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ABSTRACT

Code-switching is a commonly occurring phenomenon in many
multilingual communities, wherein a speaker switches between lan-
guages within a single utterance. Conventional Word Error Rate
(WER) is not sufficient for measuring the performance of code-
mixed languages due to ambiguities in transcription, misspellings
and borrowing of words from two different writing systems. These
rendering errors artificially inflate the WER of an Automated Speech
Recognition (ASR) system and complicate its evaluation. Further-
more, these errors make it harder to accurately evaluate modeling
errors originating from code-switched language and acoustic mod-
els. In this work, we propose the use of a new metric, transliteration-
optimized Word Error Rate (toWER) that smoothes out many of
these irregularities by mapping all text to one writing system and
demonstrate a correlation with the amount of code-switching present
in a language. We also present a novel approach to acoustic and lan-
guage modeling for bilingual code-switched Indic languages using
the same transliteration approach to normalize the data for three
types of language models, namely, a conventional n-gram language
model, a maximum entropy based language model and a Long
Short Term Memory (LSTM) language model, and a state-of-the-art
Connectionist Temporal Classification (CTC) acoustic model. We
demonstrate the robustness of the proposed approach on several
Indic languages from Google Voice Search traffic with significant
gains in ASR performance up to 10% relative over the state-of-the-
art baseline.

Index Terms— Code-switching, Transliteration, Multilingual
Speech Recognition, Deep Learning

1. INTRODUCTION

Code-switching is common among bilingual speakers of Hindi-
English, Bengali-English, Arabic-English and Chinese-English,
among many others. When a word from a foreign language (En-
glish) becomes part of the vocabulary of a native language (Hindi),
the distinction between code-switching, loan words, and creation
of new words in the lexicon of the native language is often not
very clear, and falls on a continuum [1]. This phenomena renders
the transcription of code-switched speech difficult and inconsistent,
resulting in the same word being transcribed using different writing
systems. These inconsistencies can lead to incorrect count distri-
butions amongst words with similar acoustic and lexical context in
both acoustic and language models.

Several approaches have been suggested in the literature for
code-switched speech recognition. A straightforward approach is
the use of multi-pass speech recognition, wherein regions of code-
switching are first identified with language identification methods
that use acoustic information only. Subsequently, the speech seg-
ments are recognized using the corresponding monolingual acoustic

and language models [2, 3]. A framework to run parallel recognizers
followed by a second pass merging and rescoring approach was
presented in [4]. Such methods not only require multiple passes of
processing, but also rely on the accuracy of code-switch detection
and language identification. They also fail to capture the context
information at the code-switch boundaries. A second approach
is the use of multilingual acoustic and language models in a single
recognition pass [5, 6]. This approach requires a unified phonetic al-
phabet and results on the Chinese-English language pair were mixed
[7]. While modeling pronunciation variation in lexicons helps in
language-pairs such as Ukrainian-Russian, where language iden-
tification is problematic [8], other lexicon learning approaches for
commonly used homophones have been less successful in improving
speech recognition performance [9]. The approach to multilingual
language modeling for music information retrieval proposed in [10]
utilizes a bilingual dictionary to map the statistical n-grams in one
language to the other and reports small improvements in recognition
performance on language specific phrase error rates.

In [3], the use of machine translation to generate artificial code-
switched text was first explored and integrated with the use of
language-identification to identify code switched regions. The use
of a weighted finite state transducer (WFST) framework to incorpo-
rate a translation model coupled with syntactic constraints to capture
contextual information at code switches between Chinese and En-
glish was proposed in [11, 12]. Motivated by linguistic studies on
the impact of Part-of-Speech (POS) tags on code switching, a recur-
rent neural network language model with a factorized output layer to
predict the next word and its language was proposed in [13, 14]. This
work provided significant reductions in perplexity for the Chinese-
English language pair but relatively small reductions in Word Error
Rate (WER). Reductions in perplexity and marginal improvements
in mixed error rate were demonstrated when using combinations of
word clusters and POS tags in factored language models [15]. A
comparison of several approaches to interpolating individual lan-
guage models within a single multilingual recognizer to handle
code-switching for the German-English language pair is presented
in [16] and a multilingual language modeling framework to combine
several monolingual into one multilingual LM for code-switching
at sentence boundaries is presented in [17]. Both these approaches
were able to produce improvements in ASR performance.

In this paper, we propose an alternative strategy based on
transliteration for improving ASR performance. WFSTs have been
used extensively for speech recognition decoding, where WFSTs
representing a context-dependent phone sequence model (C), the
pronunciation lexicon (L) and the language model (G) can be com-
posed into a single large transducer (C ◦ L ◦ G, or CLG for short)
that maps context-dependent phone sequences to word sequences
[18]. In [19], the authors extend the finite-state decoding approach
to transliterated keyboards and demonstrate that WFST encoding
of transliteration models allows for several optimizations that yield



good accuracy. In code-switched languages, the speaker mixes ro-
manized sequences with native language scripts, such as Devanagari
in the case of Hindi. Hence, we take a similar approach, where we
use transliteration modeling in both the acoustic and language mod-
els to capture the code-switches. A series of WFST optimizations
achieve the accuracy, latency and memory usage operating points.
Transliteration approaches have been used extensively in machine
translation [20, 21, 22] and information retrieval [23]. To the best
of our knowledge, this is one of the first pieces of work that demon-
strates significant gains in ASR performance for Indic languages
using a transliteration based approach.

The rest of this paper is organized as follows. Section 2 de-
scribes the challenges in speech recognition of Indic languages.
In Section 3, we introduce a new metric, transliteration optimized
Word Error Rate (toWER) and describe our proposed approach
and WSFT optimizations. Using Hindi as an example, Section 4
illustrates the importance of evaluating ASR systems by eliminat-
ing code-switches and scoring in a common transliterated space.
Significant performance improvements that can be achieved when
incorporating transliteration into the training of acoustic and lan-
guage models are highlighted. Section 5 validates the generality
of the proposed approach in other Indic languages. The paper
concludes with a detailed analysis in Section 6.

2. CHALLENGES IN INDIC LANGUAGES

In India, bilingualism is commonplace and code switching between
the native language and English occurs frequently. We present the
distribution of Latin script seen in two of the corpora used in build-
ing language models for Indic languages in Table 1. The corpus
containing typed search queries contains far more Latin than the cor-
pus containing transcriptions of spoken queries. We attribute this to
transcription conventions that transcribers tried to adhere to, while
web-based search queries are not restricted in any manner.

Language Fraction of Latin Fraction of Latin
in written in spoken

queries (%) queries (%)
Hindi 58.36 11.54

Bengali 71.37 16.17
Kannada 81.19 1.76
Gujarati 79.69 9.74
Tamil 71.41 4.14

Malayalam 75.48 -
Urdu 5.14 -

Marathi 81.63 6.49

Table 1. Distribution of Latin script in Indic languages across two
different corpora containing written and spoken queries

h�¥o Hi Hello Hi
e�V�
l̂ 4 G moEbl̂ Airtel 4G Mobile
sMs� �ĝ J2 kA rate Samsung J2 ka rate

Satta Matka XAV̂ kAm̂ sAiV̂ Satta Matka dot com site
MP3 Er\ĝ Won̂ n� MP3 Ring Tone new
Robot 2 E'Sm̂ HD Robot 2 film HD

Table 2. Examples containing Devanagari and Latin writing systems

Table 1 illustrates the widespread distribution of code-switching.

In this paper, we present a detailed analysis of the proposed approach
using Hindi, which is one of the languages with a large number of
code-switches and training data, while illustrating the generalization
of our approach and its impact on other Indic languages as well.

Code-switching is present in multiple writing systems. For ex-
ample, Hindi uses the Devanagari script, while Urdu uses an Ara-
bic writing system. As most speakers of Hindi are bilingual, code-
switching is a part of daily life, the phenomenon routinely occurs
in casual conversations, voice search queries and in presentations,
leading to what is commonly referred to as Hinglish. This type of
code-switching can occur within a sentence at a phrase level. A
few examples of commonly transcribed spoken utterances are pre-
sented in Table 2. The first column illustrates the mixed writing
systems used commonly. The second column shows the equivalent
text in Latin script for ease of readability and to illustrate the mix of
Hindi and English seen in the data. Despite instructions to transcribe
Hindi words in Devanagari script and words of English origin in
Latin script, numerous inconsistencies can be observed in the result-
ing transcriptions by bilingual transcribers. Hindi, like other Indian
languages, is romanized on social and news media, in user gener-
ated text [1], especially with named entity mentions, URLs, numeric
entities and acronyms, thereby rendering the transcription of Hindi
words in Devanagari even more difficult for the transcribers. These
type of inconsistencies directly impact the definition of errors and the
metric used for evaluating ASR systems, Word Error Rate (WER).
We refer to this as rendering errors.

The variability in the usage of the native language (Hindi) and
the foreign language (English) makes it challenging to model the
context under which code switching occurs. While several methods
that use linguistic, prosodic and semantic cues have been proposed
to model and capture code-switching phenomena, very few methods
have been proposed and been successful in improving the perfor-
mance of ASR systems. The lack of consistency in transcription
and incorrect normalization also impacts the modeling power of lan-
guage and acoustic models. We refer to this as modeling errors. In
the next section, we present our unified approach to addressing both
modeling and rendering errors.

3. TRANSLITERATION-BASED PROPOSED APPROACH

Transliteration is the process of converting sequences from one writ-
ing system to another. While transliteration has been used exten-
sively in improving machine translation and information retrieval
performances, to the best of our knowledge, little work has focused
on improving speech recognition performance in code-switched lan-
guages. For example, in [24], transliteration between Chinese and
English was achieved through a joint source channel model, referred
to as an ngram-transliteration model, that aligns phonemic units be-
tween two writing systems via a bilingual dictionary. Transliteration
of Indic languages to Latin script is particularly challenging due to
the large combination of consonants, vowels and diacritics that re-
sult in a non-unique mapping. It is worth noting that non-standard
spellings exist in both scripts, for example, loaner words that have
variable possible spellings in Devanagari and Hindi words with vari-
able romanizations.

3.1. General Transliteration Approach

In this paper, we propose the use of transliteration via a weighted
finite state transducer as proposed for keyboard decoding in [19].
Transcribers were asked to transcribe spoken utterances in the native
writing script (Devanagari, in this case) with exceptions for certain



commonly used English words to be written in Latin script. Thus,
the context and range of input from the two writing systems was re-
stricted to what was said in the utterance unlike unrestricted text en-
try via the keyboard. However, given the lack of canonical transliter-
ations between the two writing systems and inconsistencies between
transcriptions, a large number of modeling and rendering errors are
introduced. The transliteration transducer introduced for keyboard
decoding in [19] finds a perfect application for This scenario. The
transliteration transducer, T is a composition of three transducers:
I ◦P ◦O, where I maps input unicode symbols to symbols in a pair
language model, P is a bigram pair language model that maps be-
tween symbols in the two writing scripts, English and Devanagari,
and O maps the pair language model symbols to the target output
Devanagari symbols (illustrated in Figure 1). The conditional prob-
ability of the transliterated word is obtained by dividing the joint
probability from T by the marginalization sum over all input and
output sequences. This computation is efficiently implemented by
computing the shortest path in T .

3.2. Optimizations

In order to get performance of transliteration at a good operating
point with respect to memory, speed and latency considerations for
building large-scale language models, we explored several optimiza-
tions.

• The transliteration transducer computes the shortest path, and
significant speed improvements were obtained by the efficient
pruning of the search space. All paths that score below the
pruning threshold were discarded. This threshold was deter-
mined empirically so as to not impact ASR performance. A
prune weight threshold of 5 was determined as a good oper-
ating point, particularly as we are only interested in the best
path.

• The use of ε-transitions to reduce the number of deletions
and insertions is important when reducing epsilon cycles in
the WFST. We used a parallel implementation of epsilon re-
moval, utilizing eight threads in parallel.

• The operations for epsilon removal caused significant mem-
ory explosions, rendering the transliteration process unusable
for large scale language models. We addressed this issue via
weight-based pruning prior to epsilon removal with no impact
on the transliteration performance.

• Given that the bilingual word usage distribution is far from
uniform, we observed that several words reappeared very fre-
quently in the training data. We introduced a cache of suc-
cessful transliterations with a maximum size of 100K ele-
ments, thereby reducing transliteration of frequent terms to
a table lookup.

The speed-up/memory reduction contributions from the above opti-
mization steps are presented in Table 3. We also explored the use of
a unigram language model instead of a bigram model. However, this
did not provide any additional speed ups.

The above optimizations reduce the overall training time of a
language model trained on 280B words from 165 hours to 12 hours.
The transliteration process is only 30% slower than using all of the
training data as-is.

Optimization Speed (msec)
Baseline 123

+ transliteration transducer pruning 109.0
+ parallel epsilon removal 72.6

+ weight based pruning prior to
epsilon removal 61.6

+ caching frequent transliterations 25.0

Table 3. Impact of various optimizations on transliteration speed
computed over an utterance containing four words on the average

4. DATA, EXPERIMENTS AND RESULTS

4.1. Training Data

All our experiments were conducted on training and test sets that
were anonymized and hand-transcribed utterances representative of
Google’s voice search traffic in Indic languages. The training set
is augmented with several copies of the original, artificially cor-
rupted by adding varying degrees of noise and reverberation us-
ing a room simulator such that the overall SNR varies between 0
and 20 db. The signal processing pipeline for all languages ex-
tracted 80-dimensional log mel-filter bank output features with a
standard frame rate of 10 ms. The acoustic models for all languages
are LSTMs with 5 layers, with each layer consisting of 768 LSTM
cells. The acoustic models were trained in TensorFlow [25] us-
ing asynchronous stochastic gradient descent minimizing Connec-
tionist Temporal Classification (CTC) [26] and state-level Minimum
Bayesian Risk (sMBR) objective functions [27]. The amount of
training data used in our experiments for each of the Indic languages
is presented in Table 4. The test data varied between 6K and 10K
words. It can be seen that there is a huge variance in available data
across these languages. We present detailed analysis on Hindi, as it
is one of the languages that has the most code-switching with En-
glish and maximum number of training tokens. Our Hindi training
data set comprises of approximately 10K hours of training data from
10M utterances. We also validate the proposed approach on the other
Indic languages which typically have 10-20% of the data Hindi does.

Language AM Training LM Training
Utterances (M) tokens

Hindi 10.1M 7.7B
Bengali 2.1M 3.1B
Kannada 0.7M 0.6B
Gujarati 1.4M 0.8B
Tamil 1.3M 2.1B

Malayalam 1.0M 0.9B
Telugu 1.6M 1.2B
Marathi 2.9M 1.7B

Urdu 0.2M 0.3B

Table 4. Training sets for the Indic languages

4.2. Transliterated Scoring of ASR

Table 5 illustrates the significant differences in measured WER after
correcting for errors related to the writing systems. The proposed
toWER metric is computed after transliterating both the reference
and hypothesis to one writing system corresponding to the native



Fig. 1. Illustration of transliteration between Devanagari and Latin scripts for the English word browser

locale. It can be seen that there is a correlation between the percent-
age of Latin script and the proposed metric which serves as a good
indication of the extent of code-switching in these languages. In
languages such as Malayalam, Telugu, Marathi and Urdu, there is a
lesser amount of code-switching than in languages such as Hindi and
Bengali and we can see that toWER reflects that. Thus, we can see
transliteration as a means to correct for errors in the writing system
arising from inconsistencies and as a means for separating modeling
errors from rendering errors. We hypothesize that transliterated scor-
ing reduces ambiguity introduced by code-switching and smoothes
out ambiguities and transcription errors. Therefore, the proposed
toWER is a better metric to evaluate any algorithmic improvements.

Language Baseline toWER Amount of
WER (%) (%) Latin (%)

Hindi 31.5 20.6 31.9
Bengali 48.1 36.5 31.5
Kannada 36.4 28.1 20.9
Gujarati 38.1 30.3 7.3
Tamil 27.9 25.3 19.0

Malayalam 41.9 38.3 3.1
Telugu 31.2 31.1 3.5
Marathi 25.4 21.0 4.6

Urdu 25.1 23.4 0.4

Table 5. Impact of toWER on fixing rendering errors while measur-
ing WER on Voice Search queries on several Indic languages

4.3. Impact of transliteration on Language Modeling

Motivated by the impact of transliteration optimized scoring in Sec-
tion 4.2, we explored normalization of training data for language
models using transliteration. First, we present the results of training
transliterated language models (LMs) on Hindi. All the text from the
diverse corpora used for building a Hindi language model were first
transliterated to eliminate any Latin script. The normalized scripts in
Devanagari were subsequently used to train 5-gram LMs for the first-
pass and class-based maximum entropy based models for the second
pass. Table 6 presents the results obtained when using these models
to decode two different test sets comprising of voice search queries
and dictation data. In order to compare with various writing systems
as inputs to the language model, we define the Devanagari-only data
based LM as an LM that was built with all utterances containing
Devanagari script only. Any utterance containing bilingual text in
Devanagari and Latin scripts was not used in the language model
builds. As expected, this resulted in a loss of contextual modeling,
lesser data and introduced mismatches between training and test set
distributions. Transliterated scoring of the hypotheses produced by
this LM fixes mismatches with reference transcriptions (row 2). Re-
taining data from both writing systems ensures that the contexts from
code-switches are preserved but introduces all the challenges dis-

cussed in Section 2, including the same word appearing in both, De-
vanagari and Latin. With all the additional data from Latin included
as-is in the LM, the mismatch between the reference and the hypoth-
esis increases even more leading to an artificially inflated conven-
tional WER (row 3). The toWER metric reflects the actual error rate
(row 4). It can be seen that retraining LMs with all the data translit-
erated to Devanagari provides a nice gain on the Voice Search and
dictation test sets (row 5). Thus, building LMs by transliterating all
the training data to Devanagari, thereby introducing consistent text
normalization, results in gains of 3 to 8% relative improvements in
WER on the two test sets.

Tasks
Model Voice Dictation

Search (%) (%)
Devanagari-only LM (WER) 31.5 14.3

Transliterated Scoring
of Devanagari-only LM (toWER) 20.6 13.5

LM with Hindi
and Latin scripts (WER) 37.0 27.0

LM with Hindi
and Latin scripts (toWER) 17.7 14.5

Transliterated LM (toWER) 17.2 12.7

Table 6. Impact of transliteration on fixing modeling and rendering
errors on Voice Search queries and dictation utterances in Hindi with
Maximum Entropy based language models

We also explored the impact of transliteration on Long Short
Term Memory (LSTM) neural network models. As seen in Table 7,
training models with transliterated text provides gains in perfor-
mance similar to those seen with maximum-entropy based LM for
the Voice Search task and less so for the dictation task. While not
surprising, it validates our hypothesis that transliteration based nor-
malization for training as well as scoring helps separate modeling
errors from rendering errors and helps with accurate evaluation of
the performance of models. For the Voice Search task shown in
Tables 6 and 7, one would conclude that the performance of an
LSTM LM and a maximum entropy based LM are very similar
(32.0 vs 31.5) when using conventional WER, while toWER would
suggest that the maximum entropy based LM is much better than
the LSTM (20.6 vs 22.3). The significance of such gains can in fact
be measured by human raters in a side by side comparison study
explained in Section 6.

4.4. Impact of transliteration on Acoustic Modeling

We experimented with transliteration of each utterance in the train-
ing of acoustic models (AM) on Hindi. All words in the AM train-
ing data written in Latin were first transliterated to Devanagari script
and pronunciations were derived in the Hindi phonetic alphabet. Af-
ter training the model to convergence using the CTC criterion, the



Tasks
Model Voice Dictation

Search (%) (%)
Devanagari-only LM (WER) 32.0 16.0

Transliterated Scoring
of Devanagari-only LM (toWER) 22.3 15.3

LM with Hindi
and Latin scripts (toWER) 20.7 14.9

Transliterated LM (toWER) 20.2 14.9

Table 7. Impact of transliteration on ASR performance on Voice
Search queries and dictation utterances with LSTM LMs

transliterated AM showed small improvements in performance over
the model trained with both writing systems (See Table 8). We hy-
pothesize that the wins from sMBR training will be even more sig-
nificant as the numerator and denominator lattices needed for sMBR
training will be consistently rendered in Devanagari script.

Language Baseline WER using
WER (%) transliterated AM (%)

Hindi 21.9 21.3

Table 8. Impact of our proposed approach on acoustic modeling

5. ASR PERFORMANCE ON SEVERAL INDIC
LANGUAGES

Table 9 presents the impact of our proposed approach on several
other Indic languages. We observe a significant, consistent gain on
all languages except for Malayalam and Tamil. We hypothesize that
this can be attributed to the amount of Latin present in the training
corpora. For these two languages, it can be seen from Figure 2 that
there is very little Latin present in the Voice Search corpus contain-
ing spoken queries, while the corpus containing web-based queries
contains a lot more Latin. However, the web-based corpus received
a very low interpolation weight for this task and therefore had very
little impact on the WER. A similar trend is observed with transliter-
ated LMs on the dictation task (See Table 10 with relative reductions
in toWER of up to 10%.)

Fig. 2. WER, toWER and correlation with the percentage of code-
switching measured as the percentage of Latin in the data

Language Baseline Transliterated LMs
toWER (%) toWER (%)

Hindi 18.4 17.2
Bengali 36.5 30.5
Kannada 28.1 26.8
Gujarati 30.3 27.1
Telugu 31.1 30.1
Urdu 23.4 22.9

Marathi 21.0 20.8
Tamil 25.3 25.2

Malayalam 38.3 38.5

Table 9. ASR performance on Voice Search queries for several Indic
languages

Language Baseline Transliterated MaxEnt Amount of
toWER (%) LMs toWER (%) Latin (%)

Hindi 13.5 12.7 4.93
Bengali 18.7 17.6 10.21
Kannada 22.2 23.9 8.64
Gujarati 42.7 38.5 23.09
Tamil 19.2 18.9 1.84

Marathi 22.2 22.0 2.60

Table 10. ASR performance with transliterated LMs on a dictation
task for several Indic languages

6. ANALYSIS

In this section, we highlight some of the issues with transliteration
with positive and negative examples. Table 11 shows a couple of ex-
amples where the conventional WER metric artificially inflates the
errors. In the first example, we see the utterance, Satta Matka tran-
scribed in Latin script while the ASR system hypothesized in De-
vanagari and therefore counts as two substitution errors. However,
since toWER transliterates to Devanagari before computing the error
rate, it correctly produces no errors. A similar scenario can be seen
for the word Discovery in the second example.

However, not all issues with code-switching can be fixed with
transliteration alone. A few such instances are highlighted in Ta-
ble 12, where the transliteration process introduces errors which did
not exist before. In the first example, the utterance in Latin reads
as Tiger zinda hai full movie. The reference contained the first three
words in Latin and the last two in Devanagari. As designed, the ASR
hypothesis was in Devanagari. The result of transliterating both the
reference and the hypothesis to a common Devanagari writing sys-
tem, introduced an error Zinda vs Jinda. Similarly, in the second ex-
ample, the reference was transliterated to Jamuna while the hypothe-
sis produced Jumna which is a result of the ambiguity in the translit-
eration process wherein either forms are acceptable. The third exam-
ple produces a more classic error. The utterance reads in Latin as BA
first year time table. Note that in this example, the transcriber was
consistent in producing text in Devanagari only. The ASR system
hypothesized the utterance correctly but in a combination of writing
systems and counted three substitution errors per the WER metric.
In the process of transliterating the hypothesis, BA got mapped to
Ba (pronounced as bah in the word ‘bar’) in Devanagari losing the
‘A’ at the end of this acronym BA. This causes a substitution error
with the toWER metric. We would like to point out that despite situ-
ations such as those highlighted above, overall, the proposed metric



does indeed reflect the performance of the system significantly more
accurately than the conventional WER.

As an additional evaluation of the proposed approach, we con-
ducted “side-by-side” (SxS) experiments similar to the ones in [28],
in which each anonymized test utterance is automatically transcribed
by two ASR systems (Baseline vs. Transliterated LM). If the two hy-
potheses differ, they are presented to human raters. SxS experiments
can accurately measure semantic changes as opposed to minor lexi-
cal differences [28]. We conduct SxS experiments also for the sce-
nario where the hypothesis is generated by a single ASR system,
but the raters see the raw hypothesis in multiple writing systems as
well as in a single native writing system (Devanagari in this exam-
ple). In Table 13, we present the following results on 500 differing
utterances: 1) Change: the percentage of traffic for which the two
systems produced different transcripts. 2) Wins/Losses: the ratio of
wins to losses in the experimental system vs. the baseline. A p-value
less than <5% is considered to be statistically significant.

WER toWER
Ref: Satta Matka Ref: sÓA mÖA
Hyp: sÓA mÖA Hyp: sÓA mÖA
Ref: EX-kvrF Ref: EX-kvrF

Hyp: Discovery Hyp: EX-kvrF

Table 11. Sample errors fixed by toWER

From the table, we see that the human raters give a neutral rating
to the transliterated hypothesis when compared to the mixed writing
systems based hypothesis. This is not unexpected, as the semantic
content of the two systems being compared has not changed. How-
ever, toWER smoothes out the rendering errors and offers a better
perspective. In a similar vein, the second row compares two LMs,
baseline system (row 2 in Table 6 with a toWER of 20.6%) and the
system with a transliterated LM (row 4 in Table 6 with a toWER of
17.2%). We see that there are far more wins than losses with the
transliterated LM (the experimental system).

WER toWER
Ref: Tiger Zinda Hai '� l̂ m� vF V{gr̂ E)�dA h{ '� l̂ m� vF
Hyp: V{gr̂ Ej�dA h{ '� l̂ m� vF V{gr̂ Ej�dA h{ '� l̂ m� vF
Ref: Ganga Jumna g�gA jm� nA
Hyp: g\ gA j� ßA g�gA j� ßA
Ref: bFe P-V̂
 Iyr̂ VAim̂ V�bl̂ bFe P-V̂
 Iyr̂ VAim̂ V�bl̂
Hyp: B.A. P-V̂
 Iyr̂ time table bA P-V̂
 Iyr̂ VAim̂ V�bl̂

Table 12. Sample errors introduced by toWER

Hindi Systems Traffic Win/Loss p-Value
Compared Changed (%) /Neutral

Raw vs transliterated
hypothesis 12.7 0/3/497 1%-2%
Baseline vs

transliterated LM 36.6 57/37/406 >=5%

Table 13. Human Raters judging toWER and transliterated LMs

All Indic languages showed a correlation between the amount
of text written in Latin and the gains obtained with transliterated
LMs and toWER metric on the Voice Search task. However, we

observed a degradation in performance on the dictation task in Kan-
nada. To better understand the source of these errors, we computed
the grapheme error rate in the transliterated space for Kannada and
compared it with a language such as, Bengali, which showed sig-
nificant gain with transliterated LMs. Interestingly enough, it can
be seen from Table 14 that the number of deletion errors between
the baseline and the transliterated LM is much higher in Kannada
(increased by 30% relative) than in Bengali (stayed constant). The
substitution errors also increased in Kannada by approximately 3%
relative, while they decreased by 6.4% relative in Bengali. How-
ever, while the grapheme error rate for Bengali reduced from 18.7%
to 17.6% with the transliterated LM, it only reduced from 10.27 to
10.23 for Kannada. A closer observation of the hypotheses indi-
cates that many of the errors were either introduced by transliteration
when two words are merged into one or were a result of ambiguity
from the language where both merged and split forms are considered
correct. A combination of these factors ends up degrading toWER.
The improvement in grapheme error rate is a good indication that
transliterated LMs are still useful. We hypothesize that some of the
errors caused by the transliteration process can be corrected by train-
ing a model on matched data.

Error Type LM Languages
Kannada Bengali

Grapheme Error Rate Baseline 10.27 8.0
Transliterated LM 10.23 7.4

Deletion Errors Baseline 4.3 3.0
Transliterated LM 5.6 3.0

Substitution Errors Baseline 14.5 14.1
Transliterated LM 14.9 13.0

Table 14. Grapheme Error Rate, Deletion and Substitution Errors
on the dictation task in Bengali and Kannada. All numbers in %.

7. SUMMARY

We have demonstrated that conventional Word Error Rate (WER)
is not sufficient for measuring the performance of code-mixed lan-
guages due to ambiguities in transcription, misspellings and borrow-
ing of words from two different writing systems. We demonstrate:

• Accurate measurement of modeling errors using the proposed
transliteration based toWER metric that smoothes out the ren-
dering errors.

• Consistent normalization of training transcripts for both lan-
guage and acoustic modeling with significant gains of up to
10% relative across several code-switched Indic languages
using Google voice search and dictation traffic.

We show that with a simple approach based on transliteration to
consistently normalize training data and accurately measuring the
robustness and accuracy of the model, significant gains can be ob-
tained.
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