1903.07047v1 [cs.CG] 17 Mar 2019

arXiv

General techniques for approximate incidences and
their application to the camera posing problem

Dror Aiger
Google, aigerd@google.com

Haim Kaplan'

School of Computer Science, Tel Aviv University, Tel Aviv, and Google
haimk@tau.ac.il

Efi Kokiopoulou
Google, efi@google.com

Micha Sharir?

School of Computer Science, Tel Aviv University, Tel Aviv, Israel
michas@tau.ac.il

Bernhard Zeisl
Google, bzeisl@google.com

—— Abstract

We consider the classical camera pose estimation problem that arises in many computer vision
applications, in which we are given n 2D-3D correspondences between points in the scene and
points in the camera image (some of which are incorrect associations), and where we aim to
determine the camera pose (the position and orientation of the camera in the scene) from this
data. We demonstrate that this posing problem can be reduced to the problem of computing
g-approximate incidences between two-dimensional surfaces (derived from the input correspon-
dences) and points (on a grid) in a four-dimensional pose space. Similar reductions can be applied
to other camera pose problems, as well as to similar problems in related application areas.

We describe and analyze three techniques for solving the resulting e-approximate incidences
problem in the context of our camera posing application. The first is a straightforward assignment
of surfaces to the cells of a grid (of side-length €) that they intersect. The second is a variant
of a primal-dual technique, recently introduced by a subset of the authors [2] for different (and
simpler) applications. The third is a non-trivial generalization of a data structure Fonseca and
Mount [3], originally designed for the case of hyperplanes. We present and analyze this technique
in full generality, and then apply it to the camera posing problem at hand.

We compare our methods experimentally on real and synthetic data. Our experiments show
that for the typical values of n and ¢, the primal-dual method is the fastest, also in practice.

2012 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
Keywords and phrases Camera positioning, Approximate incidences, Incidences

Digital Object Identifier 10.4230/LIPIcs...

1 Partially supported by ISF grant 1841/14, by grant 1367/2016 from the German-Israeli Science Foun-
dation (GIF), and by Blavatnik Research Fund in Computer Science at Tel Aviv University.

2 Partially supported by ISF Grant 260/18, by grant 1367/2016 from the German-Israeli Science Foun-
dation (GIF), and by Blavatnik Research Fund in Computer Science at Tel Aviv University.

ey (& | ©D. Aiger, H. Kaplan, E. Kokiopoulou, M. Sharir, B. Zeisl;
A—amwram licensed under Creative Commons License CC-BY

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:haimk@tau.ac.il
mailto:michas@tau.ac.il
http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2

Approximation Algorithms for Camera Posing

1 Introduction

Camera pose estimation is a fundamental problem in computer vision, which aims at de-
termining the pose and orientation of a camera solely from an image. This localization
problem appears in many interesting real-world applications, such as for the navigation of
self-driving cars [5], in incremental environment mapping such as Structure-from-Motion
(StM) [1I, 1, 3], or for augmented reality [8, [0 4], where a significant component are
algorithms that aim to estimate an accurate camera pose in the world from image data.

Given a three-dimensional point-cloud model of a scene, the classical, but also state-
of-the-art approach to absolute camera pose estimation consists of a two-step procedure.
First, one matches a large number of features in the two-dimensional camera image with
corresponding features in the three-dimensional scene. Then one uses these putative cor-
respondences to determine the pose and orientation of the camera. Typically, the matches
obtained in the first step contain many incorrect associations, forcing the second step to
use filtering techniques to reject incorrect matches. Subsequently, the absolute 6 degrees-
of-freedom (DoF) camera pose is estimated, for example, with a perspective n-point pose
solver [6] within a RANSAC scheme [4].

In this work we concentrate on the second step of the camera pose problem. That is, we
consider the task of estimating the camera pose and orientation from a (potentially large)
set of n already calculated image-to-scene correspondences.

Further, we assume that we are given a common direction between the world and cam-
era frames. For example, inertial sensors, available on any smart-phone nowadays, allow
to estimate the vertical gravity direction in the three-dimensional camera coordinate sys-
tem. This alignment of the vertical direction fixes two degrees of freedom for the rotation
between the frames and we are left to estimate four degrees of freedom out of the general
six. To obtain four equations (in the four remaining degrees of freedom), this setup requires
two pairs of image-to-scene correspondencesﬂ for a minimal solver. Hence a corresponding
naive RANSAC-based scheme requires O(n?) filtering steps, where in each iterations a pose
hypothesis based on a different pair of correspondences is computed and verified against all
other correspondences.

Recently, Zeisl et al. [I7] proposed a Hough-voting inspired outlier filtering and camera
posing approach, which computes the camera pose up to an accuracy of € > 0 from a set
of 2D-3D correspondences, in O(n/s?) time, under the same alignment assumptions of the
vertical direction. In this paper we propose new algorithms that work considerably faster in
practice, but under milder assumptions. Our method is based on a reduction of the problem
to a problem of counting e-approzimate incidences between points and surfaces, where a
point p is e-approximately incident (or just e-incident) to a surface o if the (suitably defined)
distance between p and o is at most €. This notion has recently been introduced by a subset
of the authors in 2], and applied in a variety of instances, involving somewhat simpler
scenarios than the one considered here. Our approach enables us to compute a camera
pose when the number of correspondences n is large, and many of which are expected to
be outliers. In contrast, a direct application of RANSAC-based methods on such inputs
is very slow, since the fraction of inliers is small. In the limit, trying all pairs of matches
involves Q(n?) RANSAC iterations. Moreover, our methods enhance the quality of the
posing considerably [I7], since each generated candidate pose is close to (i.e., consistent
with) with many of the correspondences.

3 As we will see later in detail, each correspondence imposes two constraints on the camera pose.

D. Aiger, H. Kaplan, E. Kokiopoulou, M. Sharir, B. Zeisl

Our results. We formalize the four degree-of-freedom camera pose problem as an approx-
imate incidences problem in Section Each 2D-3D correspondence is represented as a
two-dimensional surface in the 4-dimensional pose-space, which is the locus of all possible
positions and orientations of the camera that fit the correspondence exactly. Ideally, we
would like to find a point (a pose) that lies on as many surfaces as possible, but since we
expect the data to be noisy, and the exact problem is inefficient to solve anyway, we settle
for an approximate version, in which we seek a point with a large number of approximate
incidences with the surfaces.

Formally, we solve the following problem. We have an error parameter ¢ > 0, we lay
down a grid on [0, 1] of side length ¢, and compute, for each vertex v of the grid, a count I(v)
of surfaces that are approximately incident to v, so that (i) every surface that is e-incident
to v is counted in I(v), and (ii) every surface that is counted in I(v) is ae-incident to v, for
some small constant a > 1 (but not all ae-incident surfaces are necessarily counted). We
output the grid vertex v with the largest count I(v) (or a list of vertices with the highest
counts, if so desired).

As we will comment later, (a) restricting the algorithm to grid vertices only does not miss
a good pose v: a vertex of the grid cell containing v serves as a good substitute for v, and (b)
we have no real control on the value of I(v), which might be much larger than the number
of surfaces that are e-incident to v, but all the surfaces that we count are ‘good’—they are
reasonably close to v. In the computer vision application, and in many related applications,
neither of these issues is significant.

We give three algorithms for this camera-pose approximate-incidences problem. The
first algorithm simply computes the grid cells that each surface intersects, and considers the
number of intersecting surfaces per cell as its approximate e-incidences count. This method
takes time O (E%) for all vertices of our e-size grid. We then describe a faster algorithm
using geometric duality, in Section [3] It uses a coarser grid in the primal space and switches
to a dual 5-dimensional space (a 5-tuple is needed to specify a 2D-3D correspondence and
its surface, now dualized to a point). In the dual space each query (i.e., a vertex of the
grid) becomes a 3-dimensional surface, and each original 2-dimensional surface in the primal
4-dimensional space becomes a point. This algorithm takes O (% +n+ 6%) time, and is
asymptotically faster than the simple algorithm for n > 1/2.

Finally, we give a general method for constructing an approximate incidences data struc-
ture for general k-dimensional algebraic surfaces (that satisfy certain mild conditions) in
R? in Section {4l It extends the technique of Fonseca and Mount [3], designed for the case
of hyperplanes, and takes O(n + poly(1/¢)) time, where the degree of the polynomial in 1/e
depends on the number of parameters needed to specify a surface, the dimension of the sur-
faces, and the dimension of the ambient space. We first present and analyze this technique in
full generality, and then apply it to the surfaces obtained for our camera posing problem. In
this case, the data structure requires O(n + 1/€%) storage and is constructed in roughly the

16/3 (for

same time. This is asymptotically faster than our primal-dual scheme when n > 1/e
n > 1/e” the O(n) term dominates and these two methods are asymptotically the same).
Due to its generality, the latter technique is easily adapted to other surfaces and thus is
of general interest and potential. In contrast, the primal-dual method requires nontrivial
adaptation as it switches from one approximate-incidences problem to another and the dual
space and its distance function depend on the type of the input surfaces.

We implemented our algorithms and compared their performance on real and synthetic
data. Our experimentation shows that, for commonly used values of n and ¢ in practical
scenarios (n € [8K,32K], € € [0.02,0.03]), the primal-dual scheme is considerably faster than

XX:3

XX:4

Approximation Algorithms for Camera Posing

the other algorithms, and should thus be the method of choice. Due to lack of space, the
experimentation details are omitted in this version, with the exception of a few highlights.
They can be found in the appendix.

2 From camera positioning to approximate incidences

Suppose we are given a pre-computed three-dimensional scene and a two-dimensional picture
of it. Our goal is to deduce from this image the location and orientation of the camera in
the scene. In general, the camera, as a rigid body in 3-space, has six degrees of freedom,
three of translation and three of rotation (commonly referred to as the yaw, pitch and roll).
We simplify the problem by making the realistic assumption, that the vertical direction of
the scene is known in the camera coordinate frame (e.g., estimated by en inertial sensor on
smart phones). This allows us to rotate the camera coordinate frame such that its z-axis is
parallel to the world z-axis, thereby fixing the pitch and roll of the camera and leaving only
four degrees of freedom (z,y, z,0), where ¢ = (x,y, z) is the location of the camera center,
say, and @ is its yaw, i.e. horizontal the orientation of the optical axis around the vertical
direction. See Figure[]

object

z
world frame
y
X

camera frame upright camera frame

image\points

6DOF camera pose 4DOF camera pose

Figure 1 With the knowledge of a common vertical direction between the camera and
world frame the general 6DoF camera posing problem reduces to estimating 4 parameters.
This is the setup we consider in our work.

By preprocessing the scene, we record the spatial coordinates w = (wy,wq,ws) of a
discrete (large) set of salient points. We assume that some (ideally a large number) of
the distinguished points are identified in the camera image, resulting in a set of image-to-
scene correspondences. Each correspondence w = {wy, wa, w3, £, n} is parameterized by five
parameters, the spatial position w and the position v = (£,7) in the camera plane of view
of the same salient point. Our goal is to find a camera pose (z,y,z2,6) so that as many
correspondences as possible are (approximately) consistent with it, i.e., the ray from the
camera center ¢ to w goes approximately through (£,7) in the image plane, when the yaw
of the camera is 6.

D. Aiger, H. Kaplan, E. Kokiopoulou, M. Sharir, B. Zeisl

2.1 Camera posing as an c-incidences problem

Each correspondence and its 5-tuple w define a two-dimensional surface oy, in parametric 4-
space, which is the locus of all poses (z, y, z, 0) of the camera at which it sees w at coordinates
(&,m) in its image. For n correspondences, we have a set of n such surfaces. We prove that
each point in the parametric 4-space of camera poses that is close to a surface o, in a
suitable metric defined in that 4-space, represents a camera pose where w is projected to
a point in the camera viewing plane that is close to (£,7), and vice versa (see Section
for the actual expressions for these projections). Therefore, a point in 4-space that is close
to a large number of surfaces represents a camera pose with many approximately consistent
correspondences, which is a strong indication of being close to the correct pose.

Extending the notation used in the earlier work [2], we say that a point ¢ is e-incident to
a surface o if dist(¢q, o) < e. Our algorithms approximate, for each vertex of a grid G* of side
length e, the number of e-incident surfaces and suggest the vertex with the largest count
as the best candidate for the camera pose. This work extends the approximate incidences
methodology in [2] to the (considerably more involved) case at hand.

2.2 The surfaces o,

Let w = (w1, ws, ws3) be a salient point in R3, and assume that the camera is positioned at
(¢,0) = (z,y,2,0). We represent the orientation of the vector w — ¢, within the world frame,
by its spherical coordinates (p,), except that, unlike the standard convention, we take 1
to be the angle with the xy-plane (rather than with the z-axis):

w3 — 2 wo —Y
tanp =
Vo= o (s~ y)? wy

In the two-dimensional frame of the camera the (£, n)-coordinates model the view of w, which
differs from above polar representation of the vector w — ¢ only by the polar orientation 6

of the viewing plane itself. Writing « for tan #, we have

tanvy =

tanp —tanf (wy —y) — K(wy — x)

fztan((pio):1+tans@tan67(w1—$)+"€(w2_y)’ Y
J— P wgiz °
1= tany V(wr —2)2 + (ws — y)?

We note that using tan 6 does not distinguish between 6 and 6 + 7, but we will restrict 6 to
lie in [—7/4,7/4] or in similar narrower ranges, thereby resolving this issue.

We use R* with coordinates (z,v, z, k) as our primal space, where each point models a
possible pose of the camera. Each correspondence w is parameterized by the triple (w, £,),
and defines a two-dimensional algebraic surface oy, of degree at most 4, whose equations (in
x,y, 2z, k) are given in . It is the locus of all camera poses v = (z,y, 2, k) at which it sees
w at image coordinates (£,7). We can rewrite these equations into the following parametric
representation of oy, expressing z and x as functions of z and y:

Y g

For a camera pose v = (z,¥, z, k), and a point w = (wy, w2, w3), we write

w3 — 2
Vi(wr —)2+ (wy —y)?
In this notation we can write the Equations characterizing oy (when regarded as
equations in v) as £ = F(v;w) and n = G(v;w).

) (w27y) 7’%(101 7$>

F(v,w) = (01 —) + (ws —) G(v;w) =

(3)

XX:5

XX:6

Approximation Algorithms for Camera Posing

2.3 Measuring proximity

Given a guessed pose v = (z, v, 2, k) of the camera, we want to measure how well it fits the
scene that the camera sees. For this, given a correspondence w = (w,&,n), we define the
frame distance fd between v and w as the L.-distance between (£,n) and (&,,7,), where,
as in Eq. , & = F(v;w), n, = G(v;w). That is,

fd(v, w) = max {|¢&, — &|, [no —nl}- (4)

Note that (&,,7,) are the coordinates at which the camera would see w if it were placed
at position v, so the frame distance is the L., -distance between these coordinates and the
actual coordinates (£,n) at which the camera sees wj; this serves as a natural measure of
how close v is to the actual pose of the camera.

We are given a viewed scene of n distinguished points (correspondences) w = (w, &, n).
Let S denote the set of n surfaces oy, representing these correspondences. We assume
that the salient features w and the camera are all located within some bounded region, say
[0,1]3. The replacement of § by x = tan makes its range unbounded, so we break the
problem into four subproblems, in each of which 6 is confined to some sector. In the first
subproblem we assume that —7/4 <60 < w/4, so —1 < k < 1. The other three subproblems
involve the ranges [w/4,3n /4], [37/4, 57 /4], and [57/4, 7w /4]. We only consider here the first
subproblem; the treatment of the others is fully analogous. In each such range, replacing 6
by tan # does not incur the ambiguity of identifying 6 with 6 + 7.

Given an error parameter € > 0, we seek an approximate pose v of the camera, at which
many correspondences w are within frame distance at most € from v, as given in .

The following two lemmas relate our frame distance to the Euclidean distance. Their
(rather technical) proofs are given in the appendix.

» Lemma 2.1. Letv = (z,y,2,k), and let o, be the surface associated with a correspondence
w = {wy,we,ws,&,n}. Let v’ be a point on o such that |v —v'| < e (where |- | denotes the
Euclidean norm). If

(i) (w1 —) + K(wz —y)| > a >0, and

(i1) (w1 — x)% + (wa — y)? > a > 0, for some absolute constant a,

then fd(v, w) < Be for some constant 3 that depends on a.

Informally, Condition (i) requires that the absolute value of the £ = tan(¢—6) coordinate
of the position of w in the viewing plane, with the camera positioned at v, is not too large
(i.e., that |(¢ — 0)| is not too close to m/2). We can ensure this property by restricting the
camera image to some suitably bounded &-range.

Similarly, Condition (ii) requires that the zy-projection of the vector w — ¢ is not too
small. It can be violated in two scenarios. Either we look at a data point that is too close
to ¢, or we see it looking too much ‘upwards’ or ‘downwards’. We can ensure that the latter
situation does not arise, by restricting the camera image, as in the preceding paragraph, to
some suitably bounded n-range too. That done, we ensure that the former situation does
not arise by requiring that the physical distance between ¢ and w be at least some multiple
of a.

The next lemma establishes the converse connection.

» Lemma 2.2. Let v = (z,y,2,K) be a camera pose and w = {wy,wa, ws3,§,n} a corre-
spondence, such that fd(v,w) < e. Assume that |(w1 — x) + &(wy — y)| > a > 0, for some
absolute constant a, and consider the point v' = (x,y, 2, k') € 0w where (see Eq.)

(=) —E(wr —)

z/:wgfn\/(wlix)2+(w27y)2 _(w1—$>+€(w2_y).

D. Aiger, H. Kaplan, E. Kokiopoulou, M. Sharir, B. Zeisl

Then |z — 2'| < V/2e and |k — K'| < ce, for some constant ¢, again depending on a.

Informally, the condition |(w; —) 4+ &(w2 — y)| > a > 0 means that the orientation of the
camera, when it is positioned at (z,y) and sees w at coordinate £ of the viewing plane is not
too close to /2. This is a somewhat artificial constraint that is satisfied by our restriction
on the allowed yaws of the camera (the range of k).

A Simple algorithm. Using Lemma and Lemma we can derive a simple naive
solution which does not require any of the sophisticated machinery developed in this work.
We construct a grid G over Q = [0, 1]% x [1, 1], of cells 7, each of dimensions & x & x 21/2¢ x
2ae, where a is the constant of Lemma[2:2] We use this non-square grid G since we want to
find e-approximate incidences in terms of frame distance. For each cell 7 of G we compute
the number of surfaces oy, that intersect 7. This gives an approximate incidences count for
the center of 7. Further details and a precise statement can be found in the appendix.

3 Primal-dual algorithm for geometric proximity

Following the general approach in [2], we use a suitable duality, with some care. We write
€ = 270102, for suitable parameters 7, and €/(2v) < 01, d2 < 1, whose concrete values are
fixed later, and apply the decomposition scheme developed in [2] tailored to the case at
hand. Specifically, we consider the coarser grid G5, in the primal space, of cell dimensions
81 X 81 X /281 X ¢d1, where c¢ is is the constant from Lemma that tiles up the domain
Q = [0, 1]% x [~1, 1] of possible camera positions. For each cell 7 of Gy, , let S, denote the set
of surfaces that cross either 7 or one of the eight cells adjacent to 7 in the (z, /i)—directionsﬁ
The duality is illustrated in Figure

€
— 4 ./

/

L —

X N

\

T

_/‘

Figure 2 A schematic illustration of our duality-based algorithm.

We discretize the set of all possible positions of the camera by the vertices of the finer
grid G, defined as Gy, , with ¢ replacing 1, that tiles up). The number of these candidate
positions is m := O(1/e*). For each vertex ¢ € G, we want to approximate the number of
surfaces that are e-incident to ¢, and output the vertex with the largest count as the best
candidate for the position of the camera. Let V. be the subset of G. contained in 7. We
ensure that the boxes of G5, are pairwise disjoint by making them half open, in the sense
that if (zg, yo, 20, ko) is the vertex of a box that has the smallest coordinates, then the box
is defined by zg < & < 29 + 01, Yo < Yy < Yo + 01, 20 < 2 < 20 + V201, ko < Kk < Ko + 0.
This makes the sets V, pairwise disjoint as well. Put m, = |V;| and n, = |S,|. We have

4 The choice of z, k is arbitrary, but it is natural for the analysis, given in the appendix.

XX:7

XX:8

Approximation Algorithms for Camera Posing

+ =0 ((61/¢)*) for each 7. Since the surfaces oy, are two-dimensional algebraic surfaces
of constant degree, each of them crosses O(1/6%) cells of Gs,, so we have > _n, = O(n/d?).
We now pass to the dual five-dimensional space. Each point in that space represents a
correspondence w = (wy, we, ws,&,n). We use the first three components (wy, wa, ws3) as the
first three coordinates, but modify the £- and n-coordinates in a manner that depends on the
primal cell 7. Let ¢ = (2, Yr, 2r, k) be the midpoint of the primal box 7. For each oy, € S
we map w = (w, &, 1), where w = (w1, ws, ws), to the point w, = (wy, wa, w3, &, M,), where
& =& — F(er;w) and 1 = n — G(cr;w), with F and G as given in (3). We have

» Corollary 3.1. If oy crosses T then ¢, |n:| < vd1, for some absolute constant ~y, provided
that the following two properties hold, for some absolute constant a > 0 (the constant
depends on a).

(i) l(wy — 27) + (w2 — yr)| > a, and

(ii) (w1 — 2,)? + (wa — y,)? > a, where (x.,y,) are the (x,y)-coordinates of the center of T.

Proof. If oy € S; then it contains a point v’ such that |[v/ — ¢;| < /41, for a suitable
absolute constant ¢’ (that depends on ¢). We now apply Lemma recalling (4)). <

We take the v provided by Corollary as the « in the definition of 4; and d3. We map
each point v € V; to the dual surface o = 0., = {w; | v € ow}. Using (B), we have

oy = 1w, F(v;w) — F(er;w), G(v;w) — Ger;w)) | w = (wy, w2, we) € [0, 1%}

By Corollary the points w., for the surfaces oy that cross 7, lie in the region R, =
[0,1]3 x [=7d1,701]%. We partition R, into a grid Gs, of 1/45 small congruent boxes, each
of dimensions 62 X 52 X 52 X (2’75152) X (2’}/5152) = 62 X 52 X 52 X e XE.

Exactly as in the primal setup, we make each of these boxes half-open, thereby making
the sets of dual vertices in the smaller boxes pairwise disjoint. We assign to each of these dual
cells 7* the set S*. of dual points that lie in 7*, and the set V% of the dual surfaces that cross
either 7* or one of the eight cells adjacent to 7* in the (&, n,)-directions. Put n.» = |Sk.|
and m,- = |V%|. Since the dual cells are pairwise disjoint, we have) . n,- = n,. Since
the dual surfaces are three-dimensional algebraic surfaces of constant degree, each of them
crosses O(1/63) grid cells, so > . mq+ = O (m./63).

We compute, for each dual surface o, the sum)" _. |SZ.|, over the dual cells 7* that are
either crossed by o or that one of their adjacent cells in the (&., n,)-directions is crossed by
oy. We output the vertex v of G. with the largest resulting count, over all primal cells 7.

The following theorem establishes the correctness of our technique. Its proof is given in
Appendix B.

» Theorem 3.2. Suppose that for every cell T € Gs, and for every point v = (x,y,2,k) € V;
and every w = (w1, wa,ws),&,n) such that oy intersects either T or one of its adjacent cells
in the (&, n;)-directions, we have that, for some absolute constant a > 0,

(i) (w1 —) + 5wz — 9)| > o,

(ii) (w1 — x)% + (we — y)? > a, and

(iii) [(w1 — x) + &(w2 — y)| > a.

Then (a) For each v € V, every pair (v,w) at frame distance < € is counted (as an e-
incidence of v) by the algorithm. (b) For each v € V, every pair (v,w) that we count lies at
frame distance < ae, for some constant a > 0 depending on a.

D. Aiger, H. Kaplan, E. Kokiopoulou, M. Sharir, B. Zeisl

3.1 Running time analysis

The cost of the algorithm is clearly proportional to > > . (m;- 4+ n,«), over all primal
cells 7 and the dual cells 7* associated with each cell 7. We have

S>> (e +n) =0 (Z (m, /03 + nf)> =0 (m/d3 +n/8?).

T

1/5 1/5
Optimizing the choice of §; and 65, we choose 1 = (E%”) and 6y = ‘SZT’” . These

choices make sense as long as each of 41, J; lies between £/(27) and 1. That is, & <
1

’

/5 2 \1/5 ,
< 1 and % < (%) <1,or de?m < n < <4, where ¢’ and ¢” are absolute

637L
m

constants (that depend on 7).

If n < ¢’e?m, we use only the primal setup, taking §; = ¢ (for the primal subdivision).
/!

The cost is then O (n/e? +m) = O (m). Similarly, if n > CE—Sm, we use only the dual setup,
taking §; = 1 and 65 = £/(27), and the cost is thus O (n + m/e*) = O(n). Adding everything

together, to cover all three subranges, the running time is then O (% +n+m) .
Substituting m = O (1/54), we get a running time of O (:117//05 +n+ E%) . The first term

dominates when n = Q(Z) and n = O(Z) . In conclusion, we have the following result.

» Theorem 3.3. Given n data points that are seen (and identified) in a two-dimensional im-

age taken by a vertically positioned camera, and an error parameter € > 0, where the viewed
3/5
points satisfy the assumptions made in Theorem|3.4, we can compute, in O <14/5 +n+ 4)
€ €
time, a vertex v of G that mazimizes the approrimate count of e-incident correspondences,
where “approrimate” means that every correspondence w whose surface o is at frame dis-
tance at most € from v is counted and every correspondence that we count lies at frame

distance at most ae from v, for some fixed constant c.

Restricting ourselves only to grid vertices does not really miss any solution. We only
lose a bit in the quality of approximation, replacing € by a slightly large constant multiple
thereof, when we move from the best solution to a vertex of its grid cell.

4 Geometric proximity via canonical surfaces

In this section we present a general technique to preprocess a set of algebraic surfaces into a
data structure that can answer approximate incidences queries. In this technique we round
the n original surfaces into a set of canonical surfaces, whose size depends only on &, such
that each original surface has a canonical surface that is “close” to it. Then we build an
octree-based data structure for approximate incidences queries with respect to the canonical
surfaces. However, to reduce the number of intersections between the cells of the octree and
the surfaces, we further reduce the number of surfaces as we go from one level of the octree
to the next, by rounding them in a coarser manner into a smaller set of surfaces.

This technique has been introduced by Fonseca and Mount [3] for the case of hyperplanes.
We describe as a warmup step, in Section [C] of the appendix, our interpretation of their
technique applied to hyperplanes. We then extend here the technique to general surfaces,
and apply it to the specific instance of 2-surfaces in 4-space that arise in the camera pose
problem.

XX:9

XX:10

Approximation Algorithms for Camera Posing

We have a set S of n k-dimensional surfaces in R? that cross the unit cube [0,1]¢, and
a given error parameter €. We assume that each surface ¢ € S is given in parametric form,
where the first k£ coordinates are the parameters, so its equations are

xj:Fj(G)(:El,...,ka forj=k+1,...,d.

Moreover, we assume that each ¢ € S is defined in terms of ¢ essential parameters t =
(t1,...,ts), and d — k additional free additive parameters £ = (fi41,. .., fa), one free param-
eter for each dependent coordinate. Concretely, we assume that the equations defining the
surface o € S, parameterized by t and f (we then denote o as o ¢), are

LL’j:Fj(X;t)—l-fj :Fj(l‘l,...,xk;fl,...7tg)-‘,—fj, forj=k+1,...,d.

For each equation of the surface that does not have a free parameter in the original
expression, we introduce an artificial free parameter, and initialize its value to 0. (We need
this separation into essential and free parameters for technical reasons that will become clear
later.) We assume that t (resp., f) varies over [0, 1]¢ (resp., [0, 1]¢7F).

Remark. The distinction between free and essential parameters seems to be artificial, but
yet free parameters do arise in certain basic cases, such as the case of hyperplanes discussed
in Section [C] of the appendix. In the case of our 2-surfaces in 4-space, the parameter ws
is free, and we introduce a second artificial free parameter into the equation for x. The
number of essential parameters is £ = 4 (they are wq,ws,£, and 7).

We assume that the functions F} are all continuous and differentiable, in all of their
dependent variables x, t and f (this is a trivial assumption for f), and that they satisfy the
following two conditions.

(i) Bounded gradients. |ViF;(x;t)| <c1, |V¢Fj(x;t)] <eq, foreachj=%k+1,...,d,
for any x € [0,1]* and any t € [0,1]¢, where ¢; is some absolute constant. Here Vy (resp.,
Vi) means the gradient with respect to only the variables x (resp., t).

(ii) Lipschitz gradients. |V Fj(x;t) — Vi Fj(x;t')] < co|t —t/|, foreach j =k +1,...,4d,
for any x € [0,1]F and any t, t’ € [0, 1]*, where c; is some absolute constant. This assumption
is implied by the assumption that all the eigenvalues of the mixed part of the Hessian matrix
ViV« Fj(x;t) have absolute value bounded by cs.

4.1 Canonizing the input surfaces

We first replace each surface o ¢ € S by a canonical “nearby” surface os g. Let &’ = m
where ¢y is the constant from Condition (ii). We get s from t (resp., g from f) by rounding
each coordinate in the essential parametric domain L (resp., in the parametric domain)
to a multiple of £’/(¢ + 1). Note that each of the artificial free parameters (those that did
not exist in the original equations) has the initial value 0 for all surfaces, and remains 0 in
the rounded surfaces. We get O ((1 / s’)”) canonical rounded surfaces, where ¢/ > ¢ is the
number of original parameters, that is, the number of essential parameters plus the number
of non-artificial free parameters; in the worst case we have ¢/ = ¢ +d — k.
For a surface o¢ ¢ and its rounded version o g we have, for each j,

[(Fj(x;t) + f5) — (Fj(x;8) 4+ g5)| < [VeFj(x;t")| - [t — s + | f; — g5
<eclt —s|+|f; — g5 < (1 +1)e,

where t’ is some intermediate value, which is irrelevant due to Condition (i).

D. Aiger, H. Kaplan, E. Kokiopoulou, M. Sharir, B. Zeisl

We will use the £o-norm of the difference vector ((Fj;(x;t) + f;) — (Fj(x;s) + gj));l:,wrl

as the measure of proximity between the surfaces oy and osg at x, and denote it as
dist(o¢ ¢, 0s,g;%). The maximum dist(ogr, 0sg) = maxyc(o1)x dist(ot. ¢, 0s g5 X) measures
the global proximity of the two surfaces. (Note that it is an upper bound on the Hausdorff
distance between the two surfaces.) We thus have dist(o¢.¢,05g) < (c1 + 1)’ when oy g is
the canonical surface approximating oy .

We define the weight of each canonical surface to be the number of original surfaces that
got rounded to it, and we refer to the set of all canonical surfaces by S¢.

4.2 Approximately counting c-incidences

We describe an algorithm for approximating the e-incidences counts of the surfaces in S and
the vertices of a grid G of side length 4e.

We construct an octree decomposition of 75 := [0,1]¢, all the way to subcubes of side
length 4e such that each vertex of G is the center of a leaf-cube. We propagate the surfaces
of S down this octree, further rounding each of them within each subcube that it crosses.

The root of the octree corresponds to 79, and we set S,, = S°. At level j > 1 of the
recursion, we have subcubes 7 of 7y of side length § = 1/27. For each such 7, we set S, to
be the subset of the surfaces in Sy, (that have been produced at the parent cube p(7) of
7) that intersect 7. We now show how to further round the surfaces of S;, so as to get a
coarser set S, of surfaces that we associate with 7, and that we process recursively within 7.

At any node 7 at level j of our rounding process, each surface o of S; is of the form
x;=H;(x;t)+ f;, for j=k+1,...,d where x = (x1,...,2%), and t = (¢1,...,).

(a) For each j = k+1,...,d the function H; is a translation of F;. That is H;(x;t) =
F;(x;t) + ¢ for some constant ¢. Thus the gradients of H; also satisfy Conditions (i) and
(ii).

(b) t is some vector of ¢ essential parameters, and each coordinate of t is an integer multiple
of ﬁ, where § = 1/27.

(¢) £ = (frxs1,---,fa) is a vector of free parameters, each is a multiple of £'/(¢ + 1).

Note that the surfaces in S;, = 5S¢, namely the set of initial canonical surfaces constructed
in Section are of this form (for j =0 and H; = Fj). We get S; from 5. C Sp(ry by the
following steps. The first step just changes the presentation of 7 and S,, and the following
steps do the actual rounding to obtain S..

1. Let (&1,...,&k,&k+1,---,E4) be the point in 7 of smallest coordinates and set & =

(€1,...,&). We rewrite the equations of each surface of S as follows: r; = Gji(x;t)+ f],
for j =k+1,...,d, where G;(x;t) = H;(x;t) — H;(§;t) + &5, and f] = f;+ H;(§5t) =&,
for j =k +1,...,d. Note that in this reformulation we have not changed the essential

parameters, but we did change the free parameters from f; to fJ’-, where fJ' depends on
fi, t, & and §;. Note also that G;(&;t) =¢; for j=k+1,...,d.

2. We replace the essential parameters t of a surface oy ¢ by s, which we obtain by rounding
each coordinate of t to the nearest integer multiple of (l_iill)é. So the rounded surface
has the equations z; = G;(x;s) + f}, for j = k+1,...,d. Note that we also have that
Gj(&s)=¢j,for j=k+1,...,d

3. For each surface, we round each free parameter j’-, j=k+1,...,d, to an integral multiple
of £~ and denote the rounded vector by g. Our final equations for each rounded surface

7+1°
that we put in S, are z; = G;(x;8) +g; for j=k+1,...,d.

XX:11

XX:12 Approximation Algorithms for Camera Posing

By construction, when t; and f] and t2 and f} get rounded to the same vectors s and g
then the corresponding two surfaces in S; get rounded to the same surface in S;. The weight
of each surface in S, is the sum of the weights of the surfaces in S,() that got rounded to
it, which, by induction, is the number of original surfaces that are recursively rounded to it.
In the next step of the recursion the H;’s of the parametrization of the surfaces in S; are
the functions G; defined above.

The total weight of the surface in S, for a leaf cell 7 is the approximate e-incidences
count that we associate with the center of 7.

4.3 Error analysis

We now bound the error incurred by our discretization. We start with the following lemma,
whose proof is given in Appendix .

» Lemma 4.1. Let 7 be a cell of the octtree and let v; = Gj(x;t) + f}, forj=k+1,....d
be a surface obtained in Step 1 of the rounding process described above. For any x =
(w1,...,2%) €[0,8)%, for any t,s € [0,1)¢, and for each j =k +1,...,d, we have

|Gj(x;8) — Gj(x5t)| < calx — |- [t — 3], (5)

where co is the constant of Condition (%), and € = (&1,...,&) consists of the first k coor-
dinates of the point in T of smallest coordinates.

» Lemma 4.2. For any x = (x1,...,2) € [0,0]%, for any t, s € [0,1]%, and for each
j=k+1,...,d, we have
€
|Gj(x;8) + g5 — (G(x;8) + f)] §025'§m7 (6)

where ¢y is the constant of Condition (ii).

Proof. Using the triangle inequality and Lemma we get that

8/

|GGess) 4 g5 = (G50 8) + fH] < 1G5 (x8) = Gy t)] + s = fi] < ealxe = &6 =8| + 5

Since |x — €| <4, [t —s| < ﬁ, and |g; — fi] < ei—/l, the lemma follows. <

We now bound the number of surfaces in S,. Since s € [0,1]° and each of its coordinates
is a multiple of 755, we have at most (g)e different values for s. To bound the number of
possible values of g, we prove the following lemma (see the appendix for the proof).

» Lemma 4.3. Let x; = Gj(x;t) + f}, for j = k+1,...,d, be a surface og g in S.. For
each j =k+1,...,d, we have fJ" < (e1 + 1)d, where ¢ is the constant of Condition (3).

Lemma implies that each g;, j = k+1,...,d, has only O(g) possible values, for a
total of at most O((2)?~*) possible values for g. Combining the number of possible values
for s and g, we get that the number of newly discretized surfaces in S is

o((E)-(2)7) ()

It follows that each level of the recursive octree decomposition generates

o((3)(2)) o ()

D. Aiger, H. Kaplan, E. Kokiopoulou, M. Sharir, B. Zeisl

re-discretized surfaces, where the first factor in the left-hand side expression is the number
of cubes generated at this recursive level, and the second factor is the one in .
Summing over the recursive levels j =0, ..., log %, where the cube size § is 1/27 at level

1
7, we get a total size of O ((s’)‘ﬁ Z;,O:goa 2:(271%)) We get different estimates for the sum

according to the sign of ¢ — k. If £ > k the sum is O(1). If £ = k the sum is O (log %) If
¢ < k the sum is O (2/=ex(k=0) = O (W) . Accordingly, the overall size of the structure,

taking also into account the cost of the first phase, is

0 ﬁ log é) for{ =k (8)
0 L) for £ < k.

(e
The following theorem summarizes the result of this section. Its proof follows in a

straightforward way from the preceding discussion from Lemma analogously to the
proof of Lemma, in the appendix.

» Theorem 4.4. Let S be a set of n surfaces in R? that cross the unit cube [0,1]¢, given
parametrically as x; = Fj(x;t) + f; for j = k+1,...,d, where the functions F; satisfy
conditions (i) and (i), and t = (t1,...,ts). Let G be the (4¢)-grid within [0,1]¢. The
algorithm described above reports for each vertex v of G an approzrimate e-incidences count
that includes all surfaces at distance at most € from v and may include some surfaces at
distance at most (2\/&—1— e from v. The running time of this algorithm is proportional to
the total number of rounded surfaces that it generates, which is given by Equation (@, plus
an additive O(n) term for the initial canonization of the surfaces.

We can modify our data structure so that it can answer approximate or exact e-incidence
queries as we describe in Section [C] of the appendix for the case of hyperplanes.

5 Experimental Results

The goal of the experimental results is to show the practical relation between the naive,
the primal-dual and the general canonical surfaces algorithms. It is not our intention to
obtain the fastest possible code, but to obtain a platform for fair comparison between the
techniques. We have performed a preliminary experimental comparison using synthetic as
well as real-world data. We focus on values of n,e that are practical in real applications.
Typically, we have 100 K-200K 3D points bounded by a rectangle of size 100-150 meters and
the uncertainty is around 3m (so the relative error is ¢ = 0.03). The three methods that
we evaluate are:

The naive method, with asymptotic run-time O(Z).

The primal-dual method (cf. Section , with asymptotic run-time O(n + % + E%)

The canonical surfaces method (cf. Section , with asymptotic run-time O(n + E%)
(ignoring poly logarithmic factors).

In all experiments we normalize the data, so that the camera position (z,y,z) and the
3D points lie in the unit box [0,1]3, and the forth parameter (k) representing the camera
orientation lies in [—1,1].

XX:13

XX:14

Approximation Algorithms for Camera Posing

5.1 Random synthetic data

Starting from a fixed known camera pose, we generate a set of n uniformly sampled 3D
points which are projected onto the camera image plane using Eq. . To model outliers in
the association process we use random projections for 90% of the 3D points, resulting in an
inlier ratio of 10%. We add Gaussian noise of zero mean and o = 0.02 to the coordinates of
each 3D point. This provides us with 2D-3D correspondences that are used for estimating
the camera pose. We apply the three algorithms above and measure the run-times, where
each algorithm is tested for its ability to reach approximately the (known) solution. We
remark that the actual implementation may be slowed down by the (constant) cost of some
of its primitive operations, but it can also gain efficiency from certain practical heuristic
improvements. For example, in contrast to the worst case analysis, we could stop the
recursion in the algorithm of Section [4] at any step of the octree expansion, whenever the
maximum incidence count obtained so far is larger than the number of surfaces crossing a
cell of the octree. The same applies for the primal-dual technique in the dual stage. On
the other hand, finding whether or not a surface crosses a box in pose space, takes at least
the time to test for intersections of the surface with 32 edges of the box, and this constant
affects greatly the run-time. The O(1/£%) bound in the canonical surfaces algorithm is huge
and has no effect in practice for this problem. For this reason, the overall number of surfaces
that we have to consider in the recursion can be very large. The canonical surfaces algorithm
in our setting does not change much with € because we are far from the second term effect.
We show in Figure [3} a comparison of the three algorithms.

, - naive -~ naive —- naive
£=0.020 — primal-dual sl £=0.025 — primal-dual £=0.030 — primal-dual
canonical surfaces canonical surfaces canonical surfaces

Runtime (secs)
Runtime (secs)
Runtime (secs)

[

10000 15000 20000 25000 30000 10000 15000 20000 25000 30000 10000 15000 20000 25000 30000
n n n

Figure 3 The run-time of the three methods for various values of €.

The computed camera poses corresponding to Figure [3] obtained by the three algorithm
for various problem sizes, are displayed in Table[I} compared to the known pose. The goal
here is not to obtain the most accurate algorithm but to show that they are comparable in
accuracy in this setting so the runtime comparison is fair.

H n H x(N/PD/C) y(N/PD/C) z(N/PD/C) k(N/PD/C) H

8000 0.31/0.31/0.28 0.22/0.2/0.18 0.1/0.12/0.09 0.55/0.66,0.59
12000 0.31/0.33/0.28 0.22/0.17/0.19 0.1/0.1/0.1 0.55/0.65/0.6
24000 0.31/0.3/0.28 0.22/0.2/0.18 0.1/0.1/0.09 0.55/0.61/0.59
| 32000 [0.31/0.27/0.28 0.22/0.2/0.19 0.1/0.08/0.09 0.55/0.57/0.59 ||
| |

‘ True pose H 0.3 0.2 0.1 0.6 ‘

Table 1 Poses computed by the three algorithms for e = 0.03 and
various problem sizes (N:naive, PD:primal-dual, C:canonical surfaces).

D. Aiger, H. Kaplan, E. Kokiopoulou, M. Sharir, B. Zeisl

5.2 Real-world data

We evaluated the performance of the algorithms also on real-world datasets for which the
true camera pose is known. The input is a set of correspondences, each represented by a
5-tuple (w1, ws,ws,&,n), where (wy,ws,ws) are the 3D coordinates of a salient feature in
the scene and (&,7) is its corresponding projection in the camera frame. We computed the
camera pose from these matches using both primal-dual and naive algorithms and compared
the poses to the true one. An example of the data we have used is shown in Figure

(a) 140000 3D landmarks in
correspondence to image

features in

(b) Query image. (c) Corresponding (§,7)
points, each corresponds to
many landmarks.

(e) The pose found by the
algorithm (within 3m and 10
degrees from the known true
pose) with rays to matched
landmarks.

(d) Inliers ((§,n) with e-close
projection of landmarks) found
by the algorithm (green) along

with the rays from matched
landmarks

Figure 4 Real-world data input and pose

We evaluated the runtime for different problem sizes and checked the correctness of the
camera pose approximation when the size increased. To get different input sizes, we added
random correspondences to a base set of actual correspondences. The number of random
correspondences determines the input size but also the fraction of good correspondences
(percentage of inliers) which goes down with increased input size (the number of inliers in
real world cases is typically 10%). We show the same plots as before in Figure [5{and Table

XX:15

- naive
£—0.02 — primal-dual
14 - canonical surfaces

Runtime (secs)

R
0 3000 6000 8000 0000 12000
n

Figure 5 Runtime for real-world data with increased n and decreased number of inliers.

L [=x v =« -]
2000 0.26 0.62 0.06 0.72
3626 0.36 0.56 0.12 0.52
5626 0.38 0.60 0.12 0.62
7626 0.40 0.64 0.08 0.57
11626 0.43 0.68 0.13 0.63

[True pose] 037 059 006 -]

Table 2 Poses computed by the primal-dual algorithms for
real-world data (we do not know the actual orientation here).

6 Future work

We note that similar approaches can be applied for computing the relative pose [I0] between
two cameras (that look at the same scene), except that the pose estimation then uses 2D-
2D matches between the two images (rather than 2D-3D image-to-model correspondences).
Determining the relative motion between images is a prerequisite for stereo depth estima-
tion [12], in multi-view geometry [7], and for the initialization of the view graph [I5] [16] in
SfM, and is therefore an equally important task in computer vision. In addition, in future
work we want to also consider the case of a generalized or distributed camera setup and
likewise transform the camera posing problem to an e-incidence problem.

—— References

1 S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski. Building rome in a day. In
Commun. ACM 54(10), pages 105-112. ACM, 2011.

2 D. Aiger, H. Kaplan, and M. Sharir. Output sensitive algorithms for approximate inci-
dences and their applications. In Computational Geometry, to appear. Also in European
Symposium on Algorithms, volume 5, pages 1-13, 2017.

3 G. D. Da Fonseca and D. M. Mount. Approximate range searching: The absolute model.
Computational Geometry, 43(4):434-444, 2010.

4 M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting
with applications to image analysis and automated cartography. Communications of the
ACM, 24(6):381-395, 1981.

5 C. Héne, L. Heng, G. H. Lee, F. Fraundorfer, P. Furgale, T. Sattler, and M. Pollefeys. 3d
visual perception for self-driving cars using a multi-camera system: Calibration, mapping,
localization, and obstacle detection. Image and Vision Computing, 68:14-27, 2017.

6 B. M. Haralick, C.-N. Lee, K. Ottenberg, and M. Nolle. Review and analysis of solutions
of the three point perspective pose estimation problem. International Journal of Computer
Vision, 13(3):331-356, 1994.

7 R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
university press, 2003.

8 G. Klein and D. Murray. Parallel tracking and mapping for small ar workspaces. In ISMAR,
pages 83-86. IEEE, 2009.

9 S. Middelberg, T. Sattler, O. Untzelmann, and L. Kobbelt. Scalable 6-dof localization on
mobile devices. In FEuropean Conference on Computer Vision, pages 268-283. Springer,
2014.

10 D. Nistér. An efficient solution to the five-point relative pose problem. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 26(6):756-770, 2004.

11 M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, and R. Koch.
Visual modeling with a hand-held camera. International Journal of Computer Vision,
59(3):207-232, 2004.

12 D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo cor-
respondence algorithms. International Journal of Computer Vision, 47(1-3):7-42, 2002.

13 J. L. Schonberger and J.-M. Frahm. Structure-from-motion revisited. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 4104-4113, 2016.

14 C. Sweeney, J. Flynn, B. Nuernberger, M. Turk, and T. Héllerer. Efficient computation of
absolute pose for gravity-aware augmented reality. In ISMAR, pages 19-24. IEEE, 2015.

15 C. Sweeney, T. Sattler, T. Hollerer, M. Turk, and M. Pollefeys. Optimizing the viewing
graph for structure-from-motion. In Proceedings of the IEEE International Conference on
Computer Vision, pages 801-809, 2015.

16 C. Zach, M. Klopschitz, and M. Pollefeys. Disambiguating visual relations using loop.
constraints. In Computer Vision and Pattern Recognition, pages 1426-1433. IEEE, 2010.

17 B. Zeisl, T. Sattler, and M. Pollefeys. Camera pose voting for large-scale image-based
localization. In Proceedings of the IEEE International Conference on Computer Vision,
pages 2704-2712, 2015.

A Omitted proofs

In all experiments we normalize the data, so that the camera position (z,y,z) and the
3D points lie in the unit box [0, 1]?, and the forth parameter (k) representing the camera
orientation lies in [—1,1]. Let &, := F(v;w), We apply the three algorithms above and
measure the run-times, where each algorithm is tested for its ability to reach approximately
the (known) solution. We remark that the actual implementation may be slowed down
by the (constant) cost of some of its primitive operations, but it can also gain efficiency
from certain practical heuristic improvements. For example, in contrast to the worst case
analysis, we could stop the recursion in the algorithm of Section [at any step of the
octree expansion, whenever the maximum incidence count obtained so far is larger than
the number of surfaces crossing a cell of the octree. The same applies for the primal-dual
technique in the dual stage. On the other hand, finding whether or not a surface crosses
a box in pose space, takes at least the time to test for intersections of the surface with 32
edges of the box, and this constant affects greatly the run-time. The O(1/¢°) bound in the
canonical surfaces algorithm is huge and has no effect in practice for this problem. For this
reason, the overall number of surfaces that we have to consider in the recursion can be very
large. The canonical surfaces algorithm in our setting does not change much with e because
we are far from the second term effect. We show in Figure [3] a comparison of the three

algorithms. Since v’ € oy we have that £ = F(v';w), n = G(v';w). We want to show that
fd(v, w) = max {|& —&|, |n» — 0|} < Be for some constant S that depends on a.
Regarding F' and G as functions of v, we compute their gradients as follows.

= Bl —2) +a(ws —y)l+[(we —y) — 6w —2)] (A + k%) (w2 — y)
(w1 — 2) + r(wz —) (w1 —) + K(wz — y))°
p oo w2 e~y +w[(we —y) —klwr —2)] _ (A+ K?) (w1 — x)
! (w1 — @) + K(wz —y))* (w1 — z) + K(ws — y))?
F,=0
- —(w1 —) [(w1 — 2) + K(wg — y)] — (w2 —y) [(wa — y) — k(w1 —)]
(w1 — 2) + r(wz — y))?
(-2’ + (wr—y)®
(wy — @) + K(wz —y))*’
and
(w3 — z) (w1 —)
Gz
(w1 —)2 + (ws —)?)*/*
(w3 — z)(wa — y)
Gy = 5
(wy —)2 + (w2 —)?)”
G.=— ! 1/2
((wy =)%+ (wa — y)2)"
G, =0.

Conditions (i) and (ii) in the lemma, plus the facts that we restrict both (wq,wq,ws) and
(z,y, 2) to lie in the bounded domain [0,1]3, and that |«| is also at most 1, are then easily
seen to imply that the v-gradients |VF|, |VG| are at most 3, for some constant 5 that
depends on a, and so &, —&| < Blv—v'| < fe and |n, —n| < Blv —v'| < P, and the lemma
follows.

Proof of Lemma Let

_ (w2 —y) — k(w1 —)
S TS R) v
w3 — 2

P - 02+ (ws —y)2

Since fd(v, w) < e we have that |§, — &|, |n, —n| <e.
Since the Equations are the inverse system of those of , we can rewrite @D as

z=ws —nuy/ (w1 —)% + (w2 — y)2
_ (w2 —y) —&(wr —)

(w1 — x) 4+ Ep(wa — y)

Hence

z2—2' = (n—no)V (w1 —)2+ (wy — y)?
oo W2y —&(wi—z) (wp —y) —E(wr —2)
(wy —) +&(we —y) (w1 —a)+&(wa —y)

It follows right away that |z — 2’| < v/2¢ (recall that all the points lie in the unit cube). For
the other difference, writing

(w2 —y) — t(w; —)
(w1 —) +t(wz — y)

H(t) =

(with the other parameters being fixed), we get

k—K'| < max [H'(t)||& — &
o 1< s (O]

As is easily verified, we have
(w1 — 2)* + (ws — y)?
[(w1 — @) + t(ws —)]

Since |(w1 — z) + (w2 — y)| > a > 0, and |§, — | < &, the denominator of H'(t) is bounded
away from zero (assuming that e is sufficiently small), and |H'(¢)| < ¢ for t € [£,,], where ¢
is some fixed positive constant. This implies that |k — £’| < ce, and the lemma follows. <

H'(t) = —

Proof of Theorem [3.2] Part (a): Let (v,w) be a pair at frame distance < e. By Lemma
[2:2) and the definition of Gy, , there exists a cell 7 € G, such that v € 7 and w € 5.
By definition, the surface o}, contains the point

(w17w27w3a§v - F(C'l';w)»nv - G(Cr;w))a

where £, and 7, are given by @ Since fd(v, w) < ¢, the points (w1, wa, ws, & —F(cr;w), ny—
G(er;w)) and (wq, we, ws, &,y) lie at Loo-distance at most e, therefore o) € V* where
7" € Gy, is the cell that contains w.

Together, these two properties imply that (v, w) is counted by the algorithm. Moreover,
since we kept both primal and dual boxes pairwise disjoint, each such pair is counted exactly
once.

Part (b): Let (v, w) be an e-incident pair that we encounter, where v and w are encoded

as above. That is, ow crosses the primal cell 7 of G5, that contains v, or a neighboring cell
in the (z, x)-directions, and o7 crosses the dual cell 7* that contains w, or a neighboring
cell in the (&;, 7,)-directions. This means that 7 (or a neighboring cell) contains a point ¢ =
(@',y',2',K') € ow, and 7* (or a neighboring cell) contains a point w/. = (w, wh, wh, &, 1) €
0,.r- The former containment means that

5:(wg—y')—/{’(wl—x') - ws — 2’
(w1 —a') + K (w2 —y')’ V0w — 22 (wy — y)?
and that
|z — 2|, ly —y'| <1, |z — 2/| <2261, and |k — K| < 2¢;.

!
T

To interpret the latter containment, we write, using the definition of £/, 7., and the fact

that w!. € o

V5T

! _ _ ! _ / _ _ / _
& = Flusw') - Flepiu) = (W =) mh —0) (W — pr) — el — 2r)
(w] —2) + k(wy —y) (W] —) + ke (wy — yr)
’ ’ ’ wy — 2 wh — 2y
T]T:G(U;w)_G(CT;w): - _ - ,
U ol 2 wh—y)? (w22 (wh — yr)?

where w' = (w], wh, w}), and where ¢; = (2, yr, 27, K7) is the centerpoint of 7, and
max {|w; — wi|, |wa — wh], |ws —wh|} = 285
max {|¢- — §;|’ - — 77-/1—|} = 2,

where

& :g_F(CT;w) and Nr ZU—G(CT;U’)-
By definition (of F', G, and the frame distance), we have
fd(v, w) = max {|{ — F(v;w)], |n— G(v;w)|},
which we can bound by writing
€ = F(v;w)| < [€ = F(v;w') + Fersw') = F(eryw)
+ |F(v;w) — F(v;w') + Fler;w') — F(er;w)
=& = & + |[F(ojw) = F(o;w') + F(ersw') — Flersw)]
In = G(v;w)| < In— G(v;w') + Glersw') = Gler;w)
+1G(v;w) — Gv;w') + Glersw') — Glers w))
= n: — ;| +|G(v;w) = G(v;w') + Gler;w') = Glers w)] .-

We are given that

|§'r _g'lr|7 |77‘F _"7'lr| < 257

so it remains to bound the other term in each of the two right-hand sides. Consider for
example the expression

F(v;w) — F(v;w') + F(erw') — Fer; w). (10)

Write ¢, = v+t and w’ = w + s, for suitable vectors ¢, s € R3. We expand the expression
up to second order, by writing

F(v;w') = Flv;w+ s) = F(v,w) + s -V, F(v;w) + %STHM(’U; w)s
F(er,w)=F(v+tw) = Flu,w) +t-V,F(v;w) + %tTHv(v; w)t
Flerw')=Fv+t;w+s) = F(v,w) + s -V F(v;w) +t -V, F(v;w)
+ %STHUJ("U; w)s + %tTHv(v; w)t + 7 Hy (v;0)s,

where V,, (resp., V,) denotes the gradient with respect to the variables w (resp., v), and
where H,, (resp., Hy, Hy.,) denotes the Hessian submatrix of second derivatives in which
both derivatives are with respect to w (resp., both are with respect to v, one derivative is
with respect to v and the other is with respect to w).

Substituting in , we get that, up to second order,

|F(v;w) — F(v;w') + F(erw') — Fer;w)
= |t7 Hupuo (v;0)3] < | Hupuo (030) [l t]]51,

where ||Hy.(v;w)]|oo is the maximum of the absolute values of all the “mixed” second
derivatives. (Note that the mixed part of the Hessian of the Hessian arises also in the

analysis of the algorithm in Section) Arguing as in the preceding analysis and using the
assumptions in the theorem, one can show that all these derivatives are bounded by some
absolute constants, concluding that

|F(v;w) — F(v;w') + F(er;w') — F(er;w)| = O(6162) = O(e),
which implies that

€ = F(v;w)| = O(e).
Applying an analogous analysis to G, we also have

In = G(v;w)| = O(e).

Together, these bounds complete the proof of part (b) of the theorem. <

Proof of Lemma [} Fix j, consider the function
Kj(x) = Gj(x;8) — Gj(x;t),

and recall our assumption that G;(&;t) = G;(&;s) = £;. Then we can also write the left-
hand side of (5)) as K;(x) — K;(§). By the intermediate value theorem, it can be written
as

Kj(x) — K;(§) = (VE;(x'),x = §),
for some intermediate value x’ (that depends on s and t). By definition, we have,
VEK;(x') = VxG;(x';s) — VxG,(x'; 1), (11)

whose norm is bounded by ¢a|s — t| by Condition (ii). Using the Cauchy-Schwarz inequality,
we can thus conclude that

|Gj(x8) = Gj(x;t)] = |K(x) — K;(8)]
< [x = ¢ [VxG;(X'5s) = Vi G (x5 1))
< colx —&f[t — |,

as asserted. <

Proof of Lemma [£3} Each surface oy ¢ in S, meets 7. That is, there exists a point
(z1,...,24) in 7 = [0,6]? that lies on ¢ ¢, so we have & < G,(x;t) + fi <& +6 for
each j = k+1,...,d, where x = (x1,...,2;). Hence, for some intermediate value x’, we
have

[Fi| =1Gi(&t) = [} = Gi(x:6) + Gj(x5t) — G(&; b))
<& — (fj + Gixt)| + G (x:t) — Gi(&: 1)
<0+ |VxGi(x58)] - [x = ¢
S 6+015 = (Cl + 1)(;,
where the first inequality follows by the triangle inequality, the second follows since

& — (fi+ G (x;t))| < 6, the third by the intermediate value theorem and the Cauchy-
Schwarz inequality, and the fourth by Condition (i). <

B A simple algorithm

We present a simple naive solution which does not require any of the sophisticated machinery
developed in this work. It actually turns out to be the most efficient solution when 7 is small.

We construct a grid G over @ = [0,1]® x [—1,1], of cells 7, each of dimensions & x & x
21/2¢ x 2ce, where ¢ is the constant of Lemma (We use this non-square grid G since we
want to find e-approximate incidences in terms of frame distance.) For each cell T of G we
compute the number of surfaces oy that intersect 7.

Consider now a shifted version G’ of G in which the vertices of G’ are the centers of the
cells of G. To report how many surfaces are within frame distance e from a vertex ¢ € G/,
we return the count of the cell of G whose center is ¢q. By Lemma [2.2] and Lemma [2.7]
this includes all surfaces at frame distance € from ¢, but may also count surfaces at frame
distance at most v/10 + 4¢2 3¢ from ¢, where 3 is the constant in Lemma (The distance

from ¢ to the farthest corner of its cell is \/12 +12 + (20)2 + (2v/2)2e = V10 + 4c2e.)

It takes O(Z) time to construct this data structure. Indeed, cell boundaries reside on
O(%) hyperplanes, so we compute the intersection curve of each surface with each of these
hyperplanes, in a total of O(%) time. Then, for each such curve we find the cell boundaries
that it intersects within its three-dimensional hyperplane in O(é) time. We summarize this
result in the following theorem.

» Theorem B.1. The algorithm described above approximates the the number of surfaces
that are at distance € to each vertex q € G’ where G’ is an € x € x 2\/2¢ x 2ce grid in O(%).
(The approzimation is in the sense defined above.)

Proof. Correctness follow from Lemmas [2.2] and the running time follows since there
are only O(Z) cells of G that at least one surface intersects. <

In fact we can find for each vertex ¢ of G/, the ezact number of e-incident surfaces (i.e.
surfaces at distance at most ¢ from ¢). For this we keep with each cell 7 of G, the list of
the surfaces that intersect 7. Then for each vertex ¢ € G’ we traverse the surfaces stored in
its cell and check which of them is within frame distance € from ¢. The asymptotic running
time is still O(Z).

If we want to get an incidences counts of vertices of a finer grid that G, we use a union
of several shifted grids as above. This also allows to construct a data structure that can
return an e-incidences count of any query point.

For the camera pose problem we use the vertex of G. of largest e-incidences count as the
position of the camera.

C Geometric proximity via canonical surfaces: The case of
hyperplanes

We have a set H of n hyperplanes in R? that cross the unit cube 7o = [0,1]%, and a
given error parameter €. Each hyperplane h € H is given by an equation of the form
Tq = Zj:_ll a;x; +b. We assume, for simplicity, that |a;| < 1 for each h € H and for each
i=1,...,d — 1. Moreover, since h crosses 7y, we have |b| < d, as is easily checked. (This
can always be enforced by rewriting the equation turning the x; with the coefficient a; of
largest absolute value into the independent coordinate.)

For our rounding scheme we define ¢’ = ¢/ log(1/¢). We discretize each hyperplane h € H
as follows. Let the equation of h be z4 = Zf;ll a;z; +b. We replace each a; by the integer

multiple of £’ /d that is nearest to it, and do the same for b. Denoting these ‘snapped’ values

as a; and b/, respectively, we replace h by the hyperplane k', given by x4 = Z?;ll ajx; + b

For any x = (21,...,74-1) € [0,1]971, the z4-vertical distance between h and h’ at x is

d—1 d—1
i=1 =1

We define the weight of each canonical hyperplane to be the number of original hyperplanes
that got rounded to it, and we refer to the set of all canonical hyperplanes by H°.

d—1 d—1
< ai—aflzi+ b= <> Jai—af +[b—b| < €.
i=1 i=1

We describe a recursive procedure that approximates the number of e-incident hyper-
planes of H to each vertex of a (4¢)-grid G that tiles up [0, 1]%. Specifically, for each vertex v
of G we report a count that includes all hyperplanes in H that are at Euclidean distance at
most € from v but it may also count hyperplanes of H that are at distance up to (2\/3 +1e
from wv.

Our procedure constructs an octree decomposition of 7y, all the way to subcubes of side
length 4e. (We assume that 4e is a negative power of 2 to avoid rounding issues.) We shift
the grid G such that its vertices are centers of these leaf-subcubes. At level j of the recursive
construction, we have subcubes 7 of side length 6 = 1/2/. For each such 7 we construct a
set H,. of more coarsely rounded hyperplanes. The weight of each hyperplane h in H, is
the sum of the weights of the hyperplanes in the parent cube p(7) of 7 that got rounded
to h, which, by induction, is the number of original hyperplanes that are rounded to it (by
repeated rounding along the path in the recursion tree leading to 7).

At the root, where j = 0, we set H, = H¢ (where each h € H, has the initial weight of
the number of original hyperplanes rounded to it, as described above). At any other cell T
we obtain H, by applying a rounding step to the set H, of the hyperplanes of H,) that
intersect .

The coarser discretization of the hyperplanes of H, that produces the set H, proceeds as
follows. Let (&1,...,&4) denote the coordinates of the corner of 7 with smallest coordinates,
so 7 = JTi_y[&. & + 9.

Let h be a hyperplane of H., and rewrite its equation as
d—1

Ta—Ea=Y ai(wi—&)+b.
i=1

This rewriting only changes the value of b but does not affect the a;’s. Since h crosses 7, we
have [b] < dé (and |a;| < 1 for each 7). We now re-discretize each coefficient a; (resp., b) to
the integer multiple of 2—; (resp., %/) that is nearest to it. Denoting these snapped values as
a; and ', respectively, we replace h by the hyperplane k' given by

d—1

rg— & = zag(l’i — &)+

=1

This re-discretization of the coefficients a; is a coarsening of the discretization of the hy-
perplanes in H,. The set H, contains all the new, more coarsely rounded hyperplanes that
we obtain from the hyperplanes in A, in this manner. Note that several hyperplanes in H,
may be rounded to the same hyperplane in H.. We set the weight of each hyperplane in H,
to be the sum of the weights of the hyperplanes in H, that got rounded to it. (Note that
although every hyperplane of H, crosses 7, such an h may get rounded to a hyperplane that
misses 7, in which case it is not represented by any hyperplane in H..)

For any x = (21,...,24-1) € Hf;ll [€i, & + 9], the z4-vertical distance between h and A’
at x is

N Y

< Zlai —aj|(zi = &) +[b-b] < Zlai —aild+[b—b] <€
i=1 i=1

Since the original value of a; is in [~1,1] and we round it to an integer multiple of Z5, the
hyperplanes in H, have O(g) possible values for each coefficient a;. Furthermore, these
hyperplanes also have O(g) possible values for b, because |b| < dd for every hyperplane in

H, (since it intersects 7). It follows that |H,| = O ((g)d), and the total size of all sets H,

over all cells 7 at the same level of the octree, is O ((é)d)
Finally, at every leaf 7 of the octree we report the sum of the weights of the hyperplanes

in H, as the approximate e-incidences count of the vertex of G at the center of 7.

» Theorem C.1. Let H be a set of n hyperplanes in R? that cross the unit cube [0,1]%, and
let G be the (4¢)-grid within [0,1]%. The algorithm described above reports for each vertex v
of G an approximate e-incidences count that includes all hyperplanes at Euclidean distance
at most € from v and may include some hyperplanes at distance at most (2\/&4— 1)e from v.

The running time of this algorithm is O (n + (10g(1€/75))d+1)

Proof. Let v € G, and consider a hyperplane h € H at distance at most € from v. The

hyperplane h is rounded to a hyperplane h' € H¢ which is at distance at most ¢’ = W

from hE| and thereby at distance at most e +&’ from v. The hyperplane A’ is further rounded
to other hyperplanes while propagating down the octree. The distance from h’ from the
hyperplane that it is rounded to in H¢ is at most elog(1/¢), and, in general the distance of
h' from any hyperplane h;, that it is rounded to at any level j, is at most (j+1)e’ = lgjg '2'11)5)

(Note that b’ is rounded to different hyperplanes in different cells of level j.) Therefore the
distance of h; from v is at most € + % < 2e (since j + 1 < log(1/e)). It follows that
h' is rounded to some hyperplane that crosses the cell that contains v, at each level of the

octree. In particular b’ is (repeatedly) rounded to some hyperplane at the leaf containing v
and is included in the weight of some hyperplane at that leaf.

Consider now a hyperplane h € H that is rounded to some hyperplane A’ at the leaf 7
containing v. The hyperplane h? is at distance at most € from h. Therefore h is at distance at
most € from the boundary of the leaf-cell containing v. The distance of v to the boundary of
the leaf-cell containing it is at most 2v/de, so the distance of h from v is at most (2v/d+1)e.

The running time follows from the fact that the total size of the sets H, for all cells 7

at a particular level of the quadtree is O (log(l/a))) and there are log(1/(4¢)) levels. <«

Note that if we consider an arbitrary point p then each hyperplane at distance at most
€ from p is included in the approximate count of at least one of the vertices of the grid
G surrounding p. In this rather weak sense, the largest approximate incidences count of a
vertex of G can be considered as an approximation to the number of e-close hyperplanes to
the point p € R? with the largest number of e-close hyperplanes.

5 The distance between two hyperplanes is defined to be the maximum vertical distance between them.

Our octree data structure can give an approximate e-incidences count for any query
point ¢ (albeit with somewhat worse constants). For this we construct a constant number
of octree structures over 5% shifted (by intergral multiple of) grids of a somewhat larger
side-length, say 5e. The grids are shifted such that each cell ¢ of a finer grid of side length
€ is centered in a larger grid cell of one of our grids, say G.. We use G. to answer queries
q that lie in ¢, by returning the sum of the weights of the hyperplanes in h, where 7 is the
leaf of G containing q.

We can also modify this data structure such that it can answer e-incidences queries
exactly. That is, given a query point ¢, it can count (or report) the number of hyperplanes
at distance at most € from ¢ and only these hyperplanes. To do this we maintain pointers
from each hyperplane h in H to the hyperplanes in H)(,) that got rounded to h. To answer
a query ¢, we find the leaf cell 7 containing ¢ and then we traverse back the pointers of the
hyperplanes of H, all the way up the octree to identify the original hyperplanes that were
rounded to them. We then traverse this set of original hypeprlanes and count (or report)
those that are at distance at most ¢ from gq.

	1 Introduction
	2 From camera positioning to approximate incidences
	2.1 Camera posing as an -incidences problem
	2.2 The surfaces w
	2.3 Measuring proximity

	3 Primal-dual algorithm for geometric proximity
	3.1 Running time analysis

	4 Geometric proximity via canonical surfaces
	4.1 Canonizing the input surfaces
	4.2 Approximately counting -incidences
	4.3 Error analysis

	5 Experimental Results
	5.1 Random synthetic data
	5.2 Real-world data

	6 Future work
	A Omitted proofs
	B A simple algorithm
	C Geometric proximity via canonical surfaces: The case of hyperplanes

