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I. INTRODUCTION

Resolving a build failure consumes developer time both
in finding a suitable resolution and in rerunning the build.
Our goal is to develop automated repair tools that can
automatically resolve build errors and therefore improve
developer productivity.

We collected data on the resolution of Java build failures
to discover how long developers spend resolving different
kinds of diagnostics at Google. We found that the diagnostic
reporting an unresolved symbol consumes 47% of the total
time spent resolving broken builds. We found that choice of
tool has a significant impact: 26% of command line builds
fail whereas only 3% of IDE builds fail. However, the set
of most costly diagnostic kinds remains the same for both.

We trained a Neural Machine Translation model on the
Abstract Syntax Tree changes made when resolving an
unresolved symbol failure. This generates a correct fix with
a true positive rate of 50%.

II. RELATED WORK

A previous study at Google also showed that many
build errors (43%) are caused by issues related to
cant.resolve [1]. We go further by quantifying the time
spent resolving these errors. Program repair has been ap-
plied to different domains such as data structures [2], user
interfaces [3], and source code of different programming
languages including Java [4], [5]. Gupta et al. [6] propose
a seq2seq machine learning approach for repairing syntax
errors in C. This model is trained on the whole source code
of the program rather than just the changes to the AST and
achieves a repair rate of 27%.

III. CALCULATING TIME TO RESOLVE

Every build initiated by a developer at Google is logged.
The log contains error messages and a snapshot of the
code that was built. We built a custom parser to map error
messages in the build log back to the compiler’s message
templates and therefore to a particular diagnostic kind.

We collected Java build logs for two months starting
from January 23rd 2018. These were subsequently parsed
and analyzed to understand which build errors happen most
frequently in practice. We then converted sequences of builds
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Figure 1. Build Resolution Sessions for four builds with three build
diagnostics D1, D2, D3.

occurring in a particular environment (e.g. for a particular
user, in a particular workspace) containing a particular
diagnostic into resolution sessions.

A resolution session is a sequence of consecutive builds
in which a diagnostic is introduced in the first build, and first
resolved in the final build and for which the time difference
between successive builds is less than a chosen time win-
dow. Figure 1 depicts example resolution sessions for three
build diagnostics D1–D3. The time window captures task
switching. If a developer has not performed a build within
the window, it is likely they have switched to some other
activity, gone to a meeting, lunch, or left the office. We used
a value of one hour for this window.

Finally, we calculate the active resolution cost (ARC) for
a particular diagnostic as the total time between builds in
the resolution session divided by the number of diagnostics
present in the session. When multiple diagnostics are present
we don’t know the proportion of time the developer devoted
to each one and so ARC shares the time equally between
all the diagnostics present.

We found that around 20% (1.0 million out of 4.8 million)
of builds were failures. Our logs include a record of the
tool used to instigate the build (but not the specific editor
used when changing a file). From this we saw that 26%
of builds instigated from the command-line resulted in a
failure compared with only 3% of builds started from an
IDE (IntelliJ or Android Studio).

Table I presents the top ten most costly build errors. In
total, there were 1,853,417 compiler diagnostics that were
later fixed within a resolution session and 51% (949,325)
were cant.resolve diagnostics.

We also calculated the relative cost of build errors by



Table I
TOP 10 DIAGNOSTIC KINDS BY ACTIVE RESOLUTION COST (ARC).

Diagnostic kind Description Active cost (s) Builds Instances Cost
compiler.err Avg Max Avg Max Total % %
cant.resolve Use of undefined symbol 69 13327 2.6 143 949,325 51 47
cant.apply.symbol No method declaration found with matching signature 102 8330 2.6 101 151,997 8 11
strict Incorrectly declared dependencies in Bazel build system 120 6672 2.2 72 109,156 6 9
doesnt.exist Use of undefined package 66 7831 2.7 70 159,158 9 7
cant.apply.symbols No method declaration found with matching signature 115 8771 2.5 41 60,287 3 5
expected Syntax error 35 5190 2.5 72 168,299 9 4
inconvertible.types Attempt to cast between inconvertible types 96 6259 2.5 42 38,191 2 3
unreported.exception Code may throw checked exception, which must be handled 105 4234 2.3 32 22,684 1 2
does.not.override.abstract Failed to implement inherited abstract method 138 4963 2.8 43 8,089 0 1
already.defined Symbol already defined 90 5053 2.4 24 12,381 1 1

Table II
DIAGNOSTIC KINDS UNDER DIFFERENT DEVELOPMENT ENVIRONMENTS

IntelliJ / AndroidStudio Console
3% of builds fail 26% of builds fail

Diagnostic Kind Instances Cost Instances Cost
strict 17,255 32% 71,232 10%
cant.resolve 22,161 27% 578,058 47%
doesnt.exist 10,482 13% 108,450 8%
cant.apply.symbol 7,094 10% 85,844 11%

multiplying the number of diagnostic instances by the aver-
age active resolution cost. cant.resolve is again the most
costly diagnostic kind by far, with 47% of the total active
resolution cost. cant.apply.symbol is only the fourth most
common diagnostic but ranks second in total cost. Despite
the large difference in failure rate the set of four most
common diagnostic kinds were the same for both console
and IDE users (Table II).

IV. REPAIRING CANT.RESOLVE

We selected successful resolution sessions with a single
cant.resolve diagnostic and used a tree differencing al-
gorithm to find the changes that were made to the Abstract
Syntax Trees of the source files. We described these changes
with a simple language, called DeepDelta, and used these
sentences as features for a Neural Machine Translation
pipeline [7] with the task of translating from a DeepDelta
sentence describing the failure and its location in the AST to
a DeepDelta sentence describing the change to resolve it. We
extracted 186,992, 42,363, and 36,101 sentences for training,
validation and testing respectively with a vocabulary size of
30, 000. We found that the pipeline predicted the correct
repair 50% of the time, and that the correct repair was in
the top three suggestions 87% of the time.

V. DISCUSSION

A single diagnostic (cant.resolve) consumes almost
50% of the overall effort invested in resolving build errors.
We found that an off-the-shelf machine translation model
does reasonably well at the task of resolving this diagnostic.
We expect that more sophisticated modeling techniques [8]
should be able to do even better.

Commits to a repository are too coarse-grained to capture
resolution of build failures and so we relied on a proprietary
dataset for our study. A suitable open dataset would be
valuable in this regard.

Performing builds manually from the command-line in-
curs a much larger cost for resolving build errors and so we
plan to investigate the reasons why many software engineers
are electing not to use an IDE.
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