
Proprietary + Confidential

Release Engineering

1

Release engineering

● Release engineering is the discipline of software engineering that can
be described as building and delivering software.
○ Includes the use of source code management, compilers, build configuration

languages, automated build tools, package managers, and installers.

● Release engineers work with devs and SREs.

● It's important that releases are repeatable and aren’t "unique
snowflakes".

● Releasing software is a critical operation.
○ Production environments need to be stable and have a known state.

○ Typically, there is a defined procedure for releasing software.

2

Self-service model

● Release automation can be a platform.

● Every team can use standard tools and best practices.

● Each team individually decides how often and when to release.

● Release processes can be heavily automated.
○ Only need human attention when the release deployment fails.

3

High Velocity

● Rebuilt binaries frequently to roll out features quickly.
○ Daily releases are a common practice.

● Frequent releases result in fewer changes between versions.
○ Makes testing and troubleshooting easier.

● Some teams frequently create builds and select which to deploy.

● Other teams adopted a "push on green" approach.
○ Deploy every build that passes all tests.

4

Hermetic Builds

● Builds must be consistent and repeatable.
○ The same product with the same revision should always build to the exact same binary.

○ Must be insensitive of locally installed libraries.

○ The build process must be self-contained: The result depends on the build system version,
but not on external services.

● Cherry picking: How to fix a bug in software running in production.
○ Use the same build environment and revision as the original build.

○ Only apply the specific change for the bug fix.

5

Continuous Build and Deployment

● Building

● Branching

● Testing

● Packaging

● Deployment

6

Enforcement of Policies and Procedures

Several layers of security and access control determine who can perform
specific operations (typically gated by code reviews):

● Approving source code changes

● Specifying the actions to be performed during the release process

● Creating a new release

● Approving the initial integration proposal and subsequent cherry picks

● Deploying a new release

● Making changes to a project’s build configuration

7

Building and Branching

Building

● Build tool (Blaze / Bazel) for binaries and unit tests

● Automatically builds all dependencies

Branching

● Releases are build from branches in the source code repository

● Changes in this branch are never merged back into the mainline

● Bug fixes in the mainline are cherry-picked into the branch

● Avoids picking up unrelated changes in bug fix releases

8

Testing

● Unit tests are run against mainline each time a change is submitted

● Build failures are detected quickly

● Release candidates are built from the last revision passing tests

● Unit tests are rerun during the release process
○ Cherry pick builds use a different codebase than mainline

○ Also can detect flaky tests

● System-level tests complement the unit tests as part of the release
process

9

Packaging

● Software distribution uses the Midas Package Manager (MPM)

● MPM assembles packages based on Blaze rules

● Each package has a name is signed and versioned with a unique hash

● Labels are used to indicate the package's location in the release
process
○ Typical labels are dev, canary, production

● Borg jobs use the package name and label to find the right binary

10

Rapid

● Rapid is the release automation service

● It uses blueprint files for configuration
○ Contain build and test targets, rules for deployment, and administrative information

● Workflows define the actions to perform during the release process

● Typical workflow:
○ Create branch at requested revision number

○ Use Blaze to build binaries and execute unit tests

○ Deploy release to a small set of tasks for testing ("canary")

○ Roll-out to the rest of the tasks

11

Rapid

12

Deployment

● Simple deployments can be driven by Rapid directly

● More complex deployment processes are handed-off to Sisyphus
○ Flexible deployment procedures defined as Python classes

● A deployment can contain multiple steps of incremental rollouts, e.g.,
○ A sandbox environment for devs and script testing

○ A single cluster or a small percent of tasks as a canary

○ Additional incremental canary steps (e.g. one canary on each continent)

○ Staggered rollout to the production jobs to avoid too many parallel updates in-flight

13

Configuration management

● Config changes are a major cause of instability

● Config is stored in the main code repository
○ Subject to code review policies

○ Versioned

● Different strategies:
○ Use the mainline for configuration

○ Include configuration files and binaries in the same MPM package

○ Package configuration files into MPM "configuration packages".

○ Read configuration files from an external store.

14

Use the mainline for configuration

● Use HEAD from repository mainline
○ Can be directly modified by devs and SREs, normal code review applies

● Binary releases and configuration changes are decoupled

● Jobs must be kept in sync with repository HEAD

● Binaries may accidentally become incompatible with configuration
○ E.g., flags set in config are not defined in binary

15

Combined configuration/binaries MPM package

● Include configuration files and binaries in the same MPM package

● Limits flexibility, but is straightforward to deploy

● Useful for projects with few config files and config changes tightly
coupled to releases

● Each config change requires a new release or cherry-pick

16

Configuration packages

● Package configuration files into MPM configuration packages

● Applies the hermetic principle to configuration management

● Both binary and config package can be generated from the same
repository version
○ Retains ability to change each package independently

○ Config changes become cherry-picks

○ Config changes does not need new binary build

● Can use labels to indicate which versions of config and binary should
be installed together

17

External configuration store

● Read configuration files from an external store
○ Can be stored in Bigtable, Chubby, etc.

● Useful for services with frequent config changes
○ Especially when changes happen while the config is running (no restart required)

● May lose the advantages of the central source code repository
○ Versioned with the same numbering scheme as the binary

○ Integrated code reviews and established workflows

○ Well-known place to search for config settings

18

● Most companies struggle with the same questions:
○ How should you handle versioning of your packages?

○ Should you use a continuous build and deploy model, or perform periodic builds?

○ How often should you release?

○ What configuration management policies should you use?

○ What release metrics are of interest?

● Google has developed its own custom toolchain, but the principles
apply to smaller-scale operations too.

Not only for planet-scale deployments

19

Start Release Engineering at the Beginning

● It’s cheaper to put good practices and process in place early

● Developers, SREs, and release engineers have to work together
○ Developers shouldn’t build and “throw the results over the fence”

● Teams should budget for release engineering resources

20

