x = 0 for buyers i ∈ [n]. (A similar formula holds for the

seller with the lowest type equal to x = v̄ and the end points of the integral reversed). The integral

in the right-hand side is typically referred to as the information rent. In the mechanisms given in

Section 3 and Section 4 we will set the utility of the lowest type Ui(x,v−i;w) to be independent

of the realization of values of the other agents, i.e., we set Ui(x,v−i;w) = Ui(x;w) for all v−i.
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Because the promise keeping constraint implies that wi = Ev [Ui(v;w)] we can solve for the utility

of the lowest type Ui(x;w) and obtain that

vi · qi(v;w)− zi(v;w) + ui(v;w) (PI)

= wi +

∫ vi

x
qi(v,v−i;w)dv − E

v

[∫ vi

x
qi(v,v−i;w)dv

]
.

We shall use this formula to construct dynamic incentive compatible mechanisms: for any feasible,

monotone allocation rule and payment rule, we can use (PI) to pin down a promise utility rule that

makes the mechanism dynamic incentive compatible.

3.2 Mechanism definition

Since our goal is to achieve first best, we should try to allocate as efficiently as possible. In each

period, we will identify the buyer with the largest valuation. If the highest valuation is lower than

the seller’s value v0, the item is not allocated. If trade is possible, i.e. maxi∈[n] vi > v0, then we will

allocate to the top bidder if his promised utility is in the range [wi, w
t
i]. If wi is in the range [0, wi)

the allocation will be inefficient and we will choose a probability (depending on wi) to allocate to

the top bidder and with the remaining probability we will leave the item with the seller.

Formally, let i be the buyer with largest vi (breaking ties lexicographically). If vi ≤ v0, we leave

the item with the seller. If on the other hand gains from trade are possible (i.e. vi > v0), then

we allocate using one of two different regimes determined by the promised utility wi. The different

allocation regions are shown in Figure 1a. Whenever the regions overlap, we use the mechanism of

the low promised utility region.

High promised utility (second-price auction): If w̄ti − v̄ ≤ wti ≤ w̄ti (where v̄ is the valuation

of the highest type), we allocate the item to buyer i and charge the second highest price. For the

winning buyer i:

qti = 1 , zti = maxvt−i , uti = wi − wi .

When the promised utility is high, the buyer with the highest value is charged the second-highest

price so that its promise utility decreases by wi. This guarantees that no buyer reaches the end of

the horizon with a positive promised utility, which is required because of the no positive transfers

constraint.
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Throttled SPA

FPA

SPA

Time (t)t = 1 t = T

wi

Twi

State (wit)

U
nreachable

(a) Allocation rules for different states. States
above w̄t

i are not reachable by the mechanism.

T −O(
√
T )

Time (t)t = 1 t = T

wi

√
T ≈

Twi

State (wit)

(b) Typical path of the promised utility (in blue)
and confidence bands showing mostly likely paths
(in gray).

Figure 1: Illustration of the one-sided mechanism

Medium promised utility (first-price auction): If wi ≤ wti ≤ w̄ti − v̄, we allocate the item to

buyer i and charge the bid. For the winning buyer i:

qti = 1 , zti = vti , uti = wti − wi + (vti −maxvt−i) .

In this region the platform captures the entire buyer surplus.

Low promised utility (throttled second-price auction): If 0 ≤ wti < wi, then we allocate to

buyer i with probability qi = wti/wi and charge the second-highest price if allocated. In such case

we update the promised utility to zero.

qti = wti/wi , zti = qti ·maxvt−i , uti = 0 .

In this region the allocation is throttled to prevent the promise utility from being negative.

Losing buyers: For all buyers other than the winner (or all buyers in case vt0 ≥ maxi∈[n] v
t
i), we

update the promised utility as follows:

qtj = 0 , ztj = 0 , utj = (wtj − wj)+ .

14



 Electronic copy available at: https://ssrn.com/abstract=3213460 

3.3 Mechanism analysis

Note that we only defined the mechanism for wti ≤ wti. We start by showing that if the initial

promises w1 are not too high, then the promise utility of agent i stays within the interval [0, wti].

Lemma 3.1. If w1
i ≤ w1

i = Twi, then wti ≤ wti for all t. Moreover, wti ≥ 0 for all t.

Proof. It follows by induction on t that wti ≤ wti = (T − t+ 1)wi. In all but one case, the promised

utility changes to wt+1
i = wti − wi or zero, in which case the induction holds trivially. The only

remaining case is the winning buyer with medium promised utility, in which case:

wt+1
i = wti − wi + vti −maxvt−i

≤ w̄ti − v̄ + v̄ − wi = wt+1
i ,

where the inequality follows because wti ≤ wti − v in this region and 0 ≤ vtj ≤ v̄ for all j ∈ [n]. The

claim that wti ≥ 0 for all t follows trivially for all cases, other perhaps when the winning buyer has

medium promised utility, in which case

wt+1
i = wti − wi + vti −maxvt−i ≥ vti −maxvt−i ≥ 0 ,

where the first inequality follows because wti ≥ wi in this region, and the last inequality because i

is the winner.

From taking t = T in the previous lemma, we get as a corollary that uTi (vT ) = 0 for all vT ,

implying that all promise utilities are zero at the end of the horizon, as required. Next we argue that

this dynamic mechanism satisfies the constraints imposed by problem (Opt). Above we defined

the qi, zi, ui for the buyers. Since the seller has a trivial valuation, we can use the following trivial

definitions for the seller:

qt0 =
n∑
i=1

qti , zt0 = vt0 · qt0 , w1
0 = ut0 = 0 .

Lemma 3.2. If 0 ≤ w1
i ≤ w1

i , then the mechanism described satisfies (DIC), (PIR), (PK),

(NPT) and (Fsb).

Proof. Feasibility (Fsb) follows from the fact we only allocate to one buyer in each period. Periodic

individual rationality (PIR) is satisfied since we charge the winner either his value or the second-
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highest value. Since buyer payments are always non-negative, (NPT) is satisfied. Finally, to check

dynamic incentive compatibility (DIC) and promise keeping (PK), it suffices to check that the

mechanism satisfies (PI) since the allocations are trivially monotone. This follows by construction.

We provide details for completeness. Dropping the dependence on time and the state to simplify

the notation, we obtain that the promise utility functions should satisfy:

ui(v) = wi − vi · qi(v) +

∫ vi

0
qi(v,v−i)dv + zi(v)

− E
v

[∫ vi

0
qi(v,v−i)dv

]
.

For the buyers in the low promised utility region it follows that ui(v) = 0 because qi(v) =

wi/wi1{vi ≥ maxv−i}, zi(v) = (maxv−i)qi(v),
∫ vi

0 qi(v,v−i)dv = wi/wi(vi − maxv−i)
+ = (vi −

maxv−i)qi(v), and Ev

[∫ vi
0 qi(v,v−i)dv

]
= wi. For the buyers in the medium promised utility re-

gion it follows that ui(v) = wi −wi + (vi −maxv−i)
+ from the facts that viqi(v)− zi(v) = 0 since

(PIR) is binding and
∫ vi

0 qi(v,v−i)dv = (vi −maxv−i)
+ since qi(v) = 1{vi ≥ maxv−i}. The case

for the buyers in the high promised utility region follows similarly.

3.4 Profit approximation

Finally, we argue that the revenue of the mechanism approaches first best. We will analyze the

stochastic process defined by the promised utility wti of each buyer i. A typical path for this process

is depicted in Figure 1b. Before wti hits the second-price auction region (green region in Figure 1a) or

the throttled region (red region in the figure), this process satisfies wt+1
i = wti+(vti−maxvt−i)

+−wi
and thus behaves like a martingale from our definition of wi. By standard martingale concentration

inequalities, wti does not deviate by more than O(
√
t log t) from the initial promised utility with

high probability. Recall that the platform captures the entire buyer surplus when the promise

utilities are at the medium level. Therefore, we need to set the initial promised utility not so small

to avoid reaching the throttled region too early but not so large that it will hit the second-price

region. The sweet spot turns out to be around O(
√
T log T ), which will cause the mechanism to

stay in the first-price region for around Ω(T −
√
T ) periods.

Theorem 3.3. If the initial promised utilities are set to w1
i = v̄

√
8T log T + wi, then the expected

profit of the mechanism, denoted by Π, satisfies:

Π ≥ ΠFB −O
(√

T log T
)
,
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whenever w1
i ≤ w1

i − v̄. In particular, the mechanism is asymptotically optimal, i.e., Π/ΠFB → 1

as T →∞.

We conjecture that this bound is tight up to, perhaps, log factors. We now present the proof

of Theorem 3.3:

Proof. The mechanism is feasible by Lemma 3.2 because 0 ≤ w1
i ≤ w1

i . Let S be the expected

social welfare of the mechanism, which in virtue of the promised utility framework is given by

S = Π +
∑n

i=0wi. We focus on bounding S in terms of the optimal social welfare ΠFB.

Step 1. Let τi = inf{t ≥ 1 : wti < wi} be the stopping time measuring the first time in which the

promised utility wti falls in the throttled region, i.e. wti < wi. Let also q̂ti be the efficient allocation,

which allocates the item to buyer if vi ≥ maxv−i (breaking ties lexicographically). Because the

mechanism allocates “efficiently” to agent i until time τi, we can write:

ΠFB − S = E
v

 T∑
t=1

∑
i∈[n]

(vti − vt0) · q̂ti −
∑
i∈[n]

(vti − vt0)qti


=
∑
i∈[n]

E
v

[
T∑
t=τi

(vti − vt0) · (q̂ti − qti)

]

≤ v̄
∑
i∈[n]

E
v

[
(T − τi + 1)+

]
,

where the second equation follows from the definition of the stopping time τi and linearity of

expectation, and the inequality because values satisfy 0 ≤ vti ≤ v̄. We proceed by bounding the

terms Ev [(T − τi + 1)+].

Step 2. Now define

µti = wti +
t−1∑
τ=1

(vτi · qτi − zτi ).

and observe that by (PIR), µti ≥ wti . Let Ht = σ(v1, . . . ,vt−1) be the natural filtration. By (PK)

we have E[µt+1
i |Ht] = µti + E[vti · qti − zti + wt+1

i |Ht] − wti = µti. Therefore, {µti}Tt=1 is a martingale

with respect to the natural filtration.

Because the second-price region and the throttling regions are absorbing we have that wτi =

µτi , ∀τ ≤ t as long as wti ≤ wti − v, and once wti > wti − v we have wτi > wτi − v, ∀τ ≥ t. Let
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T ∗i = T − v/wi and consider a time 1 ≤ t ≤ T ∗i . Note that T ∗i ≥ 1 because wi ≤ w1
i ≤ w1

i − v̄.

Because in these time periods the second-price region and the throttling region do not intersect

(i.e., wi ≤ w̄ti − v̄) we obtain that

Pr[τi ≤ t] = Pr

[
min
s≤t

µsi ≤ wi
]
≤ exp

(
−(w1

i − wi)2

8
∑t

k=1 v
2

)

≤ exp

(
−(w1

i − wi)2

8tv2

)
,

where the inequality follows from the maximal version of Azuma’s concentration inequality5, be-

cause {µti}Tt=1 is a martingale with increments bounded by |µti − µ
t+1
i | ≤ 2v̄ and µ1

i = w1
i . This

implies that

E
v

[(T − τi + 1)+]

=

T∑
t=1

Pr[τi ≤ t] ≤
T ∗
i∑

t=1

Pr[τi ≤ T ∗i ] + T − T ∗i

≤ T ∗i exp

(
−(w1

i − wi)2

8T ∗i v
2

)
+ T − T ∗i ,

where the first equation follows from summation by parts and the first inequality because proba-

bilities are at most one. By letting w1
i = v

√
8T log T + wi and using that T ∗i ≤ T , we have

T∑
t=1

Pr[τi ≤ t] ≤ T · exp(− log T ) + T − T ∗i

= 1 + T − T ∗i = v/wi + 1.

Hence,

ΠFB − S ≤ v̄
∑
i∈[n]

E
v

[
(T − τi + 1)+

]
≤ v̄

∑
i∈[n]

(v/wi + 1) = O(1).

5For a martingale {Mk}Kk=0 with |Mk − Mk−1| ≤ ck, then for any X < M0, Pr [mink≤K Mk ≤ X] ≤
exp

(
− (M0−X)2

2
∑K

k=1
c2
k

)
.
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Step 3. To conclude, we observe that Π = S −
∑

iw
1
i . Since the initial promise utilities satisfy

w1
i = O(

√
T log T ), we get that the expected profit of our mechanism satisfies:

Π = S −
∑
i

w1
i = ΠFB −O(1)−O

(√
T log T

)
= ΠFB −O

(√
T log T

)
,

and the result follows.

4 Bilateral trade

The next setting we consider is a repeated version of the bilateral trade model of Myerson and

Satterthwaite where there is a single buyer and a single seller and both parties have private, non-

degenerate information. The values (vt0, v
t
1) are drawn from a joint distribution F . The values can

be correlated between the buyer and the seller but are otherwise independent across time.

We will keep the same desirable interval for the range of promised utilities of the buyer. Namely,

w1 = E[(v1 − v0)+] , wt1 = (T − t+ 1) · w1 .

Here w1 captures the buyer and seller surplus from efficient trade achieved, for example, by the

VCG auction. In this setting the VCG auction involves trading the item whenever the buyer’s

value exceeds the seller’s value, the buyer pays the seller’s value and the seller is paid the buyer’s

value.

It will be convenient to define a mechanism in which the promised utilities of the buyer and the

seller are perfectly coupled as follows:

wt0 = wt1 .

We next discuss the motivation behind this design choice. Recall that the platform can neither

create items by (Fsb) nor pay back to the buyer by (NPT). Thus, the platform can only deliver

promises to the buyer by allocating the item to him. At the same time, because the seller is

strategic, he needs to be given proper incentives to trade. By coupling the promise utilities we

avoid a situation in which the promised utility of the seller is zero but that of the buyer is positive.

In this case, the platform would be forced not to trade with the seller and bound to deliver some

value to the buyer, which leads to an impossibility.
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4.1 Mechanism definition

The mechanism will have a similar format to the previous one: we will allocate efficiently whenever

wt1 ∈ [w1, w
t
1] and throttle the allocation whenever wt1 is below w1.

No trade: If vt1 ≤ vt0, no trade happens and the mechanism rules are as follows:

qt0 = 1 , qt1 = 0 , zt0 = zt1 = 0 ,

ut1 = (wt1 − w1)+ , ut0 = (wt0 − w1)+ .

In the following cases, we assume that efficient trade is always possible, i.e., vt1 > vt0.

High promised utility (VCG prices): If wt1− v̄ ≤ wt1 ≤ wt1, the platform executes the trade

and prices according to the VCG mechanism:

qt1 = 1 , zt1 = vt0 , ut1 = wt1 − w1 ,

qt0 = 1 , zt0 = vt1 , ut0 = wt0 − w1 .

In this case the buyer pays the seller’s value and the seller is paid the buyer’s value. Thus, the

platform needs to subsidize trade. As in the one-sided case, promise utilities decrease by w1 to

guarantee that no agent reaches the end of the horizon with a positive promised utility.

Medium promised utility (first-price auction): If w1 ≤ wt1 ≤ wt1−v̄, the platform executes

the trade and prices at the bid:

qt1 = 1 , zt1 = vt1 , ut1 = wt1 − w1 + vt1 − vt0 ,

qt0 = 1 , zt0 = vt0 , ut0 = wt0 − w1 + vt1 − vt0 .

In this case agents pay their values and the platform extracts all the gains from trade.

Low promised utility (throttled allocation): If wt1 < w1 the mechanism will execute the

trade with probability wt1/w
t
1 if vt1 > vt0. In such case, the parties are paid the VCG prices for that

transaction, i.e., the buyer is charged vt0 and the seller’s payment is vt1. The mechanism is described

as follows:

qt1 = wt1/w
t
1 , zt1 = vt0 · qt1 , ut1 = 0 ,
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qt0 = wt1/w
t
1 , zt0 = vt1 · qt0 , ut0 = 0 .

4.2 Mechanism analysis

We again only defined the mechanism for wt1 ≤ wt1. Using the same argument as in Lemma 3.1, we

can argue that if w1
1 ≤ w1

1, then wt1 ≤ wt1 for all t. The next step is to argue that the mechanism

proposed satisfies the constraints imposed.

Lemma 4.1. If 0 ≤ w1
1 ≤ w1

1, then the bilateral trade mechanism described satisfies (DIC), (PIR),

(NPT), (PK) and (Fsb). Moreover, promise utilities are coupled, i.e., wt0 = wt1 for all t.

Proof. From the buyer’s perspective, the mechanism is identical to the one-sided mechanism in

Section 3, so it follows from Lemma 3.2 that the buyer-side constraints are satisfied. For the seller,

constraints (PIR), (NPT) and (Fsb) can be trivially checked. For dynamic incentive compatibility

(DIC) and (PK) it suffices to check that the mechanism satisfies (PI) since the allocation is trivially

monotone. This follows by construction.

4.3 Profit approximation and budget balance

Finally, because the promised utilities of the buyer and the seller are coupled, the profit approxi-

mation follows from the same argument as in the previous section.

Theorem 4.2. If the initial promised utility is set to w1
1 = v̄

√
8T log T + w1, then the expected

profit of the mechanism, denoted by Π, satisfies:

Π ≥ ΠFB −O
(√

T log T
)
,

whenever w1
1 ≤ w1

1 − v̄. In particular, the mechanism is asymptotically optimal, i.e., Π/ΠFB → 1

as T →∞.

The proof is omitted as it follows by the same argument as the one in Theorem 3.3. A corollary

of the previous theorem is that the mechanism is asymptotically efficient.

Corollary 4.3. The mechanism is asymptotically efficient, i.e, in expectation, it performs efficient

trade in all but in a sublinear number of time periods.

Finally, we discuss the issue of budget balance. Note that our mechanism is not budget balanced

in the sense that
∑n

i=1 z
t
i − zt0 ≥ 0 for all periods t. In repeated settings, however, the platform can
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subsidize trade in some periods using proceedings from other periods. Thus, we introduce the notion

of aggregated budget balance, which means that
∑T

t=1

(∑n
i=1 z

t
i − zt0

)
≥ 0. Although this property

is not satisfied almost surely by the mechanism, the probability that the mechanism is not budget

balanced in aggregate vanishes as the length of the time horizon goes to infinity. Additionally,

because the profit of the platform is given by the sum of all agents’ payments, Theorem 4.2 implies

that, in expectation, the platform needs to make no subsides. Moreover, it follows from the proof of

the theorem that budget balancedness can only be violated near the end of the horizon. Therefore,

with high probability the platform can cover the subsidization costs using its proceedings from

earlier periods.

Theorem 4.4. The probability that the aggregate budget balance constraint is violated goes to zero

as time goes to infinity:

P

[
T∑
t=1

(
n∑
i=1

zti − zt0

)
≥ 0

]
→ 1 as T →∞ .

Proof. Let σ(vt) = (maxvt−0 − vt0)+ be the social welfare for period t when the agents’ values

are vt. Let v =
(
vt
)T
t=1

be the vector of values for the whole horizon. We denote by Π(v)

and ΠFB(v) =
∑T

t=1 σ(vt) the sample-path profit of the platform under our mechanism and first-

best social welfare, respectively, when the realized vector of values is v. We first argue that

1
T E
[∣∣ΠFB −Π(v)

∣∣] converges to zero. We have

E
[∣∣∣ΠFB −Π(v)

∣∣∣]
≤ E

[∣∣∣ΠFB −ΠFB(v)
∣∣∣]+ E

[
ΠFB(v)−Π(v)

]
≤
√

Var (ΠFB(v)) + ΠFB −Π = Õ
(√

T
)
,

where the first inequality follows from Minkowski’s inequality and using that ΠFB(v) ≥ Π(v)

almost surely, the second from Jensen’s inequality, and the last from Theorem 4.2 and using that

Var
(
ΠFB(v)

)
= TVar

(
σ(v1)

)
because values are independent and using that Var

(
σ(v1)

)
≤ v̄2/4

because σ(v1) ∈ [0, v̄]. We obtain by Markov’s inequality that

P [Π(v) < 0] = P
[
ΠFB −Π(v) > ΠFB

]
≤ P

[∣∣∣ΠFB −Π(v)
∣∣∣ ≥ ΠFB

]
= Õ

(√
T
)
,
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because ΠFB = T E
[
σ(v1)

]
.

5 Two-sided markets

We finally consider a setting with multiple buyers and one seller, where we combine the ideas

developed in previous sections. The challenge in designing mechanisms for two-sided settings with

(NPT) is that the promised utilities must always be non-negative and bounded by the expected

surplus of the optimal allocation in the upcoming periods. If the promised utility of a certain agent

ever becomes zero, then the mechanism has no alternative other than only allocating to the extreme

type of that agent (highest type for buyers and lowest type for sellers), which only allows for a

non-trivial allocations in settings for which there is non-zero mass on the extreme type. Assuming

there is no positive mass on the extreme type of an agent, the mechanism needs to stop allocating

altogether to that agent if his promised utility hits zero. This is particularly problematic if the agent

whose promised utility hits zero is the seller, since this would force the mechanism not to allocate

to any of the remaining buyers. As a consequence, the main challenge in designing mechanisms for

two-sided markets is to prevent the seller’s promised utility from hitting zero before all buyers.

The main idea for the bilateral trade setting (Section 4) was to design the mechanism so that

the promise utilities of the seller and buyer are perfectly coupled. We extend this idea to the two-

sided setting by designing a mechanism that couples the promise utilities of the seller and buyers.

In contrast to the bilateral trade setting, coupling the promised utilities is not straightforward in

general two-sided markets. We next describe the two challenges we face.

First, to maximize profits, the platform should try to allocate efficiently so as to maximize the

gains of trade and charge agents their values (i.e., run a first-price auction) as long as possible.

Equation (PI) gives that promised utilities evolve as a random walk with jumps equal to the

information rents of each agent. The jumps are (vi−maxv−i)
+ for the buyer and (maxv−0− v0)+

for the seller. When there is only one buyer these jumps are equal and the promised utility processes

of the seller and buyer are coupled. With multiple buyers, however, only the winner’s promised

utility increases and the magnitude of the winner’s jump is smaller than the seller’s whenever the

second-highest buyer value exceeds the seller’s value. Thus, the processes are not longer coupled.

Recall that in the derivation of (PI) we set the utility for the lowest type to be independent of the

realization of values of the other agents. By making the buyers utility for the lowest type a function

of the reported types of the other agents, we can obtain a stronger version of (PI) that allows us
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to perfectly couple the agent’s promised utilities (see equation (PI’) in the proof of Lemma 5.2).

Second, when the promised utility is either low or high the platform should implement a mech-

anism that depletes the promised utility of the agents deterministically and at the same rate.

Mechanisms such as the VCG auction or simple lotteries are not suitable because they lead to the

seller’s promised utility depleting at a faster rate than the buyers. We tackle this challenge by

implementing a mechanism that offers a posted price to the seller and, whenever the seller trades,

allocates the item for free to the buyers using a lottery. We show that by suitably choosing the

lottery probabilities and the posted price of the seller we can guarantee that all agents deplete their

utilities deterministically and at the same rate. Combining these two ideas, we can perfectly couple

the agents promised utilities.

5.1 Mechanism definition

We construct our mechanism under the following assumption.

Assumption 5.1. There exists some reserve price r ∈ [0, v̄] and probabilities α ∈ [0, 1]n such

that αiE[vi1{v0 ≤ r}] = E[(r − v0)+] for all i ∈ [n],
∑

i∈[n] αi ≤ 1, and E[(maxv−0 − v0)+] ≥

E[(r − v0)+] > 0.

Assumption 5.1 can be shown to hold when then the seller’s values are independent of the

buyers. To see this, note that

E[(r − v0)+]

E[vi1{v0 ≤ r}]
=

1

E[vi]F0(r)

∫ r

0
F0(v)dv ≤ r

E[vi]
,

where the first equation follows from independence and using integration by parts, and the sec-

ond because the seller’s distribution of values F0(v) is non-decreasing. Therefore, by picking a

sufficiently small reserve price r, we can always guarantee that Assumption 5.1 holds.

As before we will define ranges of desirable promised utilities for each agent. Let w0 =

E[(maxv−0 − v0)+] be the seller’s expected surplus from efficient trade achieved by the VCG auc-

tion. Additionally, let wt = (T − t+ 1)µ where µ := E[(r − v0)+]. Those values define a desirable

range [w0, w
t] for the promised utility wti . We will set up the mechanism in such a way that we will

be able to allocate efficiently whenever wti is in this range and will argue that by setting the initial

promise properly, each buyer will remain in the desirable range with high probability for all but a

sublinear number of periods. Moreover, the mechanism will guarantee that the promise utility is

equal for all agents, i.e., wt0 = wt1 = . . . = wtn.
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Below we describe the mechanism. We will use i to denote an arbitrary buyer and 0 the seller.

We break ties lexicographically. We consider the following cases:

Medium promised utility (first-price auction): If w0 ≤ wt0 ≤ wt−v̄, the platform executes

the trade, the winning buyer pays his value, and the seller is paid his cost.

qti = 1{vti ≥ maxvt−i} , zti = vtiq
t
i ,

uti = wti +
(
maxvt−0 − vt0

)+ − w0 ,

qt0 = 1{vt0 ≤ maxvt−0} , zt0 = vt0q
t
0 ,

ut0 = wt0 +
(
maxvt−0 − vt0

)+ − w0 .

As in the one-sided case and the bilateral case, the platform is able to completely extract the gains

from trade.

Low and high promised utility (inefficient allocation): If wt0 ≤ w0 or wt − v̄ ≤ wt0, the

platform executes the trade whenever the seller’s value is below r, allocates to each buyer with

probability αi, and charges to each agent the lowest type that guarantees winning. Additionally,

to guarantee that the promised utility remains positive we throttle the allocation with probability:

pti = min(1, wti/µ) .

The mechanism is:

qti = αip
t
i1{vt0 ≤ r} , zti = 0 , uti =

(
wti − µ

)+
,

qt0 = pti1{vt0 ≤ r} , zt0 = rqt0 , ut0 =
(
wt0 − µ

)+
.

5.2 Mechanism analysis

Throughout this section we assume that the initial promise utilities of all agents are the same and

equal to w1, where the initial state is chosen so that 0 ≤ w1 ≤ w1 = µT .

Lemma 5.2. If the initial promised utility satisfies 0 ≤ w1 ≤ w1, then 0 ≤ wti ≤ wt for all t and

agent i, and the mechanism described satisfies (DIC), (PIR), (NPT), (PK), and qt0 ≥
∑n

i=1 q
t
i .

Moreover, promise utilities are coupled, i.e., wt0 = wt1 = . . . = wtn for all t.

When the expected value of an agent is very small relatively to the seller’s, the platform needs
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to set a low reserve price to satisfy Assumption 5.1; thus, limiting the range of attainable promised

utilities. We remark, however, that our mechanism is always feasible when the number of time

periods is sufficiently large. Alternatively, when the number of time periods is small, dropping buy-

ers with low valuations might have a negligible impact on the platform’s objective. We conjecture

that Assumption 5.1 can be relaxed by choosing alternative mechanisms for the boundary region.

Finally, our mechanism for the boundary region satisfies a weaker version of (Fsb) that might

require the platform to withhold an item from the buyers. In the context of internet advertising,

for example, the platform could simply leave the ad slot empty or show a house ad. We believe it

should be possible to construct mechanisms for two-sided markets that satisfy (Fsb).

Proof. By construction, it is easy to see that the promise utilities are coupled when the initial state

is the same for all agents. We prove by induction on t that 0 ≤ wt0 ≤ wt for all t. The result for the

other agents follows because promised utilities are coupled. We first argue that wt0 ≥ 0. When the

state lies in the high or low promised utility region, the claim follows because ut0 =
(
wt0 − µ

)+ ≥ 0.

When the state lies in the medium promised utility region, we have ut0 ≥ wt0−w0 ≥ 0 since the state

satisfies wt0 ≥ w0. We next argue that wt0 ≤ wt = (T−t+1)µ. When the state lies in the high or low

promised utility region, the claim follows because ut0 =
(
wt0 − µ

)+ ≤ (wt−µ)+ = wt+1 by induction.

When the state lies in the medium promised utility region, we have ut0 ≤ wt0+v̄−w0 ≤ wt−µ = wt+1

since the state satisfies wt0 ≤ wt − v̄ and µ ≤ w0 by Assumption 5.1.

The feasibility constraint qt0 ≥
∑n

i=1 q
t
i follows from the fact we allocate to at most one buyer

in each period (breaking ties lexicographically) only when we acquire the item from the seller. In

the medium region, the feasibility constraint holds with equality. In the high and low regions, the

constraint follows because pti ≤ 1 and
∑

i αi ≤ 1 from Assumption 5.1.

Periodic individual rationality (PIR) is satisfied since we charge each buyer at most his value

and pay the seller at least his cost. Since buyer payments are always non-negative, (NPT) is

satisfied.

Finally, to check dynamic incentive compatibility (DIC) and promise keeping (PK), it suffices

to check that the mechanism satisfies (PI) since the allocations are trivially monotone. We drop

the dependence on time to simplify the notation. For the buyers in the low and high region, we
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have

ui(v) = wi − vi · qi(v) +

∫ vi

0
qi(v,v−i)dv + zi(v)

− E
v

[∫ vi

0
qi(v,v−i)dv

]
= wi − piαi E

v
[vi1{v0 ≤ r}]

= wi − piµ = (wi − µ)+ ,

where the second equation follows from
∫ vi

0 qi(v,v−i)dv = viqi(v) = αipivi1{v0 ≤ r} because

the allocation is independent of the buyer’s value and zi(v) = 0, the third equation follows from

Assumption 5.1 and the definition of µ, and the last because pi = min(1, wi/µ). For the seller in

the low and high region, we have

u0(v) = w0 + v0 · q0(v) +

∫ v̄

v0

q0(v,v−0)dv − z0(v)

− E
v

[∫ v̄

v0

q0(v,v−0)dv

]
= w0 − p0 E

v

[
(v0 − r)+

]
= w0 − p0µ = (w0 − µ)+ ,

where the second equation follows from
∫ v̄
v0
q0(v,v−0)dv = p0(r − v0)+ and z0(v) = rq0(v), the

third equation follows the definition of µ, and the last because p0 = min(1, w0/µ). Equation

(PI) for the seller in the medium range follows using similar arguments because
∫ v̄
v0
q0(v,v−0)dv =(

maxvt−0 − vt0
)+

, using our definition of w0, and the fact that z0(v) − v0q0(v) = 0 because the

(PIR) constraint is binding.

We conclude by showing that dynamic incentive compatibility (DIC) and promise keeping (PK)

hold for the buyers in the medium range. In this case, however, (PI) does not hold. In order to

guarantee that the promise utilities remain coupled, we design the utility of the lowest type of each

buyer Ui(0,v−i) to be dependent on the report of the other agents. Recall that the promise keeping

constraint and the envelope formula imply that the interim utility of the lowest type should satisfy

E
v−i

[Ui(0,v−i)] = wi − E
v

[∫ vi

0
qi(v,v−i)dv

]
=: Ui(0) .

Because this constraint is at the interim level, for any function gi(v−i) we have that Ui(0,v−i) =
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Ui(0) + gi(v−i) − Ev−i [gi(v−i)] satisfies our requirements. We can rewrite the (PI) constraint as

follows:

ui(v) = wi − viqi(v) +

∫ vi

0
qi(v,v−i)dv (PI’)

+ zi(v)− E
v

[∫ vi

0
qi(v,v−i)dv

]
+ gi(v−i)− E

v−i

[gi(v−i)] .

Using that
∫ vi

0 qi(v,v−i)dv = (vi − maxv−i)
+ together with the fact that vi · qi(v) − zi(v) = 0

because the (PIR) constraint is binding, we obtain that

ui(v) = wi + (vi −maxv−i)
+ − E

v

[
(vi −maxv−i)

+
]

+ gi(v−i)− E
v−i

[gi(v−i)] .

Let gi(v−i) = (maxj∈[n]:j 6=i vj−v0)+. Let v(1) denote the highest value of the buyers and v(2) denote

the second-highest value of the buyers. Using these expressions and conditioning on whether i is

the winner (i.e., vi ≥ maxv−i) we obtain that

(vi −maxv−i)
+

=


(v(1) − v0)+ − (v(2) − v0)+ if vi ≥ maxv−i ,

0 otherwise .

and

gi(v−i) =


(v(2) − v0)+ if vi ≥ maxv−i ,

(v(1) − v0)+ otherwise .

Combining both expressions we obtain (vi −maxv−i)
+ + gi(v−i) = (v(1) − v0)+. This implies that

ui(v) = wi + (v(1) − v0)+ − Ev

[
(v(1) − v0)+

]
,

and the result follows because v(1) = maxv−0.
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5.3 Profit approximation

In this section, we prove that the constructed mechanism approaches first best as T increases. The

proof is similar to the proof of Theorem 3.3 except that the mechanism is not efficient when the

promised utility goes above wt − v. Such a difference introduces another case of efficiency loss,

which we need to bound as well.

Theorem 5.3. If the initial promised utility of all agents is set to w1 = w0 + v
√

8T log T , then the

expected profit of the mechanism, denoted by Π, satisfies:

Π ≥ ΠFB −O
(√

T log T
)
,

whenever w1 ≤ w1 − v̄
(
1 +
√

8T log T
)
. In particular, the mechanism is asymptotically optimal,

i.e., Π/ΠFB → 1 as T →∞.

Proof. The mechanism is feasible by Lemma 5.2 because 0 ≤ w1 ≤ w1. Because the states of all

agents are coupled, it is sufficient to consider the seller’s promised utility. Let τ be the stopping

time measuring the first time in which the seller’s promised utility wt0 falls in the inefficient regions

(including both the high and low promised utility regions). In particular, let τ = inf{t ≥ 1 : wt0 ≤

w0} be the stopping time of falling into the throttled region and τ = inf{t ≥ 1 : wt0 ≥ wt − v} be

the stopping time of falling into the inefficient allocation region. Then τ = min{τ , τ}.

Let S = Π+
∑n

i=0wi = Π+(n+1)w1 be the expected social welfare of the mechanism. Because

the mechanism allocates efficiently in the medium promised utility region, by a similar argument

as in the proof of Theorem 3.3, we have

ΠFB − S ≤ v E
v

[(T − τ + 1)+].

Next, we will bound Ev[(T−τ+1)+]. Let µt be defined similarly as in the proof of Theorem 3.3:

µt = µt−1 +
(
maxvt−0 − vt0

)+ − E
v

[
(maxv−0 − v0)+] ,

with µ1 = w1. Therefore, {µti}Tt=1 is a martingale with respect to the natural filtration with

increments bounded by |µt − µt+1| ≤ 2v. Additionally, we have that µt and the seller’s promised

utility wt0 coincide until time τ .

Let T ∗ = T + 1− (v+w0 + 2v
√

8T log T )/µ and consider a time 1 ≤ t ≤ T ∗. Note that T ∗ ≥ 1
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because w1 ≤ w1 − v̄
(
1 +
√

8T log T
)

and T ∗ ≤ T because µ ≤ v̄. In these time periods the high

and low promised utility region do not intersect (i.e., w0 ≤ wt − v̄). Because the initial promise

utility lies in the medium region, we obtain for any time period 1 ≤ t ≤ T ∗ using the maximal

version of Azuma’s concentration inequality:

Pr[τ ≤ t] = Pr

[
min
s≤t

µs ≤ w0

]
≤ exp

(
−(w1 − w0)2

8tv2

)
.

Similarly, using that wt is decreasing with time:

Pr[τ ≤ t] ≤ Pr

[
max
s≤t

µs ≥ wt − v
]

≤ exp

(
−(wt − v − w1)2

8tv2

)
.

Hence we have

E
v

[(T − τ + 1)+] =
T∑
t=1

Pr[τ ≤ t]

≤
T ∗∑
t=1

Pr[τ ≤ t] + T − T ∗

≤ T ∗ exp

(
−(w1 − w0)2

8T ∗v2

)
+ T ∗ exp

(
−(wT

∗ − v − w1)2

8T ∗v2

)
+ T − T ∗

≤ T exp

(
−(w1 − w0)2

8Tv2

)
+ T exp

(
−(wT

∗ − v − w1)2

8Tv2

)
+ T − T ∗

= 2 + T − T ∗ = 1 + w0/µ+ (2
√

8T log T + 1)v/µ ,

where the first equation follows from summation by parts, the first inequality follows because

probabilities are at most one, the second inequality because Pr[τ ≤ t] ≤ Pr[τ ≤ t] + Pr[τ ≤ t] from

the union bound, the third inequality because T ≤ T ∗, the second equality because w1 − w0 =

wT
∗ − v−w1 = v

√
8T log T from the definitions of T ∗ and w1 together with wT

∗
= µ(T − T ∗ + 1),

and the last equation from our definition of T ∗.
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Finally, combining with the definition of S, we conclude that

Π = S − (n+ 1)w1

= ΠFB − v E
v

[(T − τ + 1)+]− (n+ 1)w1

= ΠFB −O
(√

T log T
)
.
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A Lower bounds

We now argue that no mechanism can achieve an approximation better than O(
√
T ) of the first best

benchmark. The lower bound holds even for a setting with a single buyer and a seller with constant

value, which is a special case of all settings considered in the paper. This result follows from adapting

a result of Balseiro, Mirrokni & Leme (2017) for the infinite discounted time model to the finite

undiscounted model. The strategy in their paper (which is the one we will adopt here) is to look at

a very simple setting where v0 = 0 and there is only a single buyer with a two point distribution.

In this very simple settings, the incentive and promise keeping constraints greatly simplify and the

problem can be transformed to a stochastic control problem. A common technique in stochastic

control is to consider the perfect information relaxation in which the platform is revealed the entire

stochastic process of buyer’s valuations at the beginning of the horizon. Under this relaxation, the

problem reduces to analyzing a reflected random walk. Using standard concentration inequalities,

we can bound this process and as a result, obtain a bound for our original problem.

Theorem A.1. There is a setting where v0 = 0 and there is a single buyer with a two point

distribution where ΠFB − Π∗ ≥ Ω(
√
T ), where Π∗ is the profit of the optimal mechanism satisfying

Opt.

Proof. We consider an instance with a single buyer with valuation v = v1 with probability f1 and

v = v2 with probability f2 = 1 − f1 and 0 < v1 < v2. We note here that subscripts i will denote

different points in the support of the buyer’s valuation instead of the buyer’s identity.

Using the promised keeping constraint, we can eliminate payments from the objective in the

dynamic program (DP) and restate the dynamic program in terms of the social welfare St(w) =

w + Πt(w). For the case of one buyer, the payment variable can be easily eliminated using the

discrete analog of the envelope formula (see equation (PI) in Section 2.1), simplifying the program

to:

St(w) = max
(qi,ui)i

∑
i
fi (viq(vi) + St+1(u(vi)))

s.t U1 = w − f2(v2 − v1)q(v1) ,

U2 = w + f1(v2 − v1)q(v1) ,

0 ≤ u(vi) ≤ Ui , ∀i ,

0 ≤ q(v1) ≤ q(v2) ≤ 1 , ∀i .
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with boundary constraints that ST+1(w) = 0. The expressions for Ui are obtained by combining

the (PK) constraint w = f1U1 + f2U2 with U2 = U1 + (v2 − v1)q(v1) which comes out of the

simplification of the incentive constraint using the envelope formula (PI).

Increasing q(v2) can only improve the objective function without any impact in the constraints,

so we can assume q(v2) = 1. Now, for any fixed allocation q(v1), the seller would like to make the

promised utility as high as possible, since St(w) is non-decreasing in w (this follows because the

constraint set of the inner optimization problem expands as w increases). Therefore we can set

u(vi) = Ui. This implies that in an optimal mechanism, the state evolves according to:

wt+1 = wt + ξtqt(v1) for

ξt =


−f2(v2 − v1) , w.p. f1 ,

f1(v2 − v1) , w.p. f2 .

This allows us to phrase the seller’s problem as the following stochastic control problem:

S1(w) = f2v2T + max
q∈Q

E

[
T∑
t=1

f1v1q
t(v1)

]

s.t wt+1 = wt + ξtqt(v1) ,

w1 = w ,

wt ≥ 0 , 0 ≤ qt(v1) ≤ 1 ,

where Q denotes the set of all adaptive, non-anticipative policies q = (qt(v1))Tt=1 that map a history

at time t to an allocation qt(v1) of the lowest type. Because E[ξt] = 0, the latter is equivalent to

the problem of controlling the steps of a random walk with an absorbing barrier at zero.

Consider a perfect information relaxation in which the decision maker has access to all realiza-

tions of the random variables ξ = (ξt)
T
t=1. Given a sample path ξ ∈ RT we can calculate the optimal

value for the sample path in “hindsight” by solving a deterministic linear program. The expected

value with perfect information provides an upper bound on S1(w). More formally, we denote by

SHS(ξ;w) the optimal (deterministic) vale of the perfect information problem for sample path ξ,

where H stands for hindsight. We then have S1(w) ≤ E
[
SHS(ξ;w)

]
, where the perfect information
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problem is given by

SHS(ξ;w) = f2v2T + max
(wt,qt)Tt=1

T∑
t=1

f1v1q
t(v1)

s.t wt+1 = wt + ξtq
t(v1) ,

w1 = w ,

wt ≥ 0 , 0 ≤ qt(v1) ≤ 1 .

It is not hard to see that the perfect information problem admits a simple optimal solution:

greedily set qt(v1) as large as possible. This implies that qt(v1) = 1 whenever ξt > 0 and

qt(v1) = min{1, wt/(f2(v2 − v1))} when ξt < 0. Additionally, the state evolves according to the

reflected random walk

wt+1 = max{wt + ξt, 0} .

We next provide a closed-form expression for the optimal objective value of the perfect infor-

mation problem using Skohorod’s map for reflected random walks. Using that qt(v1) = 1 whenever

ξt > 0, we obtain that the optimal objective value is given by

SHS(ξ;w) = f2v2T + f1v1

T∑
t=1

1{ξt > 0}

+ f1v1

T∑
t=1

qt(v1)1{ξt > 0} .

We can eliminate the third term by considering the state dynamics. These are given by

wT+1 − w =
T∑
t=1

qt(v1)ξt

= f1(v2 − v1)
T∑
t=1

1{ξt > 0}

− f2(v2 − v1)
T∑
t=1

qt(v1)1{ξt < 0} .

Multiplying the second equation by ρ , f1v1/(f2(v2− v1)) > 0 and adding these last two equations
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together we obtain that

SHS(ξ;w) = f2v2T +
f1v1

f2

T∑
t=1

1{ξt > 0}

− ρ
(
wT+1 − w

)
.

Let Xt = −
∑t

s=1 ξ
s be the state of the random walk by time t. Skohorod’s map implies that

the reflected random walk satisfies wt+1 = w −Xt + max1≤s≤t(Xs − w, 0)+. Taking expectations

and using that E[ξt] = 0 we obtain that

E
[
SHS(ξ;w)

]
= ΠFB − ρE

[
max

1≤s≤T
(Xs − w)+

]
, (A.1)

where we also used that P{ξt > 0} = f2 and ΠFB = T (f1v1 +f2v2). The second term can be further

bounded from below as follows

E
[

max
1≤s≤T

(Xs − w)+

]
≥ E

[
(XT − w)+

]
≥
(
E
[
X+
T

]
− w

)+
,

where the second inequality follows because (XT − w)+ = (X+
T − w)+ because w ≥ 0 together

with Jensen’s inequality. Because the random variable XT is mean zero, we obtain that E
[
X+
T

]
=

E |XT | /2. Let Qt =
∑t

s=1 ξ
2
s be the quadratic variation process. Marcinkiewicz-Zygmund inequal-

ity implies that there exists a constant c1 > 0 such that E
∣∣Xt

∣∣ ≥ c1E
∣∣Q1/2

t

∣∣. Because the random

steps are almost surely lower bounded by |ξs| ≥ (v2 − v1) min(f1, f2), we have that the quadratic

variation process is lower bounded by Q
1/2
t ≥ (v2−v1) min(f1, f2)t1/2. Therefore, there exists some

constant c2 > 0 such that E
[
X+
T

]
≥ c2T

1/2.

Finally, we use the bound on S1(w) to bound Π∗ as follows:

ΠFB −Π∗ = max
w≥0

[
ΠFB + w − S1(w)

]
≥ max

w≥0

[
ΠFB + w − E

[
SHS(ξ;w)

]]
≥ max

w≥0

[
w + ρ(E[X+

T ]− w)+
]

= min(ρ, 1) · E
[
X+
T

]
≥ Ω(

√
T ) .
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B Implementation without knowing v̄

Both the mechanism description and the analysis depend on the quantity v̄ which is the highest

value in the support of the valuation distribution. The choice of restricting to bounded support

distribution is mostly to simplify the presentation and the analysis. It is possible to define and

analyze a similar mechanisms that do not require v̄. Instead of having two clearly marked first- and

second-price regions, the alternative mechanism will “interpolate” between a first-price and second-

price auction depending on wti − wti . This mechanism is identical to the one described earlier in

this section for wti ≤ wi and for the losing buyers. For the winning buyer i if his promised utility

wti is in the range [wi, w
t
i], we allocate efficiently and update the promises as follows:

qti = 1 , zti = v−i + min(vi −maxv−i, w
t
i − wti) ,

uti = wi − wi + min(vi −maxv−i, w
t
i − wti) .

Note that when wi = wti the mechanism runs a second-price auction and for any wi < wti the

mechanism interpolates between a first-price and second-price where the interpolation is given by

the cap wti − wti on the gap vi −maxv−i that we are allowed to consume. In particular, when the

promise utility satisfies wti ≤ wti − v̄ the mechanism runs a first-price auction as before.
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