Transparent, Scrutable and Explainable User Models for
Personalized Recommendation

Krisztian Balog Filip Radlinski Shushan Arakelyan®
Google Google USC Information Sciences Institute
London, UK London, UK Marina Del Rey, CA, USA
krisztianb@google.com filiprad@google.com shushan@isi.edu

ABSTRACT

Most recommender systems base their recommendations on im-
plicit or explicit item-level feedback provided by users. These item
ratings are combined into a complex user model, which then pre-
dicts the suitability of other items. While effective, such methods
have limited scrutability and transparency. For instance, if a user’s
interests change, then many item ratings would usually need to be
modified to significantly shift the user’s recommendations. Simi-
larly, explaining how the system characterizes the user is impossible,
short of presenting the entire list of known item ratings. In this
paper, we present a new set-based recommendation technique that
permits the user model to be explicitly presented to users in natural
language, empowering users to understand recommendations made
and improve the recommendations dynamically. While perform-
ing comparably to traditional collaborative filtering techniques in
a standard static setting, our approach allows users to efficiently
improve recommendations. Further, it makes it easier for the model
to be validated and adjusted, building user trust and understanding.

CCS CONCEPTS

« Information systems — Recommender systems.

KEYWORDS
Recommendations, explainability, transparency, scrutability

ACM Reference Format:

Krisztian Balog, Filip Radlinski, and Shushan Arakelyan. 2019. Transparent,
Scrutable and Explainable User Models for Personalized Recommendation.
In Proceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR °19), July 21-25, 2019, Paris,
France. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3331184.
3331211

1 INTRODUCTION

The importance of explainable AI has been recognized in recent
years [33]. Recommender systems represent an important branch
of Al research and the explainability of recommendations has at-
tracted considerable attention [49, 54]. Generally, explanations
“seek to show how a recommended item relates to a user’s prefer-
ences” [51]. Explanations can serve a multiplicity of aims, including

“Work was performed while the author was at Google.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGIR ’19, July 21-25, 2019, Paris, France

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6172-9/19/07.

https://doi.org/10.1145/3331184.3331211

« You like movies that are tagged as ‘action’, especially those that are tagged as
‘violent’, such as Aliens.

« You like movies that are tagged as ‘twist ending’, such as A Pure Formality.

« You don’t like movies that are tagged as ‘adventure’, unless they are tagged
as ‘thriller’, such as Twister.

« You like movies that are tagged as ‘cheesy’, such as Who Framed Roger Rabbit?

« You like movies that are tagged as ‘australia’, such as Crocodile Dundee II.

Figure 1: Example summary of a user’s preferences.

transparency (helping users to understand how the system works),
Jjustification (explaining individual recommendations), and scrutabil-
ity (allowing users to tell the system if it is wrong) [49].

There is an important distinction between transparency and
justifications [51]. The former should give an honest account of
how recommendations are selected, while the latter merely gives a
plausible description that might be decoupled from the recommen-
dation algorithm. Often, the underlying algorithm is too complex to
be described in a human-interpretable manner (e.g., ensemble and
deep learning models) or may involve technology that the system
provider wishes to protect. Contemporary recommender systems
therefore often opt for providing justifications [54], rather than
offering genuine transparency.

Scrutability is also lacking in most recommender systems. There
is usually little recourse to tell a system if it incorrectly inferred
preferences, as the only instruments at the user’s disposal are usu-
ally removing items from the history and modifying ratings made
in the past. It is especially cumbersome to exclude an entire set of
items (such as a specific genre in movie recommendations) when,
for example, a user’s interests shift.

Thus transparency and scrutability are closely tied together,
yet one does not imply the other. So far there have only been
preliminary attempts at making explanations both transparent and
scrutable [19]. With this paper, we aim to fill that gap. Our main
research question is the following: How much recommendation
accuracy would one need to sacrifice by making a recommender
system both transparent and scrutable? We address this question by
developing a recommendation approach that satisfies the following
desiderata: (1) reveal to users how their preferences are generally
understood (explainability); (2) faithfully represent and expose the
reasoning behind the recommendation mechanism (transparency);
(3) provide users with a direct and meaningful way to revise their
model (scrutability).

A fundamental difference between this work and prior research
is that we take explainability to the level of user preferences, as
opposed to that of item recommendations. That is, instead of ex-
plaining the user why a given item was recommended, we present
an approach to provide a textual description that summarizes the
system’s understanding of the user’s preferences. We allow the user
to scrutinize this summary and thereby directly modify his or her
user model, as illustrated in Figure 1.

https://doi.org/10.1145/3331184.3331211
https://doi.org/10.1145/3331184.3331211
https://doi.org/10.1145/3331184.3331211

Our proposed approach hinges on the notion of set-based pref-
erences. People often reason about categories and groups of items
when reasoning about possible recommendations to make [3, 14].
Since attaching labels to clusters of items is an inherently difficult
problem (e.g., [7]), we instead reverse the process and use tags to
define sets. Thus, following related research [17, 42, 51], a basic
assumption made in this paper is that user preferences as well as
items can be characterized by a set of tags or keywords. These tags
may be provided by users (social tagging) or extracted automatically.
Given explicit ratings of specific items, which is the most common
way of eliciting preferences today, we infer set-based preferences
by aggregating over items that are associated with a given tag. We
also present a novel pairwise tag-interaction approach that leads to
much more semantically rich tag-based preferences being modeled.

This set-based user preference model enables us to generate
item recommendations in a transparent manner. For explaining
preferences, we opt for sentence-level textual explanations as this
provides scrutability, by letting users provide feedback on individual
sentences. Any change to the user’s preferences has an immediate
impact, thereby endowing users with more direct control over the
recommendations they receive.

In summary, we make the following contributions: (1) we present
an efficient method for inferring set-based user preferences from
ratings given to individual items based on the tags associated with
those items; (2) we develop a simple, effective, and computationally
efficient recommendation model that operates on item tags and
set-based user preferences; (3) we propose a simple algorithm for
generating natural language explanations of user preferences; (4)
we show the value of such a transparent and scrutable model.

2 RELATED WORK

Explainable recommendations refers to personalized recom-
mendation algorithms that “not only provide the user with rec-
ommendations, but also make the user aware why such items are
recommended” [54]. In addition to improving user acceptance of
recommendations (persuasiveness), explanations can serve a multi-
plicity of aims, such as inspiring the user’s confidence in the system
(trust), helping users make good decisions (effectiveness) as well
as make decisions faster (efficiency) and increasing the ease of
use of a system (satisfaction) [49]. Various forms of explanations
have been explored in prior work, including sentences [21, 55],
tag/keyword clouds [17, 30, 53], as well as different kinds of vi-
sualizations [10, 22, 31, 47]. Gedikli et al. [17] evaluate different
explanation types and propose a set of guidelines for designing and
selecting suitable explanations for recommender systems.

Generation Approaches. Another way to classify explainable
recommendation research is by the model used for generating ex-
planations [54]. They can broadly be categorized into content-based,
collaborative filtering, and hybrid approaches. Content-based meth-
ods attempt to match items to users based on features/attributes,
such as genre or director in the movies domain. These approaches
naturally lend themselves to intuitive explanations by listing con-
tent features/attributes that made an item appear in the recommen-
dations [13]. Instead of relying on content information, collaborative
filtering techniques leverage the “wisdom of the crowds” and make
recommendations based on patterns of ratings or usage [24]. Two
families of methods may be distinguished: neighborhood-based

and model-based. Neighborhood-based methods estimate ratings
by those made by like-minded users (user-based) or known rat-
ings made by the user on similar items (item-based). Of the two,
item-based methods often have better scalability and improved
accuracy [40], and are also more amenable to explaining the rea-
sons behind the recommendations, as “users are familiar with items
previously preferred by them, but do not know those allegedly
like-minded users” [24]. Model-based methods capture salient char-
acteristics of users and items by parameters learned from training
data. Perhaps the most prominent are latent factor models based on
matrix factorization [25], where user-item interactions are modeled
as inner products in a lower dimensional space. Although collabora-
tive filtering methods have achieved significant improvements over
content-based methods in terms of accuracy, they are less intuitive
to explain [54]. Specifically, the challenge is that the meaning of
each latent dimension is unknown. Zhang et al. [55] propose to
alleviate this problem by aligning each latent dimension with a
particular explicit feature extracted from textual user reviews. Note
that this work, along with many others [9, 11, 27, 30, 43, 52], gener-
ates explanations with the help of reviews written for items, which
may not always be available. Others consider neighborhood-style
explanations for matrix factorization (“users who are the most sim-
ilar to you also liked the recommended item”) and incorporate an
“explainability regularizer” into the objective function [1]. Neural
models, which have recently attracted attention for explainable
recommendations, also fall under the category of model-based ap-
proaches [27, 43]. These leverage attention weights over words in
user reviews to indicate which parts are relevant for the recom-
mendation that was made. The recommendation model, however,
is still a black box and “the explainability of the deep model itself
also needs further exploration” [54].

It is important to note that “the underlying algorithm of a rec-
ommender engine will to a certain degree influence the types of
explanations that can be generated” [49]. Therefore, explainability
is a main design decision for us. Our model would be classified
as content-based, as user preferences are characterized as a set of
model parameters which are inferred from item ratings and then
used to predict how much the user would like an unseen item.

Transparency provides insights into how the recommendation
process works, and is closely related to explainability. Indeed, one of
the aims that explanations can serve is to provide transparency [49].
A crucial difference is that transparency “should give an honest ac-
count of how the recommendations are selected and how the system
works” [49], while justification merely provides a plausible reason
that may be decoupled from the recommendation algorithm [51].
Explanations can also help to make a system scrutable, that is, allow
users to correct the system’s reasoning or modify preferences in the
user model [36]. A preliminary attempt at transparent and scrutable
explanations is presented in [19]. There, the authors consider a sim-
ilar item search scenario and provide explanations in the form of
overlapping and difference tag clouds between a seed item and a
recommended item. Users can then steer the recommendations by
manipulating the tag clouds.

The utilization of tags for explainable recommendations has been
particularly well studied in the movie domain [17, 51]. Vig et al.
[51] use tags for explaining movie recommendations and evaluate
different interface designs that show how user preferences relate

Table 1: Notation. (All ratings are w.r.t. a given target user.)

C Set of candidate statements i Item (i € I)

I Set of all items 7+ Inferred rating of ¢

I* Items rated by the user ry Neutral rating threshold
I; Items labeled with ¢ ri Rating of item i

I} Rateditemslabeled witht t Tag(t €T)
R; Set of all ratings from items from Iy

Si Top-k user preference statements selected

T Setofall tags

T*/~ Set of user tags liked/disliked by the user

W User model (weighted set of tags)

to items. One key observation was that displaying tag preference
(the user’s sentiment towards a tag) is more important than tag
relevance (the weight of a tag for a given movie). They explain
this as follows: “Users may prefer seeing tag preference because
they are skeptical that a recommender system can accurately infer
their preferences.” Gedikli et al. [17] find content-based tag cloud
explanations effective and particularly well accepted by users. We
also use tags to represent user preferences, but unlike existing work,
we strive for natural language explanations instead of word clouds.

Set-Based Preferences. Many papers consider the case where
preferences over sets are given, and used to infer preferences for
individual items [3, 4, 7, 14, 44]. We investigate the reverse process,
starting from item preferences and infering sets. Of the above, [7]
is most relevant. Users are presented with sets of items along with
some tags (e.g. “based on a comic, dark hero, superhero”), and asked
to indicate which sets match their interests. The authors show that
users are able to complete the preference elicitation process more
rapidly than with traditional item ratings. Other studies also suggest
that it may be easier for users to express preferences implicitly
in sets rather than item by item [3, 14]. Sharma et al. [44] study
how users’ ratings on sets of items relate to their ratings on the
constituent items. They find that for most users the rating on a set
can be accurately approximated by the average rating of the items
in that set. There is, however, a considerable user population that
tends to over- or under-estimate set-level ratings, especially for
sets that contain items with diverse ratings.

3 MODELING USER PREFERENCES

This section describes our user model, which is based on set-based
preferences. It is a core enabling component for providing trans-
parent item recommendations and for generating scrutable textual
explanations of user preferences.

For the ease of presentation, all our examples are from the do-
main of our evaluation dataset, movies, as this has been a fertile area
of recommendation systems research both from an algorithmic and
from an explainability perspective [6, 8, 17, 22, 48, 51]. However,
there is nothing domain specific in our approach.

3.1 A Case for Set-based Preferences

Related work has shown that set-based preference elicitation can
lead to an accurate model of user preferences and, consequently,
to high-quality item recommendations [7]. However, generating
descriptions for sets is notoriously hard. Therefore, instead of first
clustering items and then naming clusters (as per [7]), we capture
sets in terms of social tags, and generate explanations based on those

sets. While we will be using tags for capturing sets, we note that sets
could also be defined in alternative ways, e.g., using item attributes
(movie genres, directors, etc.). We further acknowledge that there
are known issues regarding the quality [41] and redundancy [18]
of social tags. Some have suggested that certain types of tags are
more suitable than others for generating explanations [51]. The
quality of item-tag assignments can thus have a significant impact
on recommendation accuracy as well as on explanation quality.
However, we regard this as a data quality issue, and beyond the
scope of this paper; it does not affect our modeling in any way.

3.2 Inferring Set-level Preferences

Let us assume that I is the set of all known items where each item
i represents a single movie, TV series, TV show, or similar. Let us
also assume that we have a set of items I* that are rated by a given
target user u and r; € [—1, 1] is the (normalized) rating of each item
i € I*. Rating values lower than 0 correspond to disliking the item,
while values higher than 0 show liking. We also have a number of
tags t, each of which represents a semantic set like “comedy film” or
“movies directed by Christopher Nolan.” We refer to Table 1 for the
notation used throughout the paper. Note that we will be referring
to ratings and preferences of a single user, therefore the subscript
u is generally omitted for the ease of notation.

We infer set-level preferences from ratings given to individual
items, taking the mean rating of items labeled with a given tag to
be the tag’s average appeal to the user:

. 1
r;—ﬁZri, (l)

Py
i€l

where I} is the set of items rated by the user and tagged with t.
Note that we take the relationship between items and tags (referred
to as tag relevance in [51]) to be binary (as opposed to a value on
a continuous scale). It means that we are assuming that all tags
associated with an item describe that item equally well. The binary
approach is motivated both by its conceptual simplicity and by
the fact that weighted item-tag assignments are unavailable in the
public dataset we are working with. A tag-weighted variant of
Eq. (1) would be a straightforward extension in future work.

3.3 Modeling Pairwise Set Interactions

Prior work modeling user interests with tags has focused on tags
that succinctly characterize a single set of items, e.g., “science-
fiction movies” or “movies starring Tom Cruise” However, rea-
soning about high-level preferences through single tags produces
preferences that are rarely rich enough to capture realistic interests
particularly well. For instance, consider the above example of sci-
ence fiction movies. A wide variety of science fiction movies exist,
and a user’s preferences are rarely black and white for such a large
class of items. It may well be that the user generally dislikes science
fiction movies, while some may still appeal to her. For this reason,
one of our key contributions is representing user preferences by
interactions between pairs of tags.

To explain this concept further, consider Figure 2. Here, the user
does not like science fiction movies in general, but does like sci-
ence fiction movies that are about space exploration. Our approach
allows describing this situation as “You don’t like science fiction
movies unless they are about space exploration.” Note, that in this

. Movies about
Science space

fiction exploration

Figure 2: Here, the user does not like science fiction movies
in general, but does like those about space exploration.

example it is not necessarily true that the user would also like
documentaries or horror movies featuring space exploration. Note
also that multi-set interactions could be modeled in a similar way.
However, our goal is to produce scrutable models, and we hypoth-
esize that pairwise interactions capture sufficient richness while
still providing a unit that can be naturally scrutinized by a user. For
instance, it would be natural to ask someone “What sort of science
fiction movies do you like?”, but not usually natural to ask “What
sort of science fiction movies about space exploration do you like?”.

We formalize and consider different interactions between sets,
which are presented in Figure 3. Each pairwise interaction can also
be translated into a simple sentence that captures the meaning of
the interaction. While language is naturally ambiguous, we provide
a specific meaning to the base interactions allowed.

3.4 User Model

We define the user model as a weighted set W of tags. For a given
tag t, w; denotes the preference of the target user for that tag, such
that the absolute value expresses the strength of the preference,
while the sign indicates the direction of preference (i.e., like/dislike).

The preferences for the individual values can then naturally be
derived from the inferred tag ratings:

W = F t—Tu, (2)
where r;, corresponds to the neutral rating. This may be personal-
ized by using a user-specific value, however, we use the objective
neutral rating, i.e., a value of 0, for all users.! Given a tagged item
corpus, pairwise tag interactions are encoded by introducing any
required pairwise tags, as pseudo tags, allowing a weight to be
inferred where pairwise interactions exist. In particular, for a pair
of tags t,, t, encoding “You [don’t] like t, connective t,,” and noting
that whenever both tags apply then t, must also apply, we model:

- Wi, - (3

Recall that our approach is designed with scrutability in mind. That
is, the user can explicitly state a positive or negative preference for
a given tag. In practical terms this simply means overwriting the
estimated w; for that tag with a specific value, such as 1 or -1, or
excluding preference on a tag by removing it from W.

Wta,ty = Tta,ty

4 IDENTIFYING USER PREFERENCES

This section introduces our approach to selecting which tags and
pairwise tags, referred to as statements hereinafter, should be in-
cluded in a user model. The algorithm works as follows. A set of
candidate statements C is generated. These are ranked based on
utility to the user model, and the set S of selected statements is in-
cluded in the user model. Before detailing each of these steps below,
we define desirable properties of the set of selected statements.

Tt is known that some users tend to either underrate or overrate items [44], therefore,
r,; may also be set to the mean user rating. However, in our experiments, this achieved
inferior performance to using an objective neutral rating.

You (don't) like first especially if second.

G0 D

first second first second

You (don’t) like first especially if not second.

@nd first E i second

You (don't) like first unless second.

@nd first z z second

You (don't) like first if second.

@nd first Z z second

Figure 3: Pairwise set interactions allowed in the user model.
First is the tag of the left set and second is that of the right set.
+,-and N indicate positive, negative and neutral average user
appeal, with double symbols indicating stronger signals.

4.1 Desirable Properties

We define the following desirable properties for the generated sum-
mary: (1) we aim to provide a correct description, i.e., one that
correctly describes the user and does not contradict ratings pro-
vided by the user; (2) we aim to provide a complete description,
i.e., covering as many preferences from the set of rated items I* as
possible, and ideally not leaving any significant portion of the user’s
interests uncovered; (3) we aim for precision to avoid generating
generic or abstract descriptions, such as “you like TV shows.

4.2 Generating Candidate Statements

A candidate statement s € C models either the user’s preference
about a single tag t or about interaction between a pair of tags
(ta, tp). We start with the simpler case of a single tag.

Single Tag Statements. Candidate statements are generated for
any tag which satisfies a set of conditions parameterized by ©:

o The tag applies to at least O items rated by the user. Le., it is
generalizable.

o Ry, the set of ratings for t has a mean that is statistically signifi-
cantly different from zero (using the Wilcoxon Signed Rank test),
with p-value below ©,. Le., it indicates a significant preference.

The utility of statement s; for a single tag ¢ in the user model is
the weight of the tag in the user model, corrected for coverage and
significance:

U(st) = cou(sy) - sig(se) - [we 4)
where cou(s;) represents how many of the item-level user observa-
tions are covered by this statement, and sig(s;) discounts statements
over tags that are only weakly statistically significant. Specifically,
the coverage is defined as the lesser of the fraction of items rated
by the user that do, or do not, contain the tag:

I | II*I—II?I)

. 5
N ®

cov(sy) = min (

The utility of statements for which the statistical strength is less
than two standard errors is discounted by defining:

sig(s;) = min (2, |wt|/ th) 6)
71

where o; is the estimated variance of the ratings provided in R;.

Pairwise Tag Statements. For generating pairwise interactions,
these requirements apply to the first tag, as well as to the second
tag in the context of the first:

U(sta,tb) = U(ta) + COU(Sta,fh) : Sig(stu, t;,) : |Wta,tb |’ (7)
Specifically, for a pairwise interaction we redefine the coverage as:
G, NI, 1 G, 1=, NI |

* ’ *
I | in;

®)

cov(st,, 1) = min

Significance and weight are computed as before, but over I; N Ijb.

4.3 Selecting Statements

While statements can be generated in this way for all tags attached
to items in the corpus, as well as for all pairs of tags that co-occur
on a sufficient number of items, this would yield an inscrutable
user model. Specifically, we started with the observation that it is
often impractical for a user to review or update all items they have
provided feedback about to validate a model. In this section we
show how we select down from all the possible tags and pairwise
tags to a smaller set that can be presented to a user.

Recall that C is the set of all single tag and pairwise candidate
statements for a given user. Inspired by the MMR algorithm [5],
we perform a greedy selection over C to obtain a subset Sy that
captures a user’s top-k preferences. In each round, we select a
statement to add to Sy by picking the one with highest incremental
utility over those statements already selected. Thus, we select:

s* = argmax U(s|Sg) 9)
seC
where U(s|Sg) = cou(s|Sk) - sig(s) - ws], (10)
(T /Ts, | 0] = (TG /T, |
cov(siSe) = min| =g ——E—] (1)

defining Is, as the set of items in I* that influence one of the existing
statements in Sg. Below, in Section 7.2, we will evaluate how the
value of k impacts recommendation quality.

4.4 Generating Textual Representations

Using the templates presented in Figure 3, the entire model can be
presented to the user in natural language. We also note that the
intensity of the user’s preferences can be accentuated using terms
such as “like;” “love,” “hate,” “don’t like,” etc. In our experiments, we
only included two grades, namely “like” and “don’t like.”

Finally, when generating sentences to present to the user, we
additionally select a representative example from the specific items
the user has rated for each statement. Our preliminary experiments
showed that this disambiguates the meaning of the tag(s) to the
user, and grounds it in specific movies that the user knows, thus
improving the user’s understanding. An example of a single-tag
statement would thus be “You don’t like science fiction movies,
such as The Day After Tomorrow.”

5 GENERATING ITEM RECOMMENDATIONS

This section introduces our set-based model for generating item
recommendations. It may be classified as a content-based approach,
which scores individual items by matching the tags assigned to them
against the tag preferences of the user. It is by design a transparent
and explainable process that can directly incorporate user feedback,
without complex interactions.

5.1 Set-based Model

Let L be a binary random variable that indicates whether item i is
liked (¢*) or disliked (¢7). Following the probability ranking princi-
ple in IR [39], items should be ranked according to the probability
P(L = ¢*|u, i), which is equivalent to ranking items based on the
odds ratio: .

_ P(L = €_|u, l.) ’ (12)

P(L =¢"|u,i)

Applying Bayes’ rule and then decomposing the joint probability
P(u, i|L), we get:

O(L = €F|u, i)

rank P(u,i|L = €* P(uli,L = €* P(L={"i
O = gy Pl =) _ PliL=0%) PL=C'l)
P(u,ilL=¢") P(u|i,L=¢") P(L=¢("]i)
(13)

There are two main components in this model. The user likelihood,
P(uli, L) is, intuitively, the probability that user u likes/dislikes item
i. The term P(L|i) can be interpreted as the prior probability of item
i being liked/disliked (by any user). It is worth pointing out the
similarity between this model and negative query generation for
document retrieval [28]. Here, the user is the query that is being
generated by the document (item). However, the estimation of the
model’s components, which we describe below, is very different.

5.2 User Likelihood

We start by discussing the estimation of P(u, i|L = €*) and P(u, i|L =
{7). To reduce the number of equations, we shall use the symbol o
to denote either + or —. Assuming that tags for an item are sampled
identically and independently, the user likelihood is estimated as:

P(uli,L = £°) =]_[P(t]6;) " e (14)

teTs,

where P(t]0;) is the probability of tag t given the model of item
i, T;, is the set of tags liked/disliked the user, and W?, ., are the
corresponding (positive/negative) user-tag weights. We detail the
estimation of these components below.

Modeling Items. Notice that Eq. (14) resembles the query likeli-
hood formula in ad hoc document retrieval. There is, however, an
important difference. The probability of a given tag in the item’s
model, P(¢|0;), should only depend on the presence/absence of that
tag. It should not be influenced by what other tags are associated
with the item. (Otherwise, the number of tags that are associated
with an item would have an undesired influence on the ranking.)
Therefore, we model each item as a single sample from a multiple-
Bernoulli distribution, where each binary trial corresponds to the
event that some tag is associated with the item or not.

Let each item i be represented by a vector w; € {0, 1} Tl where
w;,; = 1iff tag t is assigned to i. From this single sample, we wish
to estimate a smoothed tag model 0; for the item. We assume a prior
over the model, specifically a multiple-Beta distribution, which is

the conjugate prior for the multiple-Bernoulli distribution. The
probability of a tag given the item’s model can then be written as:

Wt,i-l-a't—l

PO =

) (15)
where a; and f; are parameters of the model. Analogously to how
smoothing is applied in language modeling for ad hoc document
retrieval [32], we set:
w=pttler p=dpa By g
IT¢] I
where 1 is the set of all items, I, is the set of items tagged with
t, and p is the smoothing parameter. Plugging Eq. (16) back into
Eq. (15) yields:
we,i + el /0]
o+ /1]

Modeling Users. The other ingredient for the estimation of the
user likelihood in Eq. (14) is the positive and negative user-tag
weights, wzu and w; . Intuitively, these correspond to positive
and negative weights in the user model W (cf. Sect. 3.4). There is,
however, the requirement of explainability that we also wish to
satisfy. Instead of considering all tags for which preference could
be inferred, we restrict ourselves to those tags that were selected to
describe the user’s preferences, i.e., part of the selected statements,
Sk. Recall that statements are generated both for single tags and
for pairwise tag interactions. Pairwise tags, nevertheless, are intro-
duced as pseudo tags with appropriate relative weights (cf. Eq. (3)),
which means that those can also be treated as simple tags here.
Given the set of top-k user preference statements, we divide tags
involved into those liked (T*) and disliked (T™) by the user:

P(t]0;) = (17)

T = {t:t €S, ws >0} T ={t:t €Sk, w <0}, (18)

where w; is the user’s preference for tag ¢ according the user model
(cf. Sect. 3.4). By definition, T* and T~ are mutually exclusive. Then,
the positive and negative user-tag weights are defined as:

+ _{Wt ifteTt _ _{—W[ift e T™
tbu —

wy, Wiy = (19)

0 otherwise 0 otherwise .

We refer to the above formulation as the fully transparent user
model. Alternatively, one may use all tags from all candidate state-
ments C to rank items (i.e., replacing Sy with C in Eq. (18)), while
verbalizing only the top-k statements to the user. We call this a
partially transparent model.

5.3 Item Priors

So far, our model is purely content-based. However, it is also pos-
sible to leverage the wisdom of the crowds, that is, the rating of
other users on a given item. This is achieved by setting:

P(L = £*1i)
P(L= (i)

nf +1
Ul +1-n;

(20)

where n;r and n; are the number of users who liked and disliked
the item,? respectively, and [U] is the total number of users.

2Here, we use the neutral objective rating (i.e., 0.5) to decide if ratings given to this
item in the training dataset correspond to likes or dislikes.

5.4 Final Model
By taking the logarithm of Eq. (13), we obtain:

rank

logO(L = ¢*|u,i) "= logP(L=¢("i)—logP(L=1¢"]i) (21)

+log P(uli,L = €*) —log P(uli,L = {7),

where the first two terms are item priors that are independent of
the user and the last two terms express the probability of the user
liking/disliking the given item. Substituting Eqs. (14) and (20), we
obtain the following final ranking function:

rank

logO(L = ¢*|u,i) "= log(nf +1)—log(|U|+1—n;)

+ > i, logP(t|6) (22)
teT+
- > iy logP(t16:) .
teT~
When item priors are used, they may be seen as a collaborative
filtering element, making the overall approach a hybrid method. In
the absence of item priors, the model is a purely content-based one.

6 EXPERIMENTAL SETUP

To assess our model in terms of effectiveness and scrutability, we
conduct both a traditional benchmark-style evaluation as well as a
user study. We next provide a high level overview of the methodol-
ogy and describe the evaluation dataset. Following this, we present
the experiment design in detail and describe baselines.

6.1 Measurement Approach

Two broad categories of evaluation methodologies are commonly
distinguished in the literature for measuring recommendation qual-
ity [46]: (1) rating prediction estimates the rating a user would assign
to an item in the collection (often measured in terms of root mean
square error) and (2) item recommendation (a.k.a. top-N recommen-
dation), where a small set of items assessed for suitability as user
recommendations (typically measured using rank-based metrics,
such as precision or NDCG). While rating prediction has tradition-
ally been more popular, it can only be measured with respect to
observed ratings in the dataset. In practice, these are biased towards
items users like or know [29, 45]. Many real-world scenarios, in-
stead, are concerned with suggesting a few specific items from all
items in the catalog, and therefore should instead be modeled as
ranking problems [2, 12, 46]. Accordingly, for a given user u, the
output of the recommendation is a ranked list of the top-N highest
scoring items for that user.

6.2 Benchmark Dataset

We employ the MovieLens-20M (ML-20M) dataset, which has been
extensively used in recommendation research [20]. It describes
users’ movie preferences, expressed as 5-star ratings. The dataset
also contains social tags that users have assigned to individual
movies. These are typically single words or short phrases whose
meaning and purpose is determined by the user. Tag quality is
known to be mixed in this collection [17, 51]. Therefore, we filter
tags on multiple criteria. Following [51], we limit the vocabulary
of tags to those that have been applied by at least five different
users and to at least two different items. Further, we remove tags
deemed inappropriate (e.g., adult content) or of low utility (e.g.,
“don’t remember”). For a given item, we only keep tags that have

Table 2: Characteristics of the MovieLens-20M dataset.

#Ratings

Original data 20 000 263
Filtered data used 17 710 309

#Users #ltems #Tags

138 493 27 278 38 641
133 638 5839 5543

been assigned by at least two users. Finally, we filter out movies
that have fewer than two tags assigned to them. Table 2 provides
descriptive statistics on the original and filtered datasets.

We partition the dataset into train and test sets by randomly
selecting 1000 users and sampling 20% of their ratings as test data.
All other users and the remaining ratings of our test users constitute
the training split. For each user, we generate a ranked list of 100
items. We report standard IR measures: mean average precision
(MAP), mean reciprocal rank (MRR), and normalized discounted
cumulative gain (NDCG). For measures that operate on binary
relevance (MAP and MRR), following [26], items rated 4 stars or
more are considered relevant. When relevance is graded (NDCG),
the gain value is the star-rating minus 2, i.e., a 3-star item receives
gain 1 and a 5-star item receives gain 3.

A major challenge in rank-based evaluation is that only some
of the items users like are generally known. One evaluation strat-
egy (referred to as the TestRatings methodology in [2]) is to only
consider items that have been rated by the user in the test set. This,
however, “does not test the recommender’s ability to identify inter-
esting items from a large pool” [15] and thus amounts to solving
an easier problem, often considerably overestimating the true per-
formance of a system. Instead, we consider all items rated by any
user in the training set a potential candidate (except those already
rated by the target user)—known as the Trainingltems methodology
in [2]. Items that have not been rated by the user are all assumed to
be non-relevant. As there are many such items, some of which are
possibly relevant, this leads to underestimated performance [2].

6.3 User Study

We also design a user study to evaluate the transparency and
scrutability of our model. Taking place on a crowdsourcing plat-
form (restricted to US-based users), it was performed in two rounds,
as illustrated in Figure 4. First, a preference elicitation round is
conducted, where users are asked to provide ratings on a number
of movies. This data serves as input to the set-based model and to
the subsequent summary generation. The second round is further
subdivided into two steps. In step 2A, users are presented with
a summary of their preferences, or more precisely, a number of
sentences, which they are asked to inspect (scrutinize). In step 2B,
users are given a set of movie recommendations to rate. We provide
specific details regarding the data collection process below.

We took a stratified sample of 500 movies from the filtered
MovieLens-20M dataset as our item collection. This sample is made
up of (i) the top 150 movies by the number of ratings received and
(ii) a random movie for each year between 1980 and 2014, and for
each of the top 10 most popular genres,? that is not already in the
top-150 set. For the random movies, we required each to be rated
by at least 20 users (to avoid movies too far down in the long tail).
We randomly split the set of movies into a preference elicitation
set (400 movies) and a candidate set (100 movies).

3These are: action, adventure, documentary, comedy, crime, drama, horror, romance,
sci-fi, and thriller.

Preference elicitation Item recommendations

Baseline
—_—
D PR models D Lﬁﬁﬁ
] 5o (] OV—I
D M Set-based D M
D v model e D
7

, d

] /]
|\ Summary of user
N preferences

~ 0

i
Figure 4: Experimental design for evaluating transparency
and scrutability.

Table 3: Illustration of scrutability options for a summary
preference statement in our user study.

(1) You like movies that are tagged as ‘action’, especially those that are tagged as
‘sword fight’, such as The Princess Bride.

(2) You like movies that are tagged as ‘action’, especially those that are tagged as
‘sword fight’.

(3) You like movies that are tagged as ‘action’, such as The Princess Bride.

(4) You like movies that are tagged as ‘action’.

(5) You like The Princess Bride.

(6) None of the above.

In round one, users were asked to rate at least 20 and at most 80
movies, using a three-point rating scale, corresponding to 1-star
(dislike), 3-star (neutral), and 5-star (like) ratings on a 5-star scale. To
prevent workers from providing random ratings, we also requested
them to specify, in a text input field, what they liked/disliked about
the given movie. To incentivize workers, they were promised an
invitation to a generously-compensated follow-up task (i.e., round
two), subject to the quality of their responses. We performed a
manual inspection of the text inputs provided, and filtered out
users with low-quality responses. In this way, we collected two
rounds of responses from 122 users.

Round two was divided into two steps. First, in 2A, users were
asked to inspect and provide feedback on the top five summary
sentences generated for them using Eq. (9). To make user feed-
back actionable, we start with the complete statement, then remove
segments progressively. Participants are asked to inspect the state-
ments in order, and select the first that accurately describes their
preferences. We refer to Table 3 for a specific example. For each
option, we interpret the choice by updating the user’s model if
the option is selected. For instance, if the user were to select the
third option in Table 3, we would update their user model to set
the weight of the pairwise tag (action,sword fight) to zero.

Finally, in 2B, we presented users with personalized movie rec-
ommendations to rate (selected from the candidate set). Note that
we perform 2A and 2B in a single round to reduce user dropout. We
thus need to anticipate possible changes to the user summaries. At
the same time, we need to keep the number of items to rate reason-
able, to avoid attention fatigue. Therefore, users are presented with
20 movies, pooled from the following sources: two baseline meth-
ods (ItemKNN and BPRSLIM), the initial set-based model (i.e., no
scrutinization), and the set-based model with different user model
variants, based on the anticipated changes. Specifically, for each
summary statement and for each scrutability option, we create a
corresponding updated model, then generate recommendations
using that user model. To form the pool of items to rate, we take
the top-5 recommendations of the two baselines and of the initial

Table 4: Benchmark item recommendation results. %U]J
refers to the fraction of unjudged items in the top 10.

Method MRR MAP NDCG %U]
MostPopular 0.272 0.071 0.214 85%
Item-kNN 0.360 0.129 0341 76%
BPR-MF 0.387 0.137 0.334 80%
WR-MF 0.439 0.155 0.349 78%
SoftMarginRanking-MF 0.275 0.082 0.240 86%
WeightedBPR-MF 0.265 0.073 0.207 89%
BPR-SLIM 0.441 0.158 0359 77%
Tags-cosine 0.319 0.073 0.195 86%

Tags-cosine + priors 0.351 0.094 0245 83%

Set-based 0.308 0.081 0.228 85%

set-based model, and supplement with items by the sum of recip-
rocal ranks at which they appear in other user models. Similarly
to the benchmark evaluation, when using binary relevance only
the liked items are considered relevant. When relevance is graded,
neutral (3-star) items have gain of 1, and liked items have gain of 3.

6.4 Baselines

We compare against the following collaborative filtering methods,
as implemented in the MyMediaLite recommender library [16]:*

e MostPopular: A simple non-personalized baseline that recom-
mends the most popular items (i.e., those with the most ratings).

o Item-kNN: Item-based k-Nearest Neighbors [40], a classical
collaborative filtering algorithm that is usually a strong baseline.

o WR-MF: Weighted Regularized Matrix Factorization [23, 35]
is a regularized version of singular value decomposition (SVD).
It can be seen as a pointwise regression approach that learns
latent factors by minimizing the square-loss.

e BPR-MF: Bayesian Personalized Ranking [38] is a matrix factor-
ization model directly optimized for ranking. It is “built on the
assumption that a user prefers an item with a positive feedback
to an item without an observed feedback” [37].

e BPR-SLIM: Sparse Linear Methods (SLIM) [34] learn a sparse
coefficient matrix for items solely from the user rating profiles
by solving a regularized optimization problem. We employ a
variant that is optimized for the BPR-Opt criterion [38], using
Stochastic Gradient Ascent.

All methods use the default configuration settings in MyMediaLite.
MostPopular and Item-kNN operate on the original 5-star ratings.
For matrix factorization and sparse linear methods, ratings are
binarized (corresponding to the problem of learning from binary,
positive-only feedback [50]). Specifically, ratings scored by 4 stars
and above are taken as positive feedback [26].

Since our set-based model operates on tags, we also consider a
content-based approach, which calculates the similarity between a
user’s profile vector and an item’s tag vector.

o Tags-cosine: Items are scored according to the cosine similarity
between the item’s tag vector w; and the user’s preference vector
wy,. For a given tag t, the user’s preference for ¢ is given by:

1
Wao = T 20) Wi (23)

Py
i€l;

4http://www.mymedialite.net (version 3.11).

Table 5: User study item recommendation results.

Method MRR MAP NDCG@5 NDCG@10
MostPopular 0.882 0.515 0.721 0.628
Item-kNN 0.479 0.245 0.452 0.364
BPR-SLIM 0.709 0.378 0.624 0.511

Set-based model
Full transp., no priors 0.710 0.393 0.543 0.499

Full transp., priors 0.835 0.529 0.748 0.643
Partial transp., no priors 0.748 0.516% 0.663% 0.648%
Partial transp., priors 0.866 0.554% 0.782% 0.670%

where r,, is the neutral rating. We also consider another variant
with the popularity prior (cf. Eq. (20)) incorporated by way of
multiplication.

7 RESULTS

We now present a detailed analysis of the performance of our ap-
proach both in terms of recommendation quality, and the extent to
which it satisfies the desirable properties listed in Sect. 4.1.

7.1 Effectiveness

Our first research question concerns the effectiveness of item rec-
ommendations produced by our method. This is evaluated on the
benchmark (Benchmark) and user study (UserStudy) datasets.

We start by considering the standard Benchmark dataset and
compare against all the baselines; see Table 4. We note that pop-
ularity is a relatively weak baseline, and the simple tags-cosine
approach is reasonably competitive, particularly when movie scores
are weighted with a popularity prior. Our set-based approach (also
including the prior, and all candidate statements in C) does not
perform best, but also does not perform dramatically more poorly
than many reasonable baselines.

However, we particularly note that in this dataset, the vast ma-
jority of items that contribute to the performance of a model are
not rated by users as shown in the %UJ column. This introduces
the potential for bias, and the results for all methods must thus be
treated as lower bound estimates for algorithm performance.

For the UserStudy, we consider three representative baselines:
MostPopular, Item-kNN, and BPR-SLIM. Note that these are trained
on the ML-20M collection. We use these to assess four specific
variants of our set-based model.

First, we observe that the performance numbers in Table 5 are
generally much higher, as users have rated a much larger fraction of
items. In particular, almost all items (%UJ < 3%) in the top 5 positions
for all the algorithms were judged by the user study participants.
No more than 39% of items in the top 10 positions were unjudged
(and %UJ < 25% for any variant of the set-based model). This makes
these results much more representative than those in Table 4.

As noted earlier, a scrutable model is one that has a limited
number of statements, which could be presented to a user (with a
possibility to revise/correct them). We consider an algorithm trans-
parent if it only uses such a model, i.e., defined by Sy, consisting of
no more than k = 5 statements. We term partial transparency use
of the model C, which, while larger, still selects down for tags and
pairs of tags with significant coverage of the user’s judged items.

On the UserStudy dataset, the set-based model performs best on
three of the metrics, while the most popular model performs best

http://www.mymedialite.net

0.6 T T T T T T 0.8 T T T T T
= /,_.__...__»——‘
< ——
=
505 i [R + 07
§ _/"*J R I et e
S04y 1806 " R
<) o L
o Most Popular = - Most Popular
g BPRSLIM -~ - BPRSLIM - -
03 r ItemKNN ------ 1 05T ItemKNN ------ N
© Set-based (no priors) =-=+-- || | . Set-based (no priors) --=+--

% """""" Set-based (with priors) —+— Set-based (with priors) —+—

0.2 L . T T T 1] 04 e . T : T v

5 10 15 20 25 30 5 10 15 20 25 30

Number of statements in user model Number of statements in user model

Figure 5: Recommendation performance as a function of
model size. Note the strong effect of popularity.

on MRR. As such, we also see the large role that the popularity
prior plays, and the relatively small cost of full transparency. We
will consider this effect in more detail next.

7.2 Transparency

Our second research question asks about the effects of providing
full transparency as opposed to partial transparency. According to
Table 5, the relative difference between full and partial transparency
is at most 31% without priors and less than 5% when using priors,
for any metric. The differences, however, are statistically significant
for all metrics except MRR (indicated by &, using a two-tailed paired
t-test with a p-value threshold of 0.001). Figure 5 further studies the
effect of transparency in detail, by varying the length of the user
summary. We see that as the number of statements Sy in the user
model is increased, recommendation quality improves. While there
is a substantial improvement as the model size increases from 5 to
15 statements, beyond this the performance increases more slowly.
We also clearly see the effect of the popularity prior.

7.3 Scrutability

Finally, our third research question considers scrutability: Given
user feedback on the generated summaries, what impact does it have
on the recommendations? Are the inferred statements correctly
capturing the participant’s interests?

Table 6 shows the distribution of user responses on the gener-
ated (top-5) statements. First, we note that, surprisingly, around
19% of two-tag statements and 27% of single-tag statements had
the participant disagree with the example belonging to the correct
statement. As the example was always rated by the participant,
and had the relevant tags, there are two possibilities. Either the
participant may disagree with the tag(s) being appropriate for the
example. Alternatively, the participant’s opinion about the example
may have changed between the first and second stages of the user
study. As the stages were conducted within a day of each other, we
expect that this illustrates the aforementioned data quality concern
with tags, where perhaps a significant fraction of tags do not uni-
versally represent the movies to which they are attached. Exploring
the effect of tag quality is an important direction for understanding
where the performance of tag-based algorithms is suboptimal.

Second, we note that only 34% and 57% of participants agree
with the entire statements (ignoring the example). This suggests
that there is a lot of potential for users to improve their inferred
user model in tag-based approaches.

Table 7 shows the effect of scrutability on recommendation qual-
ity. Specifically, Initial shows the performance of the set-based
algorithm using the inital model (matching the full transparency
results from Table 5). If statements from the fully transparent model

14pD1€ 0: U1SIripution or I'CSP()IISCS on ue generateu user PI'CI-
erence statements.

Statements for tag interactions Count Ratio
(1) [first] [interaction] [second] [example] 39 27%
(2) [first] [interaction] [second] 10 7%
(3) [first] [example] 33 23%
(4) [first] 14 10%
(5) [example] 4 31%
(6) None of the above 3 2%
Total 143 100%

Statements for single tags

(1) [first] [example] 154 37%
(2) [first] 82 20%
(3) [example] 150 36%
(4) None of the above 31 7%
Total 417 100%

Table 7: Scrutability results for the set-based model. We re-
port on the fully transparent variant (k=5).

Method MRR MAP NDCG@5 NDCG@10
Initial, no priors 0.710 0.393 0.543 0.499
Initial, w/ priors 0.835 0.529 0.748 0.643
Corrected, no priors 0.678 0.381 0.530 0.484
Corrected, w/ priors 0.855 0.532 0.751 0.645

with which the participants disagree are removed from the user
model, and are replaced with the next candidate statements from C
to yield a new full transparent recommendation model consisting of
5 statements, we obtain the performance listed as Corrected. We see
that in the set-based model with priors, this improves overall rec-
ommendation performance. We therefore conclude that scrutability
is in fact being achieved. At the same time, we note that without
the popularity prior, the corrected models perform slightly worse
than the initial ones. We attribute this to the fact that user feedback
is not utilized to its full possible extent. In particular, we are only
removing tag preferences when the user did not agree with a state-
ment. It would also be possible to update the weights of tags that
belonged to statements with which users agreed. It should be noted
that the observed differences between Initial and Corrected are not
statistically significant, they should thus be regarded as indicative.

8 CONCLUSIONS

The task we set out in this paper is develop recommendation ap-
proaches that are more transparent and scrutable. We presented
a novel set-based recommendation model, which we showed to
return recommendations that are comparable quality to state-of-
the-art recommendation algorithms despite being transparent and
explainable. In a user study with very high coverage of rated movies,
we demonstrated how the user model can be explicitly scrutinized
by users, leading to improved recommendations. We also showed
how the size of the model that must be scrutinized can be traded
off against recommendation quality.

This study suggests a number of avenues for future work. Beyond
questions of tag quality, and non-binary tag weighting for set-based
models, we also leave open the question of how best to benefit from
inferred preferences that users have scrutinized and agree with.

REFERENCES

(1]

=
&

[9

=

[10

[11]

[12]

[13

[14

=
)

[16

[17]

(18

[19

[20]

[21

[22]

[23

™
=t

[25]

[26]

Behnoush Abdollahi and Olfa Nasraoui. 2016. Explainable Matrix Factorization
for Collaborative Filtering. In Proc. of WWW Companion. 5-6.

Alejandro Bellogin, Pablo Castells, and Ivan Cantador. 2011. Precision-oriented
Evaluation of Recommender Systems: An Algorithmic Comparison. In Proc. of
RecSys’11. 333-336.

R. L Brafman, C. Domshlak, S. E. Shimony, and Y. Silver. 2006. Preferences over
Sets. In Proc. of AAAI'06. 1101-1106.

Gerhard Brewka, Mirostaw Truszczynski, and Stefan Woltran. 2010. Representing
Preferences Among Sets. In Proc. of AAAT'10. 273-278.

Jaime Carbonell and Jade Goldstein. 1998. The Use of MMR, Diversity-based
Reranking for Reordering Documents and Producing Summaries. In Proc. of
SIGIR’98. 335-336.

Rose Catherine, Kathryn Mazaitis, Maxine Eskénazi, and William W. Cohen. 2017.
Explainable Entity-based Recommendations with Knowledge Graphs. In Proc. of
the Poster Track of RecSys’17.

Shuo Chang, F. Maxwell Harper, and Loren Terveen. 2015. Using Groups of
Items for Preference Elicitation in Recommender Systems. In Proc. of CSCW’15.
1258-1269.

Shuo Chang, F. Maxwell Harper, and Loren Gilbert Terveen. 2016. Crowd-Based
Personalized Natural Language Explanations for Recommendations. In Proc. of
RecSys’16. 175-182.

Xu Chen, Zheng Qin, Yongfeng Zhang, and Tao Xu. 2016. Learning to Rank
Features for Recommendation over Multiple Categories. In Proc. of SIGIR’16.
305-314.

Xu Chen, Yongfeng Zhang, Hongteng Xu, Yixin Cao, Zheng Qin, and Hongyuan
Zha. 2018. Visually Explainable Recommendation. CoRR abs/1801.10288 (2018).
arXiv:1801.10288

Zhiyong Cheng, Ying Ding, Lei Zhu, and Mohan Kankanhalli. 2018. Aspect-
Aware Latent Factor Model: Rating Prediction with Ratings and Reviews. In Proc.
of WWW’18. 639-648.

Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of
Recommender Algorithms on Top-n Recommendation Tasks. In Proc. of RecSys’10.
39-46.

Marco de Gemmis, Pasquale Lops, Cataldo Musto, Fedelucio Narducci, and Gio-
vanni Semeraro. 2015. Semantics-Aware Content-Based Recommender Systems.
In Recommender Systems Handbook (2nd ed.), Francesco Ricci, Lior Rokach, Bracha
Shapira, and Paul B. Kantor (Eds.). Springer US, Chapter 4, 119-159.

Marie desJardins, Eric Eaton, and Kiri L. Wagstaff. 2006. Learning User Preferences
for Sets of Objects. In Proc. of ICML’06. 273-280.

Michael D. Ekstrand and Vaibhav Mahant. 2017. Sturgeon and the Cool Kids:
Problems with Random Decoys for Top-N Recommender Evaluation. In Proc. of
FLAIRS’17. 639-644.

Zeno Gantner, Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme.
2011. MyMediaLite: A Free Recommender System Library. In Proc. of RecSys’11.
305-308.

Fatih Gedikli, Dietmar Jannach, and Mouzhi Ge. 2014. How Should I Explain? A
Comparison of Different Explanation Types for Recommender Systems. Int. J.
Hum.-Comput. Stud. 72, 4 (April 2014), 367-382.

Scott A. Golder and Bernardo A. Huberman. 2006. Usage Patterns of Collaborative
Tagging Systems. J. Inf. Sci. 32, 2 (April 2006), 198-208.

Stephen J. Green, Paul Lamere, Jeffrey Alexander, Francois Maillet, Susanna Kirk,
Jessica Holt, Jackie Bourque, and Xiao-Wen Mak. 2009. Generating Transpar-
ent, Steerable Recommendations from Textual Descriptions of Items. In Proc. of
RecSys’09. 281-284.

F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History
and Context. ACM Trans. Interact. Intell. Syst. 5, 4, Article 19 (Dec. 2015), 19:1—
19:19 pages.

Xiangnan He, Tao Chen, Min-Yen Kan, and Xiao Chen. 2015. TriRank: Review-
aware Explainable Recommendation by Modeling Aspects. In Proc. of CIKM'15.
1661-1670.

Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl. 2000. Explaining
Collaborative Filtering Recommendations. In Proc. of CSCW’00. 241-250.

Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for
Implicit Feedback Datasets. In Proc. of ICDM’08. 263-272.

Yehuda Koren and Robert Bell. 2015. Advances in Collaborative Filtering. In
Recommender Systems Handbook (2nd ed.), Francesco Ricci, Lior Rokach, Bracha
Shapira, and Paul B. Kantor (Eds.). Springer US, Chapter 3, 77-118.

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization Tech-
niques for Recommender Systems. Computer 42, 8 (Aug. 2009), 30-37.

Nathan N. Liu, Xiangrui Meng, Chao Liu, and Qiang Yang. 2011. Wisdom of
the Better Few: Cold Start Recommendation via Representative Based Rating

&
2

®
=

'w
&

=
&

[50]

[51

(52]

o
=

[54

[55

Elicitation. In Proc. of RecSys’11. 37-44.

Yichao Lu, Ruihai Dong, and Barry Smyth. 2018. Coevolutionary Recommenda-
tion Model: Mutual Learning Between Ratings and Reviews. In Proc. of WWW’18.
773-782.

Yuanhua Lv and ChengXiang Zhai. 2012. Query Likelihood with Negative Query

Generation. In Proc. of CIKM’12. 1799-1803.
Benjamin M. Marlin and Richard S. Zemel. 2009. Collaborative Prediction and

Ranking with Non-random Missing Data. In Proc. of RecSys’09. 5-12.

Julian McAuley and Jure Leskovec. 2013. Hidden Factors and Hidden Topics:
Understanding Rating Dimensions with Review Text. In Proc. of RecSys’13. 165~
172.

David McSherry. 2005. Explanation in Recommender Systems. Artif. Intell. Rev.
24, 2 (Oct. 2005), 179-197.

Donald Metzler, Victor Lavrenko, and W. Bruce Croft. 2004. Formal Multiple-
bernoulli Models for Language Modeling. In Proc. of SIGIR’04. 540-541.

Don Monroe. 2018. Al Explain Yourself. Commun. ACM 61, 11 (Oct. 2018), 11-13.
Xia Ning and George Karypis. 2011. SLIM: Sparse Linear Methods for Top-N
Recommender Systems. In Proc. of ICDM’11. 497-506.

Rong Pan, Yunhong Zhou, Bin Cao, Nathan N. Liu, Rajan Lukose, Martin Scholz,
and Qiang Yang. 2008. One-Class Collaborative Filtering. In Proc. of ICDM’08.
502-511.

Pearl Pu, Li Chen, and Rong Hu. 2012. Evaluating Recommender Systems from the
User’s Perspective: Survey of the State of the Art. User Modeling and User-Adapted
Interaction 22, 4-5 (Oct. 2012), 317-355.

Shuang Qiu, Jian Cheng, Ting Yuan, Cong Leng, and Hanqing Lu. 2014. Item
Group Based Pairwise Preference Learning for Personalized Ranking. In Proc. of
SIGIR’14. 1219-1222.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In Proc. of
UAI'09. 452-461.

S. E. Robertson. 1977. The Probability Ranking Principle in IR. Journal of
Documentation 33, 4 (1977), 294-304.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-
based Collaborative Filtering Recommendation Algorithms. In Proc. of WWW’01.
285-295.

Shilad Sen, F. Maxwell Harper, Adam LaPitz, and John Riedl. 2007. The Quest for
Quality Tags. In Proc. of GROUP’07. 361-370.

Shilad Sen, Jesse Vig, and John Riedl. 2009. Tagommenders: Connecting Users to
Items Through Tags. In Proc. of WWW’09. 671-680.

Sungyong Seo, Jing Huang, Hao Yang, and Yan Liu. 2017. Interpretable Convolu-
tional Neural Networks with Dual Local and Global Attention for Review Rating
Prediction. In Proc. of RecSys’17. 297-305.

Mohit Sharma, F. Maxwell Harper, and George Karypis. 2017. Learning from Sets
of Items in Recommender Systems. In Proc. of eEKNOW’17. 59-64.

Harald Steck. 2010. Training and Testing of Recommender Systems on Data
Missing Not at Random. In Proc. of KDD’10. 713-722.

Harald Steck. 2013. Evaluation of Recommendations: Rating-prediction and
Ranking. In Proc. of RecSys’13. 213-220.

Nava Tintarev and Judith Masthoff. 2007. Effective Explanations of Recommen-
dations: User-centered Design. In Proc. of RecSys’07. 153-156.

Nava Tintarev and Judith Masthoff. 2012. Evaluating the Effectiveness of Expla-
nations for Recommender Systems. User Modeling and User-Adapted Interaction
22, 4-5 (Oct. 2012), 399-439.

Nava Tintarev and Judith Masthoff. 2015. Explaining Recommendations: Design
and Evaluation. In Recommender Systems Handbook (2nd ed.), Francesco Ricci,
Lior Rokach, Bracha Shapira, and Paul B. Kantor (Eds.). Springer US, Chapter 10,
353-382.

Koen Verstrepen, Kanishka Bhaduriy, Boris Cule, and Bart Goethals. 2017. Col-
laborative Filtering for Binary, Positiveonly Data. SIGKDD Explor. Newsl. 19, 1
(Sept. 2017), 1-21.

Jesse Vig, Shilad Sen, and John Riedl. 2009. Tagsplanations: Explaining Recom-
mendations using Tags. In Proc. of IU'09. 47-56.

Nan Wang, Hongning Wang, Yiling Jia, and Yue Yin. 2018. Explainable Recom-
mendation via Multi-Task Learning in Opinionated Text Data. In Proc. of SIGIR’18.
165-174.

Yongfeng Zhang. 2015. Incorporating Phrase-level Sentiment Analysis on Textual
Reviews for Personalized Recommendation. In Proc. of WSDM’15. 435-440.
Yongfeng Zhang and Xu Chen. 2018. Explainable Recommendation: A Survey
and New Perspectives. CoRR abs/1804.11192 (2018). arXiv:1804.11192
Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaoping
Ma. 2014. Explicit Factor Models for Explainable Recommendation Based on
Phrase-level Sentiment Analysis. In Proc. of SIGIR’14. 83-92.

http://arxiv.org/abs/1801.10288
http://arxiv.org/abs/1804.11192

	Abstract
	1 Introduction
	2 Related work
	3 Modeling User Preferences
	3.1 A Case for Set-based Preferences
	3.2 Inferring Set-level Preferences
	3.3 Modeling Pairwise Set Interactions
	3.4 User Model

	4 Identifying User Preferences
	4.1 Desirable Properties
	4.2 Generating Candidate Statements
	4.3 Selecting Statements
	4.4 Generating Textual Representations

	5 Generating Item Recommendations
	5.1 Set-based Model
	5.2 User Likelihood
	5.3 Item Priors
	5.4 Final Model

	6 Experimental Setup
	6.1 Measurement Approach
	6.2 Benchmark Dataset
	6.3 User Study
	6.4 Baselines

	7 Results
	7.1 Effectiveness
	7.2 Transparency
	7.3 Scrutability

	8 Conclusions
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 30.39, 715.50 Width 541.78 Height 35.63 points
 Origin: bottom left

 1
 0
 BL

 7
 AllDoc
 7

 CurrentAVDoc

 30.3902 715.5005 541.7845 35.6299

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 10
 9
 10

 1

 HistoryList_V1
 qi2base

