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Abstract—Recommender system research suffers from a dis-
connect between the size of academic data sets and the scale of
industrial production systems. In order to bridge that gap, we
propose to generate large-scale user/item interaction data sets by
expanding pre-existing public data sets. Our key contribution is
a technique that expands user/item incidence matrices matrices
to large numbers of rows (users), columns (items), and non-zero
values (interactions). The proposed method adapts Kronecker
Graph Theory to preserve key higher order statistical properties
such as the fat-tailed distribution of user engagements, item
popularity, and singular value spectra of user/item interaction
matrices. Preserving such properties is key to building large re-
alistic synthetic data sets which in turn can be employed reliably
to benchmark recommender systems and the systems employed to
train them. We further apply our stochastic expansion algorithm
to the binarized MovieLens 20M data set, which comprises 20M
interactions between 27K movies and 138K users. The resulting
expanded data set has 1.2B ratings, 2.2M users, and 855K items,
which can be scaled up or down.

Index Terms—Machine Learning, Deep Learning, Recom-
mender Systems, Graph Theory, Simulation

I. INTRODUCTION

Machine Learning (ML) benchmarks compare the capa-
bilities of models, distributed training systems and linear
algebra accelerators on realistic problems at scale. For these
benchmarks to be effective, results need to be reproducible by
many different groups which implies that publicly shared data
sets need to be available.

Unfortunately, while recommendation systems constitute a
key industrial application of ML at scale, large public data
sets recording user/item interactions on online platforms are
not yet available. For instance, although the Netflix data set [6]
and the MovieLens data set [19] are publicly available, they
are orders of magnitude smaller than proprietary data [3], [11],
[56].

Proprietary data sets and privacy: While releasing large
anonymized proprietary recommendation data sets may seem
an acceptable solution from a technical standpoint, it is a non-
trivial problem to preserve user privacy while still maintaining
useful characteristics of the dataset. For instance, [37] shows a
privacy breach of the Netflix prize dataset. More importantly,
publishing anonymized industrial data sets runs counter to user

TABLE I: Size of MovieLens 20M [19] vs industrial dataset
in [56].

MovieLens 20M Industrial

#users 138K Hundreds of Millions

#items 27K 2M

#topics 19 600K

#observations 20M Hundreds of Billions

expectations that their data may only be used in a restricted
manner to improve the quality of their experience on the
platform.

Therefore, we decide not to make user data more broadly
available to preserve the privacy of users. We instead choose
to produce synthetic yet realistic data sets whose scale is
commensurate with that of our production problems while only
consuming already publicly available data.

Producing a realistic binary MovieLens 10 billion+
dataset: In this work, we focus on the MovieLens dataset
which only entails movie ratings posted publicly by users
of the MovieLens platform. The MovieLens data set has
now become a standard benchmark for academic research in
recommender systems. Many recent research articles rely on
MovieLens [1], [7], [20], [22], [26], [32], [34], [38], [44], [49],
[50], [55], [57], [59]. The latest version of MovieLens [19]
has accrued more than 800 citations according to Google
Scholar. A binarized version of this dataset is obtained when
all the ratings are substituted by 1.0 (proposed in Neural
Collaborative Filtering [20]). While in previous work we have
considered the original MovieLens data set comprising ratings
on a discrete scale [4], we now focus on its binarized version.
Although the binarized version is representative of industrial
collaborative filtering aiming at predicting which item a given
user is most likely to view [11], the data set still only entails
few observed interactions and more importantly a very small
catalogue of users/items, compared to industrial proprietary
recommendation data.

Industrial recommender systems typically have to nominate
items from catalogues comprising several million distinct



elements. The large number of observations collected by
online platforms about user/item interactions also enables
performance gains by increasing the dimension of the em-
beddings employed to represent items. In most modern ML
recommendations, the model learns a vector valued representer
in Rd for each of the I users/items of the catalog. Typically
each user and item is represented with d ∼ 1e2 . . . 1e3

scalars and I ∼ 1e6 . . . 1e9 elements are present in user
set and in the item set. Storing, accessing and training such
vast embedding tables presents unique challenges as large
tables will no longer easily fit in the memory of a single
machine: distributed embedding tables are often necessary to
store the learned embedding tables; hierarchical embedding
access strategies such as hierarchical softmax [56] or differen-
tiated softmax [17] provide better data structures and learning
paradigms; an appropriate negative sampling strategy [11] or
regularization [26] is needed to solve the extreme classification
problem selecting one item from the catalog constitutents. By
scaling up the public MovieLens data set, we want to move the
problem into a regime where such issues are critical so that the
corresponding benchmark is helpful for industrial applications.

In order to provide a new data set — more aligned with
the needs of production scale recommender systems — we
therefore aim at expanding publicly available data by creating
a realistic surrogate. The following constraints help create
a production-size synthetic recommendation problem similar
and at least as hard an ML problem as the original one
for matrix factorization approaches to recommendations [20],
[25]:
• orders of magnitude more users and items are present in

the synthetic dataset;
• the synthetic dataset is realistic in that its first and

second order statistics match those of the original dataset
presented in Figure 1.

Key first and second order statistics of interest we aim to
preserve are summarized in Figure 1 — the details of their
computation are given in Section IV.

Adapting Kronecker Graph expansions to binarized
user/item interactions: We employ the Kronecker Graph The-
ory introduced in [28] to achieve a suitable fractal expansion
of recommendation data to benchmark linear and non-linear
user/item factorization approaches for recommendations [20],
[25]. Consider a recommendation problem comprising m users
and n items. Let (Ri,j)i=1...m,j=1...n be the sparse matrix of
binarized recorded interactions (i.e. 1 if user i has consumed
item j and 0 otherwise). The key insight we develop in the
present paper is that a carefully crafted fractal expansion of R
can preserve high level statistics of the original data set while
scaling its size up by multiple orders of magnitudes.

Many different transforms can be applied to the matrix
R which can be considered a standard sparse binary 2 di-
mensional image. A recent approach to creating synthetic
recommendation data sets consists in making parametric as-
sumptions on user behavior by instantiating a user model
interacting with an online platform [10], [46]. Unfortunately,
such methods (even calibrated to reproduce empirical facts
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Fig. 1: Key first and second order properties of the binarized
MovieLens 20m user/item rating matrix we aim to preserve
while synthetically expanding the data set. Top: item popu-
larity distribution (total ratings of each item). Middle: user
engagement distribution (total ratings of each user). Bottom:
dominant singular values of the rating matrix (core to the
difficulty of matrix factorization tasks).

in actual data sets) do not provide strong guarantees that
the resulting interaction data is similar to the original. A
challenging problem in this domain is to build user models
that can provide such guarantees, which can be validated
using online experiments. In this work, instead of simulating
recommendations in a parametric user-centric way as in [10],
[46], we choose a non-parametric approach operating directly
in the space of user/item affinity. In order to synthesize a
large realistic dataset in a principled manner, we adapt the
Kronecker expansions which have previously been employed
to produce large realistic graphs in [28]. We employ a non-
parametric randomized simulation of the evolution of the
user/item bi-partite graph to create a large synthetic data set. It
is noteworthy that as opposed to our original approach in [4]
— where we put emphasis on analytic tractability — we now
employ a method that loses some analytic tractability but still
preserves key statistics of the data set. Furthermore, we show
how randomized operations help address limitations of the
previous method which yielded an interaction matrix with a



discernible block-wise repetitive structure.
While Kronecker Graphs Theory is developed in [28], [29]

on square adjacency matrices, the Kronecker product operator
is well defined on rectangular matrices and therefore we
can apply a similar technique to user/item interaction data
sets — which was already noted in [29] but not developed
extensively. As in [29] we will use a stochastic version of
the Kronecker extension for a binary original matrix. The
Kronecker Graph generation paradigm has to be changed with
the present data set in other aspects. However, we need to
decrease the expansion rate to generate data sets with the scale
we desire, not orders of magnitude too large. We need to do so
while maintaining key conservation properties of the original
algorithm [29]. Furthermore, we introduce a new block-wise
shuffling to randomize the Kronecker operator and yield a data
set more helpful to train ML models for recommendations.

In order to reliably employ Kronecker based fractal expan-
sions on recommender system data we devise the following
contributions:
• we develop a new technique based on linear algebra to

adapt fractal Kronecker expansions to recommendation
problems;

• we introduce a randomly shuffled extension of the orig-
inal Kronecker product to prevent block-wise structural
repetitions and take steps to prevent test data from leaking
into the data set employed to train collaborative filtering
models;

• we also show that the resulting algorithm we develop is
scalable and easily parallelizable as we employ it on the
actual MovieLens 20 million dataset;

• we produce a synthetic yet realistic MovieLens 1.2 billion
dataset to help recommender system research scale up in
computational benchmark for model training;

• we demonstrate that key recommendation system specific
properties of the original dataset are preserved by the
deterministic version of our technique;

• we make the corresponding open source code available
so that other researchers may reproduce our findings and
tailor the generated synthetic data to their needs.

The present article is organized as follows: First, we de-
scribe prior research on ML for recommendations and large
synthetic dataset generation. Next, we develop a randomized
adaptation of Kronecker Graphs to user/item interaction ma-
trices and prove key theoretical properties. Finally, we employ
the resulting algorithm experimentally to MovieLens 20m data
to validate its statistical properties.

II. RELATED WORK

Recommender systems constitute the workhorse of many e-
commerce, social networking and entertainment platforms. In
the present paper we focus on the classical setting where the
key role of a recommender system is to suggest relevant items
to a given user. Although other approaches are very popular
such as content based recommendations [43] or social rec-
ommendations [9], collaborative filtering remains a prevalent
approach to the recommendation problem [33], [42], [45].

Collaborative filtering: The key insight behind collabora-
tive filtering is to learn affinities between users and items based
on previously collected user/item interaction data. Collabora-
tive filtering exists in different flavors. Neighborhood methods
group users by inter-user similarity and will recommend items
to a given user that have been consumed by neighbors [43].
Latent methods try to decompose user/item affinity as the
result of the interaction of a few underlying representative
factors characterizing the user and the item (e.g. Principal
Component Analysis [23], Latent Dirichlet Allocation [8]).
Matrix factorization [25] is a Latent Factor Method that relies
on solving the matrix completion problem to recommend items
for users.

The matrix factorization approach represents the affinity ai,j
between a user i and an item j with an inner product xTi yj
where xi and yj are two vectors in Rd representing the user
and the item respectively. Given a sparse matrix of user/item
interactions R = (ri,j)i=1...m,j=1...n, user and item factors
can therefore be learned by approximating R with a low rank
matrix XY T where X ∈ Rm,k entails the user factors and
Y ∈ Rn,k contains the item factors. The data set R represents
ratings as in the MovieLens dataset [19] or item consumption
(ri,j = 1 if and only if the user i has consumed item j [6])
— the latter being considered here. The matrix factorization
approach is an example of a solution to the rating matrix com-
pletion problem which aims at predicting the rating of an item
j by a user i which has not been observed yet and corresponds
to a value of 0 in the sparse original rating matrix. Such a
factorization method learns an approximation of the data that
preserves a few higher order properties of the rating matrix
R. In particular, the low rank approximation tries to mimic
the singular value spectrum of the original data set. We draw
inspiration from matrix factorization to tackle synthetic data
generation. The present paper will adopt a similar approach
to extend collaborative filtering data-sets. Besides trying to
preserve the spectral properties of the original data, we operate
under the constraint of conserving its first and second order
statistical properties.

Deep Learning for recommender systems: Collaborative
filtering has known many recent developments which motivate
our objective of expanding public data sets in a realistic
manner. Deep Neural Networks (DNNs) are now becoming
common in both non-linear matrix factorization tasks [11],
[20], [52] and sequential recommendations [18], [47], [58].
The mapping between user/item pairs and ratings is generally
learned by training the neural model to predict user behavior
on a large data set of previously observed user/item interac-
tions.

DNNs consume large quantities of data and are com-
putationally expensive to train, therefore they give rise to
commonly shared benchmarks aimed at speeding up train-
ing. For training, a Stochastic Gradient Descent method is
employed [27] which requires forward model computation
and back-propagation to be run on many mini-batches of
(user, item, score) examples. The matrix completion task still
consists in predicting a rating for the interaction of user i and



item j although (i, j) has not been observed in the original
data-set. The model is typically run on billions of examples
as the training procedure iterates over the training data set.

Freshness in recommender systems:Model freshness is
generally critical to industrial recommendations [11] which
implies that only limited time is available to re-train the model
on newly available data. The throughput of the trainer is
therefore crucial to providing more engaging recommendation
experiences and presenting more novel items. Unfortunately,
public recommendation data sets are too small to provide
training-time-to-accuracy benchmarks that can be realistically
employed for industrial applications. Too few different exam-
ples are available in MovieLens 20m for instance and the
number of different available items is orders of magnitude
too small. In many industrial settings, millions of items (e.g.
products, videos, songs) have to be taken into account by
recommendation models. The recommendation model learns
an embedding matrices of size (N, d) where d ∼ 10 − 103

and N ∼ 106− 109 are typical values. As a consequence, the
memory footprint of this matrix may dominate that of the rest
of the model by several orders of magnitude. During training,
the latency and bandwidth of the access to such embedding
matrices have a prominent influence on the final throughput
in examples/second. Such computational difficulties associated
with learning large embedding matrices are worthwhile solving
in benchmarks. A higher throughput enables training models
with more examples which enables better statistical regu-
larization and architectural expressiveness. The multi-billion
interaction size of the data set used for training is also a
major factor that affects modeling choices and infrastructure
development in the industry.

III. FRACTAL EXPANSIONS OF USER/ITEM INTERACTION
DATA SETS

The present section delineates the insights orienting our
design decisions when expanding public recommendation data
sets.

1) Self-similarity in user/item interactions: Interactions be-
tween users and items follow a natural hierarchy in data
sets where items can be organized in topics, genres, and
categories [56]. There is for instance an item-level fractal
structure in MovieLens 20m with a tree-like structure of
genres, sub-genres, and directors. If users were clustered
according to their demographics and tastes, another hierarchy
would be formed [43]. The corresponding structured user/item
interaction matrix is illustrated in Figure 2. The hierarchical
nature of user/item interactions (topical and demographic)
makes the recommendation data set structurally self-similar
(i.e. patterns that occur at more granular scales resemble those
affecting coarser scales [36]).

One can therefore build a user-group/item-category inci-
dence matrix with user-groups as rows and item-categories
as columns — a coarse interaction matrix. As each user group
consists of many individuals and each item category comprises
multiple movies, the original individual level user/item inter-
action matrix may be considered as an expanded version of the

User groups

Item groups

(1,1) (1,2) (1,3)

(2,2)(2,1) (2,3)

(3, 2) (3, 3) (3, 4)

(4, 4)

User/item interaction patterns

User/item 
interaction

matrix

Fig. 2: Typical user/item interaction patterns in recommenda-
tion data sets. Self-similarity appears as a natural key feature
of the hierarchical organization of users and items into groups
of various granularity.

coarse interaction matrix. We choose to expand the user/item
interaction matrix by extrapolating this self-similar structure
and simulating its growth to yet another level of granularity:
original items and users are considered fictional topic and user
groups in the expanded data set.

A key advantage of this fractal procedure is that it may
be entirely non-parametric and designed to preserve high
level properties of the original dataset. In particular, a fractal
expansion re-introduces the patterns originally observed in the
entire real dataset within each block of local interactions of
the synthetic user/item matrix. By carefully designing the way
such blocks are produced and laid out, we can therefore hope
to produce a realistic yet much larger rating matrix. In the
following, we show how the Kronecker operator enables such
a construction.

2) Fractal expansion through Kronecker products: The
Kronecker product — denoted ⊗ — is a non-standard matrix
operator with an intrinsic self-similar structure:

A⊗B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 (1)

where A ∈ Rm,n, B ∈ Rp,q and A⊗B ∈ Rmp,nq .
In the original presentation of Kronecker Graph Theory [28]

as well as the stochastic extension [35] and the extended the-
ory [29], the Kronecker product is the core operator enabling
the synthesis of graphs with exponentially growing adjacency
matrices. As in the present work, the insight underlying
the use of Kronecker Graph Theory in [29] is to produce
large synthetic yet realistic graphs. The fractal nature of the
Kronecker operator as it is applied multiple times (see Figure
2 in [29] for an illustration) fits the self-similar statistical



properties of real world graphs such as the internet, the web
or social networks [28].

If A is the adjacency matrix of the original graph, fractal
expansions are created in [28] by chaining Kronecker products
as follows:

A⊗A . . . A.

As adjacency matrices are square, Kronecker Graphs are
not employed on rectangular matrices in pre-existing work
although the operation is well defined. We show that these
differences do not prevent Kronecker products from preserving
core properties of binarized rating matrices. A more important
challenge is the size of the original matrix we deal with:
R ∈ R(138×103,27×103). A naive Kronecker expansion would
therefore synthesize a rating matrix with 19 billion users which
is too large.

Thus, although Kronecker products seem like an ideal candi-
date for the mechanism at the core of the self-similar synthesis
of a larger recommendation dataset, some modifications are
needed to the algorithms developed in [29].

3) Reduced Kronecker expansions: We choose to synthe-
size a user/item rating matrix

R̃ = R̂⊗R

where R̂ is a matrix derived from R but much smaller (for
instance R̂ ∈ R128,256). For reasons that will become apparent
as we explore some theoretical properties of Kronecker fractal
expansions, we want to construct a smaller derived matrix R̂
that shares similarities with R. In particular, we seek R̂ with a
similar row-wise sum distribution (user engagement distribu-
tion), column-wise distribution (item engagement distribution)
and singular value spectrum (signal to noise ratio distribution
in the matrix factorization).

4) Implementation at scale and algorithmic extensions:
Computing a Kronecker product between two matrices A and
B is an inherently parallel operation. It is sufficient to broad-
cast B to each element (i, j) of A and then multiply B by ai,j .
Such a property implies that scaling can be achieved. Another
advantage of the operator is that even a single machine can
produce a large output data-set by sequentially iterating on the
values of A. Only storage space commensurable with the size
of the original matrix is needed to compute each block of the
Kronecker product. It is noteworthy that generalized fractal
expansions can be defined by altering the standard Kronecker
product. We consider such extensions here as candidates to
engineer more challenging synthetic data sets. One drawback
though is that these extensions may not preserve analytic
tractability.

A first generalization defines a binary operator ⊗F with
F : R× Rm,n × N→ Rp,q as follows:

A⊗F B =

 F (a11, B, ω11) . . . F (a1n, B, ω1n)
...

. . .
...

F (am1, B, ωm1) . . . F (amn, B, ωmn)

 (2)

where ω11, . . . , ωmn is a sequence of pseudo-random num-
bers. Including randomization and non-linearity in F appears

as a simple way to synthesize data sets entailing more varied
patterns. The algorithm we employ to compute Kronecker
products is presented in Algorithm 1. The implementation we
employ is trivially parallelizable. We only create a list of Kro-
necker blocks to dump entire rows (users) of the output matrix
to file. This is not necessary and can be removed to enable
as many processes to run simultaneously and independently
as there are elements in R̂ (provided pseudo random numbers
are generated in parallel in an appropriate manner).

Algorithm 1 Kronecker fractal expansion �F
for i = 1 to m do

kBlocks ← empty list
for j = 1 to n do
ω ← next pseudo random number
kBlock ← F (R̂(i, j), R,w)
kBlocks append kBlock

end for
outputToFile(kBlocks)

end for

The only reason why we need a reduced version R̂ of R is
to control the size of the expansion. Also, A⊗B and B ⊗A
are equal after a row-wise and a column-wise permutation.
Therefore, another family of appropriate extensions may be
obtained by considering

B ⊗G A =

 b11G(A,ω11) . . . b1nG(A,ω1n)
...

. . .
...

bm1G(A,ωm1) . . . bmnG(A,ωmn)

 (3)

where G : Rm,n × N → Rm′,n′
is a randomized sketching

operation on the matrix A which reduces its size by several
orders of magnitude. A trivial scheme consists in sampling
a small number of rows and columns from A at random.
Other random projections [2], [14], [31] may of course be
used. The randomized procedures above produce a user/item
interaction matrix where there is no longer a block-wise
repetitive structure. Less obvious statistical patterns can give
rise to more challenging synthetic large-scale collaborative
filtering problems.

5) Stochastic Kronecker product and dropout for binary
rating matrices: As opposed to our original approach [4]
which focused on item ratings, we now consider an original
binary rating R. In such a setting, a standard Kronecker
product is not suitable as the ratings all take the same value
of 1 and therefore multiplications by elements of R̂ do not
produce ratings that are all still binary. We instead use the
stochastic Kronecker graph approach from [29] and employ
the reduced matrix’s elements R̂ as dropout rates over the
matrix R. When computing the block i, j of the expanded
rating matrix, instead of using R̂i,jR, we instead consider
dropout(R, rate = R̂i,j) after having re-scaled R̂ so that all
its elements are in [0, 1]. For each element k, l of R, the
dropout function for a rate R̂i,j samples independently from
a Bernoulli distribution with parameter R̂i,j . If the sampled



number is 1 Rk,l, is kept unchanged, otherwise it is dropped
and set to 0. Such a block dropout operator enjoys statistical
properties that are similar to the Kronecker product [29] while
being readily employable on binary data-sets. The stochastic
Kronecker product we devise can therefore be written as
follows in matrix notation:

A⊗rand B =Sh (drop(1− a11, B)) . . . Sh (drop(1− a1n, B))
...

. . .
...

Sh (drop(1− am1, B)) . . . Sh (drop(1− amn, B))


where “Sh” denotes the random row-wise and column-wise
shuffling operator and “drop” denotes the dropout operator
whose first argument is the dropout rate and whose second
argument is the matrix from which to zero out elements
at random. Algorithm 2 exposes the implementation of the
randomized Kronecker product �rand.

6) Randomized shuffling and Kronecker SVD: Another
limitation of the synthetic data set initially presented in [4]
is the block-wise repetitive structure of Kronecker products.
Although the synthetic data set is still hard to factorize as the
product of two low rank matrices because its singular values
are still distributed similarly to the original data set, it is now
easy to factorize with a Kronecker SVD [24] which takes
advantage of the block-wise repetitions in Eq (1). Randomized
fractal expansions which presented in Eq (2) and Eq (3)
address this issue. The approach we adopt consists in shuffling
rows and columns of each block in Eq (1) independently
at random. The shuffles will break the block-wise repetitive
structure and prevent Kronecker SVD from producing a trivial
solution to the factorization problem.

As a result, the expansion technique we present appears as
a reliable first candidate to train linear matrix factorization
models [43] and non-linear user/item similarity scoring mod-
els [20].

Algorithm 2 Kronecker fractal expansion for binary data sets
with random shuffling and dropout �rand

for i = 1 to m do
kBlocks ← empty list
for j = 1 to n do

kBlock ← dropout(R, rate = R̂(i, j))
kBlock ← shuffleColumnsAndRows(kBlock)
kBlocks append kBlock

end for
outputToFile(kBlocks)

end for

7) Preventing leaks from the test set into the training set:
For matrix factorization tasks, the usual procedure to build
disjoint training and test data sets for Movie Lens consists in
selecting some ratings and removing them from the training
set while adding them to the test set. A naive adaptation of the
test data generation procedure to our extended data set would
select test items directly on the larger matrix R̃. Unfortunately,

as R̃ = R̂⊗R, such a procedure would implicitly share data
between interactions of the training and test sets through R̂
which incorporates information from the entire original data
set R. In order to generate training and test data without
leaking test data into the training set, we proceed as follows.
We consider two separate training and test sets selected from
the original data set R: Rtrain and Rtest. With R ∈ Rm,n, we
have Rtrain ∈ Rm,n and Rtest ∈ Rm,n. For the MovieLens
data set, where each rating of a given item by a specific user
is timestamped, a typical approach to defining training and
testing sets removes the last rating of each user from the train
set and adds it to the test set. Such a procedure outputs a Rtest
matrix with much fewer non zero elements than Rtrain.

The smaller matrix R̂train is now derived from Rtrain exclu-
sively, without incorporating any data from Rtest. We create
the extended versions of the train and test data sets separately
as follows:

R̃train = R̂train �Rtrain and R̃test = R̂train �Rtest.

By construction, the procedure prevents test data from leaking
into the train data and implicitly informing the model of
patterns that will be present in the test set during training.

8) Consistent randomized operations across training and
testing sets: With a stochastic Kronecker �rand featuring
dropout and block-wise shuffling, additional precautions need
to be taken. In order to guarantee that the randomized shuffles
of rows and columns are consistent between the training and
testing data, we flip the sign of the test elements in the rating
matrix to keep track of their belonging to the test set. We apply
all randomized operations to the resulting matrix comprising
elements in {−1, 0, 1}:

R̃temp = R̂train �rand (Rtrain −Rtest)

where Rtrain ∈ Rm,n and Rtest ∈ Rm,n. The positive elements
of Rtemp are attributed to R̃train and the negative elements are
attributed to R̃test after having flipped their sign:

∀i ∈ {1, . . . ,mp} , j ∈ {1, . . . , nq} ,
R̃traini,j = R̃tempi,j if R̃tempi,j = 1 else 0

R̃testi,j = −R̃tempi,j if R̃tempi,j = −1 else 0

Such an operation is simple and guarantees the consistency
of randomized shuffles of the sub-blocks in the extended
matrices R̃train and R̃test.

IV. STATISTICAL PROPERTIES OF KRONECKER FRACTAL
EXPANSIONS

After having introduced Kronecker products to self-
similarly expand a recommendation dataset into a much larger
one, we now develop theoretical insights about how the trans-
form preserves crucial common properties with the original.



1) Salient empirical facts in MovieLens data: First, we
introduce the critical properties we want to preserve. As a
user/item interaction dataset on an online platform, one expects
MovieLens to feature common properties of recommendation
data sets such as power-law or fat-tailed distributions [56]
(a power-law or fat-tailed distribution over positive values
behaves like x → αx−β for large enough values of x with
α > 0 and β > 0).

First important statistical properties for recommendations
concern the distribution of interactions across users and across
items. It is generally observed that such distributions exhibit a
power-law behavior [1], [13], [15], [30], [39], [40], [53], [56].
To characterize such a behavior in the MovieLens data set, we
take a look at the distribution of the total ratings along the item
axis and the user axis. In other words, we compute row-wise
and column-wise sums for the rating matrix R and observe
their distributions. The corresponding ranked distributions are
exposed in Figure 1 and do exhibit a clear power-law behavior
for rather popular items. However, we observe that tail items
have a higher popularity decay rate. Similarly, the engagement
decay rate increases for the group of less engaged users.

The other approximate power-law we find in Figure 1 lies
in the singular value spectrum of the MovieLens dataset. We
compute the top k singular values [21] of the MovieLens rating
matrix R by power iteration, which can scale to its large
(138K, 27K) dimension. The method yields the dominant
singular values of R and the corresponding singular vectors so
that one can classically approximate R by R ' UΣV where
Σ is diagonal of dimension (k, k), U is column-orthogonal of
dimension (m, k) and V is row-orthogonal of dimension (k, n)
— which yields the rank k matrix closest to R in Frobenius
norm.

Examining the distribution of the 2048 top singular values
of R in the MovieLens dataset (which has at most 27K non-
zero singular values) in Figure 1 highlights a clear power-law
behavior in the highest magnitude part of the spectrum of R.
We observe in the spectral distribution an inflection for smaller
singular values whose magnitude decays at a higher rate than
larger singular values. Such a spectral distribution is as a key
feature of the original dataset. This property is particularly
important for low-rank approximation approaches to the matrix
completion problem, which have to choose a sufficiently large
rank for approximating the observations. Therefore, we also
want the expanded dataset to exhibit a similar behavior in
terms of spectral properties.

In all the high level statistics we present, we want to
preserve the approximate power-law decay as well as its in-
flection for smaller values. Our requirements for the expanding
transform which we apply to R are therefore threefold: we
want to preserve the distributions of row-wise sums of R,
column-wise sums of R and singular value distribution of
R. Additional requirements, beyond first and second order
high level statistics will further increase the confidence in the
realism of the expanded synthetic dataset.

2) Analytic tractability through standard Kronecker prod-
ucts: Although we use a randomized version of the Kronecker

product which does not offer the same level of analytic
tractability, the choice of such a transform is deeply anchored
in some of the theoretical properties of the standard Kronecker
product. We now expose how — in its standard deterministic
version — the fractal transform design we rely on preserves
the key statistical properties of the previous section.

Definition 1: Consider A ∈ Rm,n = (ai,j)i=1...m,j=1...n, we
denote the set

{∑n
j=1 ai,j

}
of row-wise sums of A by R(A),

the set {
∑m
i=1 ai,j} of column-wise sums of A by C(A), and

the set of non-zero singular values of A by S(A).
Definition 2: Consider an integer i and a non-zero positive

integer p, we denote the integer part of i − 1 in base p
bi− 1cp = b i−1p c and the fractional part {i− 1}p = i −
bi− 1cp × p.

First we focus on conservation properties in terms of row-
wise and column-wise sums which correspond respectively to
marginalized user engagement and item popularity distribu-
tions. In the following, × denotes the Minkowski product of
two sets, i.e. A×B = {a× b | ∀a ∈ A,∀b ∈ B}.

Proposition 1: Consider A ∈ Rm,n and B ∈ Rp,q and their
Kronecker product K = A⊗B. Then

R(K) = R(A)×R(B) and C(K) = C(A)× C(B).

Proof 1: Consider the ith row of K, by definition of
K the corresponding sum can be rewritten as follows:∑
j=1...np ki,j =

∑
j=1...np abi−1cp+1,bj−1cq+1b{i−1}p,{j−1}q

which in turn equals∑
j=1...n

∑
j′=1...q

abi−1cp+1,jb{i−1}p,j′ .

Refactoring the two sums concludes the proof for the row-
wise sum properties. The proof for column-wise properties is
identical. �

Theorem 1: Consider A ∈ Rm,n and B ∈ Rp,q and their
Kronecker product K = A⊗B. Then

S(K) = S(A)× S(B).

Proof 2: One can easily check that (XY ) ⊗ (VW ) =
(X ⊗ V )(Y ⊗W ) for any quadruple of matrices X,Y, V,W
for which the notation makes sense and that (X ⊗ Y )T =
XT ⊗ Y T . Let A = UAΣAVA be the SVD of B and
B = VBΣBVB the SVD of B. Then (A ⊗ B) = (UA ⊗
UB)(ΣA ⊗ ΣB)(VA ⊗ VB). Now, (UA ⊗ UB)T (UA ⊗ UB) =
(UTA ⊗ UTB )(UA ⊗ UB) = (UTAUA) ⊗ (UTBU

T
B ). Writing the

same decomposition for (VA⊗VB)(V TA ⊗V TB ) and considering
that UA, UB are column-orthogonal while VA, VB are row-
orthogonal concludes the proof. �

The properties above imply that knowing the row-wise
sums, column-wise sums and singular value spectrum of the
reduced rating matrix R̂ and the original rating matrix R
is enough to deduce the corresponding properties for the
expanded rating matrix R̃ — analytically. As in [29], the Kro-
necker product enables analytic tractability while expanding
data sets in a fractal manner to orders of magnitude more
data.



In practice, we use a randomized version of the Kronecker
product whose block-wise shuffles do not have an analytically
tractable effect of the high order statistics of the rating matrix.
Therefore, we rely in section V-4 on a statistical examination
of the properties of the extended synthetic data set we produce
with our randomized fractal operator to verify that our original
theoretical insights from the deterministic case are still valid.
In particular, we demonstrate that original high order statistics
of the new data set we produce preserve — as in our first
deterministic approach [4] — the original properties of the
binary MovieLens 20m data set.

3) Constructing a reduced R̂ matrix with a similar spec-
trum: Considering that the quasi power-law properties of R
imply — as in [29] — that S(R) × S(R) has a similar
distribution to S(R), we seek a small R̂ whose high order
statistical properties are similar to those of R. As we want to
generate a dataset with several billion user/item interactions,
millions of distinct users and millions of distinct items, we
are looking for a matrix R̂ with a few hundred or thousand
rows and columns. The reduced matrix R̂ we seek is therefore
orders of magnitude smaller than R. In order to produce
a reduced matrix R̂ of dimensions (1000, 1700) one could
use the reduced size older MovieLens 100K dataset [19].
Such a dataset can be interpreted as a sub-sampled reduced
version of MovieLens 20m with similar properties. These
data sets have been collected seven years apart, wherein the
characteristics of the dataset are not comparable. Also, we
aim to produce an expansion method where the expansion
multipliers can be chosen flexibly by practitioners. In our
experiments, it is noteworthy that naive uniform user and item
sampling strategies have not yielded smaller matrices R̂ with
similar properties to R in our experiments. Different random
projections [2], [14], [31] could more generally be employed.
However, we rely on a procedure better tailored to our specific
statistical requirements.

We now describe the technique we employed to produce a
reduced size matrix R̂ with first and second order properties
close to R which in turn led to constructing an expansion
matrix R̃ = R̂ ⊗ R similar to R. We want the dimensions of
R̂ to be (m′, n′) with m′ << m and n′ << n. Consider again
the approximate Singular Value Decomposition (SVD) [21] of
R with the k = min(m′, n′) principal singular values of R:

R ' UΣV (4)

where U ∈ Rn,k has orthogonal columns, V ∈ Rk,m has
orthogonal rows, and Σ ∈ Rk,k is diagonal with non-negative
terms.

To reduce the number of rows and columns of R while
preserving its top k singular values a trivial solution would
consist in replacing U and V by a small random orthogonal
matrices with few rows and columns respectively. Unfortu-
nately such a method would only seemingly preserve the
spectral properties of R as the principal singular vectors would
be widely changed. Such properties are important: one of the
key advantages of employing Kronecker products in [29] is

the preservation of the network values, i.e. the distributions of
singular vector components of a graph’s adjacency matrix.

To obtain a matrix Ũ ∈ Rn′,k with fewer rows than U
but column-orthogonal and similar to U in the distribution
of its values we use the following procedure. We re-size U
down to n′ rows with n′ < n by down-scaling through local
averaging (using skimage.transform.resize in the scikit-image
library [51]). Let Ū ∈ Rn′,k be the corresponding resized
version of U . We then construct Ũ as the column orthogonal
matrix in Rn′,k closest in Frobenius norm to Ū . Therefore as
in [16] we compute

Ũ = Ū
(
ŪT Ū

)−1/2
. (5)

We apply a similar procedure to V to reduce its number of
columns which yields a row orthogonal matrix Ṽ ∈ Rk,m′

with m′ < m. The orthogonality of Ũ (column-wise) and Ṽ
(row-wise) guarantees that the singular value spectrum of

R̂ = ŨΣṼ (6)

consists exactly of the k = min(m′, n′) leading components
of the singular value spectrum of R. Like R, R̂ is re-scaled
to take values in [−1, 1]. The whole procedure to reduce R
down to R̂ is summarized in Algorithm 3.

Algorithm 3 Compute reduced matrix R̂

(U,Σ, V )← sparseSVD(R, k)
Ū ← imageResize(U, n′, k)
V̄ ← imageResize(V, k,m′)
Ũ ← Ū

(
ŪT Ū

)−1/2
Ṽ ←

(
V̄ V̄ T

)−1/2
V̄

R̂temp ← ŨΣṼ

M ← max(R̂temp)

m← min(R̂temp)

return R̂temp/(M −m)

We verify empirically that the distributions of values of the
reduced singular vectors in Ũ and Ṽ are similar to those of
U and V respectively to preserve first order properties of R
and value distributions of its singular vectors. Such properties
are demonstrated through numerical experiments in the next
section.

V. EXPERIMENTATION ON MOVIELENS 20 MILLION DATA

The MovieLens 20M data comprises 20M ratings given
by 138K users to 27K items. In the present section, we
demonstrate how the fractal Kronecker expansion technique
we devised and presented helps scale up this dataset to orders
of magnitude more users, items and interactions — all in a
parallelizable manner.

1) Pre-processing of MovieLens 20m: The first pre-
processing step we apply to MovieLens 20m is binarizing all
the ratings: all the rating values are set to 1. Such a step is
standard for tasks such as Neural Collaborative Filtering [20].
The second pre-processing step filters out users who have



MovieLens 20m Synthetic train set Synthetic test set
Interactions 20 M 1.22 B 12.7 M

Users 138 K 2.20 M 2.20 M
Items 27 K 855 K 855 K

TABLE II: Size of the extended MovieLens20m data set

fewer than 2 ratings with distinct timestamps. The filter
enables the splitting of MovieLens 20m into a train set Rtrain
consisting of all the ratings of each users except the last one
in chronological order and its complement. For each user, the
rating with the latest timestamp is put in the test set Rtest.
After removal of users with too few ratings and splitting into
training and test sets, we expand MovieLens 20m with the
randomized Kronecker product presented in Algorithm 2.

2) Size of expanded data set: In the present experiments
we construct a reduced rating matrix R̂ of size (16, 32). The
dropout based method in Algorithm 2 yields a new data set
whose size is detailed in Table II.

Such a high number of interactions and items enable the
training of deep neural collaborative models such as the
Neural Collaborative Filtering model [20] with a scale which
is now more representative of industrial settings. Moreover,
the increased data set size helps construct benchmarks for
deep learning software packages and ML accelerators that
employ the same orders of magnitude as production settings
in terms of user base size, item vocabulary size and number
of observations.

3) Empirical properties of reduced R̂ matrix: The objective
of the construction technique for R̂ was to produce a matrix
sharing the properties of R⊗R though smaller in size ( [29]).
To that end, we aimed at constructing a matrix R̂ of dimension
(16, 32) with properties close to those of R in terms of
column-wise sum, row-wise sum and singular value spectrum
distributions.

We now check that the construction procedure we devised
does produce a R̂ with the properties we expected. As the
impact of the re-sizing step is unclear from an analytic stand-
point, we had to resort to numerical experiments to validate
our method.

In Figure 3, one can assess that the first and second order
properties of R and R̂ match with high enough fidelity. In
particular, the higher magnitude column-wise and row-wise
sum distributions follow a “power-law” behavior similar to
that of the original matrix. Similar observations can be made
about the singular value spectra of R̂ and R.

There is therefore now a reasonable likelihood that our
adapted Kronecker expansion — although somewhat differing
from the method originally presented in [29] — will enjoy the
same benefits in terms of enabling data set expansion while
preserving high order statistical properties.

4) Empirical properties of the expanded data set R̃: We
now verify empirically that the expanded rating matrix R̃ =
R̂ ⊗ R does share common first and second order properties
with the original rating matrix R. The new data size is 2 orders
of magnitude larger in terms of number of rows and columns
and 4 orders of magnitude larger in terms of number of non-
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Fig. 3: Properties of the reduced dataset R̂ ∈ R16,32 built
according to steps 4, 5 and 6. We validate the construction
method numerically by checking that the distribution of row-
wise sums, column-wise sums and singular values are similar
between R and R̂. Note here that as R is large we only
compute its leading singular values. As we want to preserve
statistical “power-laws”, we focus on preservation of the rela-
tive distribution of values and not their magnitude in absolute.

zero terms. Notice here that because of the dropout, the density
of the resulting data set is about 20% that of the original data
set.

In Figure 4, one can confirm that the spectral properties
of the expanded data set as well as the user engagement
(row-wise sums) and item popularity (column-wise sums) are
similar to those of the original data set. Such observations
demonstrate that the theoretical insights from Proposition 1
and Theorem 1 are indeed informative of the high order statis-
tics of the synthetic data set we generate. Our ex-post empirical
study indicates that the resulting data set is representative
— in its fat-tailed data distribution and quasi “power-law”
singular value spectrum — of problems encountered in ML
for collaborative filtering. Furthermore, the expanded data set
reproduces some unique properties of the original data, in
particular the accelerating decay of values in ranked row-
wise and column-wise sums as well as in the singular values
spectrum.
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Fig. 4: High order statistical properties of the expanded dataset
R̂ ⊗ R. We validate the construction method numerically by
checking that the distributions of row-wise sums, column-wise
sums and singular values are similar between R and R̂ ⊗ R.
Here we leverage the tractability of Kronecker products as
they impact column-wise and row-wise sum distributions as
well as singular value spectra. In all plots we can observe the
preservation of the linear log-log correspondence for the higher
values in the distributions of interest (row-wise sums, column-
wise sums and singular values) as well as the accelerated decay
of the smaller values in those distributions.

VI. CONCLUSION

In conclusion, this paper presents an attempt at synthesizing
a realistic large-scale recommendation data sets without having
to make compromises in terms of user privacy. We use a small
size publicly available data set, MovieLens 20m, and expand
it to orders of magnitude more users, items and observed
ratings. Our expansion model is rooted into the hierarchical
structure of user/item interactions which naturally suggests a
fractal extrapolation model.

We leverage randomized Kronecker products as self-similar
operators on user/item rating matrices that preserve key prop-
erties of row-wise and column-wise sums as well as singular
value spectra. We modify the original Kronecker Graph gener-
ation method to enable a randomized expansion of the original
data by orders of magnitude that yields a synthetic data set
matching industrial recommendation data sets in scale. Our

numerical experiments demonstrate the data set we create has
key first and second order properties similar to those of the
original MovieLens 20m binarized rating matrix.

Our next steps consist in making large synthetic data sets
publicly available although any researcher can readily use the
techniques we presented to scale up any user/item interaction
matrix. Another possible direction is to adapt the present
method to recommendation data sets featuring metadata (e.g.
timestamps, topics, device information). The use of metadata
is indeed critical to solve the “cold-start” problem of users
and items having no interaction history with the platform. In
this work, we did not consider here the temporal structure of
the MovieLens data set. We leave the study of sequential user
behavior — often found to be Long Range Dependent [5],
[12], [41], [48] — and the extension of synthetic data genera-
tion to sequential recommendations [3], [49], [54] for further
work. We also plan to benchmark the performance of well
established baselines on the new large scale realistic synthetic
data we produce.
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