
Magenta Studio:
Augmenting Creativity with Deep Learning in Ableton Live

Adam Roberts1, Jesse Engel1, Yotam Mann1, Jon Gillick2, Claire Kayacik1

Signe Nørly1, Monica Dinculescu1, Carey Radebaugh1, Curtis Hawthorne1, Douglas Eck1
1Google, Mountain View, CA, USA

2University of California, Berkeley, CA, USA

Abstract

The field of Musical Metacreation (MuMe) has pro-
duced impressive results for both autonomous and inter-
active creativity, recently aided by modern deep learn-
ing frameworks. However, there are few examples of
these systems crossing over to the “mainstream” of mu-
sic creation and consumption. We tie together exist-
ing frameworks (Electron, TensorFlow.js, and Max For
Live) to develop a system whose purpose is to bring
the promise of interactive MuMe to the realm of pro-
fessional music creators. Combining compelling appli-
cations of deep learning-based music generation with
a focus on ease of installation and use in a popular
DAW, we hope to expose more musicians and pro-
ducers to the potential of using such systems in their
creative workflows. Our suite of plug-ins for Ableton
Live, named Magenta Studio, is available for download
at http://g.co/magenta/studio along with its
open source implementation.

Introduction
While the mainstream discussion on artificial intelligence
(AI) has focused on its potential to displace human workers,
the concept of Artificial Intelligence Augmentation (AIA)
promotes the use of this technology to enhance their pro-
ductive capacity (Carter and Nielsen, 2017). In this vein,
Pasquier et al. (2016) point out that “bringing greater au-
tomation and artificial intelligence to creative software is an
important goal of computational creativity”. Successful ex-
amples in the space of generative music include Jam Fac-
tory (Zicarelli, 1987), the Continuator (Pachet, 2003), Jnana
(Sullivan, 2012), and FlowComposer (Papadopoulos, Roy,
and Pachet, 2016).

In recent years, there have been incredible developments
in Musical Metacreation (MuMe) thanks in part to ad-
vances in deep learning (Hadjeres, Pachet, and Nielsen,
2017; Roberts et al., 2018; Huang et al., 2019). Deep neural
networks enable the direct learning of the structure of musi-
cal data, requiring fewer hand-tuned features and heuristics.
Reducing the reliance on music theory can result in new cre-
ative tools using generative models that are less constrained

This work is licensed under the Creative Commons “Attribution
4.0 International” licence.

by imposed sets of rules, which may themselves be based on
a particular style or genre. Considering the power of deep
learning applied to MuMe, it may seem surprising that more
of this technology has not made its way into the hands of mu-
sicians and producers. One explanation is that the worlds of
applied creativity and deep learning research speak different
languages, both literally and figuratively. While commonly-
used Digital Audio Workstations (DAWs) can interact with
Virtual Studio Technology (VST) plug-ins written in C++
or proprietary languages like Max, state-of-the-art genera-
tive models for music are often developed in deep learning
frameworks such as TensorFlow (Abadi et al., 2015) or Py-
Torch (Paszke et al., 2017) and typically require specialized
hardware accelerators to enable real-time applications.

In this paper we introduce Magenta Studio, a suite of
deep learning-based co-creative plug-ins that brings a first-
in-class modern machine learning framework (TensorFlow)
into a first-in-class modern music production environment
(Ableton Live1). By creating a bridge between Max For
Live2 and TensorFlow.js (Smilkov et al., 2019), we demon-
strate how it is possible to package complex and compu-
tationally expensive music generation models into easy-to-
use, interactive interfaces for human creators. Furthermore,
our open-source JavaScript library, Magenta.js (Roberts,
Hawthorne, and Simon, 2018), contains a large collection
of TensorFlow.js implementations of state-of-the-art music
generation models with a simple API, providing a communal
toolbox of components for plug-in developers to use in cre-
ating novel interfaces. The combination of Magenta.js and
Magenta Studio help fulfill three of the key developments
in the MuMe roadmap (Pasquier et al., 2016): Deployment
and Accessibility, Standardization and Interoperability, and
Real-World Applications.

In the following sections we describe the design and im-
plementation of this framework, the machine learning mod-
els used, and the five plug-ins initially launched as part of
the suite. We then share the results of an unscientific survey
of early adopters and discuss our findings. We close with
a discussion of how our approach can be adopted by other
researchers to provide an enhanced experience for creators
while gaining valuable feedback from real-world users.

1https://ableton.com/live/
2https://ableton.com/live/max-for-live/

1

http://g.co/magenta/studio
https://ableton.com/live/
https://ableton.com/live/max-for-live/


Figure 1: Overview of the Magenta Studio architecture.

Design
We based our design on five major principles, which we ar-
rived at after an extensive design study detailed in Kayacik
et al. (2019):

1. Use an environment and UI vocabulary target users were
already familiar with.

2. Make it easy to install on operating systems and hardware
typically available to our target users.

3. Provide simple interfaces that could be understood with-
out requiring in-depth knowledge of the underlying meth-
ods.

4. Do not treat model outputs as sacrosanct. It’s ultimately
the user’s creation, and they should be able to modify or
even ignore the output.

5. Provide modular functions that can be used together and
with other tools in arbitrary ways to support novel creative
workflows.

By building our applications as plug-ins to Ableton Live–
one of the most popular DAWs for music professionals–we
were guaranteed to meet principles 1 and 2.

While the number of possible interfaces and models are
vast (see the wide variety of Magenta.js demos3), we fo-
cused on 5 simple interactions (see the Plug-ins section) that
would be easy to understand and use in order to satisfy prin-
ciple 3. Each interface takes at most two inputs and has no
more than three sliders (Figure 2). The web instructions4 ex-
plain in basic terms the functionality of each, short videos
provide examples, and even the animated plug-in titles hint
at their purposes.

Limiting ourselves to simple interactions with the mod-
els, however, does not inhibit the creative potential of these
plug-ins. Ableton provides a modular production workspace
in which ideas can be explored by applying effects and mod-
ifications to clips, allowing for intermediate outputs to be
saved and discarded as needed. We exploit the clip-based ap-
proach of Ableton in particular by reading and writing MIDI
clips directly from the Session View (see Figure 3), encour-
aging iterative and playful interaction over more traditional
“linear” composition.

3http://g.co/magenta/demos
4http://g.co/magenta/studio

This Session View also helps satisfy principle 4 by giving
us a place to show the user various outputs generated by our
models for a given input (due to inherent stochasticity of the
models). The user can choose to keep one or more of the
output clips, modify them manually as they see fit, or delete
them all and try again. The user can also continue modifying
the pieces automatically by passing them through the mod-
els multiple times or using other plug-ins and functionality
provided by Ableton, satisfying principle 5.

Implementation
Ableton, like most DAWs, is closed-source proprietary soft-
ware with little opportunity for direct integration. VST plug-
ins written in C++ are a common form of integration, but
they are based on a signal flow paradigm for modifying au-
dio and MIDI in a streaming fashion, not for generating
or performing transformations to entire MIDI clips. Also,
integrating hardware-accelerated deep learning frameworks
such as TensorFlow into VST platforms like JUCE5 is a sig-
nificant undertaking. The Live API6 offers rich interaction
features such as modifying and adding MIDI clips within
Ableton Live, but it is only well-supported on a few plat-
forms such as Max For Live.

Max For Live contains support for JavaScript, which
some generative apps such as Jnana (Sullivan, 2012) have
taken advantage of the past. However, JavaScript is too in-
efficient to run large generative models and Max’s imple-
mentation lacks support for WebGL7, which deep learning
frameworks like TensorFlow.js use to accelerate computa-
tion. We hope Ableton will add support for WebGL in the
future, but in the meantime our solution to get the best of
cross-platform hardware acceleration and rich feature inte-
gration was to build the app using a combination of three
frameworks: Electron8, TensorFlow.js, and Max For Live
(see Figure 1).

Electron is a framework that essentially enables a website
to be packaged into a native application, providing a few
advantages. First, it allows us to use TensorFlow.js, which
implements most basic TensorFlow operations in WebGL
without requiring users to install any additional tools or GPU
drivers. Second, Electron allows us to develop the interface
in familiar web technologies, such as HTML and CSS. Fi-
nally, Electron binaries can be built for multiple platforms
from the same source code, allowing us to support users re-
gardless of their OS.

However, Electron has no way of communicating directly
with Ableton Live for reading and writing MIDI clips, so
we use Max For Live as an intermediate layer between Live
and the Electron plug-ins. Max 8 added the ability to run
Node.js9 with the new Node For Max API10, which we use to

5https://juce.com/
6https://docs.cycling74.com/max6/dynamic/

c74_docs.html#live_api_overview
7http://webgl.org
8https://electronjs.org/
9https://nodejs.org

10https://docs.cycling74.com/nodeformax/
api/

2

http://g.co/magenta/demos
http://g.co/magenta/studio
https://juce.com/
https://docs.cycling74.com/max6/dynamic/c74_docs.html##live_api_overview
https://docs.cycling74.com/max6/dynamic/c74_docs.html##live_api_overview
http://webgl.org
https://electronjs.org/
https://nodejs.org
https://docs.cycling74.com/nodeformax/api/
https://docs.cycling74.com/nodeformax/api/


Figure 2: The five initial plug-ins in Magenta Studio. Continue extends a MIDI sequence with an LSTM model, Groove “hu-
manizes” a drum beat with a GrooVAE, Generate samples 4 bars at random from a MusicVAE, Drumify maps an arbitrary
MIDI sequence into a drum groove using a GrooVAE, and Interpolate morphs between a pair of sequences with a MusicVAE.

create a local server. The Electron apps then sends requests
over the local network to Max via HTTP, which makes calls
to the Live API to execute operations such as finding the
notes in a clip or creating a new clip. This approach is some-
what indirect, but because the messages are small and over a
local network, it works quickly enough to support real-time
interactivity.

Models
The underlying generation in Magenta Studio is provided by
the Magenta.js library, a high-level API that implements sev-
eral state-of-the-art music generation models using Tensor-
Flow.js. This library operates on a MIDI-like representation
called a NoteSequence. Below we describe the two model
architectures used in the initial Magenta Studio release.

MusicRNN
Since the early 1990s, researchers have experimented with
neural network music composition based on language mod-
elling, including simple recurrent neural networks (RNNs)
(Todd, 1991), RNNs trained using backpropagation through
time (Mozer, 1994), and long short-term memory (LSTM)
networks (Eck and Schmidhuber, 2002). See Briot, Had-
jeres, and Pachet (2017) for a full overview.

Magenta.js contains a MusicRNN class based on a com-
bination of ideas from this body of work, including models
for melodies and drum patterns using multi-layer LSTMs
with the addition of attention (Waite, 2017) for better cap-
turing long-range dependencies. A typical interaction for
this type of model is to extend a priming sequence, simi-
lar to what has been done in the past with Markov chains
(Brooks et al., 1957; Zicarelli, 1987; Cope, 1996; Pachet,
2003). Since the base models are not conditioned by chord,
key, or style, the primer is teacher-forced into the LSTM to

set its state before sampling begins. By training on a wide
variety of music, the models avoid collapsing to a single
style, which enables the user to effectively control the the
output by conditioning it with their primer.

We have additionally trained “ImprovRNN” models (Si-
mon, 2016) that accept a chord sequence as a condition-
ing signal, which is supplied to the LSTM as a side input.
This allows the user to to further guide generation based on
a chord progression of their choosing. While these chord-
conditioned models do not yet appear in Magenta Studio,
we plan to increase the amount of user control in future ver-
sions with models such as these.

MusicVAE
MusicVAE is a more recently-developed neural network for
music generation, with an architecture that is described as a
hierarchical recurrent variational autoencoder in Roberts et
al. (2018).

Autoencoders support a different set of interactions than
RNN language models. A musical sequence can be encoded
into latent vector, which is essentially a learned set of quali-
ties that describe the input. The latent vector can then be de-
coded back into a musical sequence that emphasizes those
qualities. These two transformations (encode and decode)
are sufficient to enable a rich set of operations including
morphing–interpolating between the qualities of two mu-
sical sequences–and variation–adjusting specific qualities
with attribute vector arithmetic or latent constraints (Engel,
Hoffman, and Roberts, 2018). Because the latent vectors of a
variational autoencoder (VAE) are regularized to be similar
to a standard normal distribution, it is also possible to sam-
ple from the distribution of sequences, generating realistic
music based on a random combination of qualities.

Furthermore, we can train MusicVAE models to map from

3



Figure 3: Example usage of the Continue plug-in. The user
selects the input clip (annotated in blue) and the plug-in
outputs multiple continuations in the same track (annotated
in yellow). The Variations slider determines the number of
output clips, Length specifies their length, and Temperature
allows the user to adjust how “random” the samples will
sound.

lossy representations to the full sequences, thus teaching
it to essentially “fill in” the missing details. For example,
GrooVAE is a variant of MusicVAE (Gillick et al., 2019)
that maps lossy drum patterns back to the original human-
performed grooves, complete with velocities and microtim-
ings. An example of a lossy function is to quantize the per-
formed inputs and remove the velocities, resulting in a “hu-
manize” model that can add performance characteristics to a
programmed beat.

Magenta.js includes a MusicVAE class with models for
melodies, drum patterns and grooves, and multi-instrument
sequences.

Plug-ins
Our initial release contains five plug-ins that exemplify
three different creative musical tasks in cooperation with a
musician or producer: composition, interpretation, and ac-
companiment. Examples of outputs generated using these
tools can be found at https://goo.gl/magenta/
studio-examples.

Generate
Generate is a compositional tool that produces a 4-bar phrase
with no input necessary. The user chooses where the output
should go, the number of variations, a softmax temperature
to adjust randomness, and clicks “Generate”. This plug-in
can be helpful for breaking a creative block or as a source of
inspiration for an original composition.

Under the hood, Generate uses a MusicVAE that has been
trained on millions of melodies and rhythms to learn a sum-
marized representation of musical qualities (a latent space).
It chooses a random combination of these qualities by sam-
pling from the prior distribution and decoding it back to
MIDI to produce a new musical phrase.

Since the style and quality of the outputs from this plug-
in can vary widely, human curation plays an important role
in its use. Users can also provide some control by adjusting
the softmax temperature, which effectively determines how
random the outputs will be.

Continue
Continue is a compositional tool that can be used to generate
notes that are likely to follow an input drum beat or melody.
The user provides an input clip, and the plug-in will extend it
by up to 32 measures (see Figure 3). This plug-in can help a
user add variation to a drum beat or create new material for a
melodic track. It typically picks up on things like durations,
key signatures, and timing. Users can control how close the
continuation will stick to the input pattern by adjusting the
temperature used during sampling.

This plug-in is similar to the Continuator (Pachet, 2003),
but instead of Markov chains, it uses MusicRNNs to do next-
step prediction.

Interpolate
Interpolate is a compositional tool that takes two drum beats
or two melodies as inputs. It then generates up to 16 clips
which combine the qualities of the original two clips. It’s
useful for merging musical ideas or creating a smooth mor-
phing between them.

Like Generate, Interpolate uses a MusicVAE. One way
to think of the VAE is as a mapping from MIDI to a com-
pressed space in which similar musical patterns are clustered
together. Each of the input patterns is represented by a point
in the compressed space. Interpolate draws a line between
these points and decodes clips at evenly-spaced intervals
along it. The number of returned clips is set by the “steps”
slider. Because of the use of this compressed space, the re-
sulting morphing is over the characteristics of the endpoints,
and not necessarily their raw notes.

Groove
Groove is an interpretive tool that adjusts the timing and ve-
locity of an input drum clip to produce the “feel” of a drum-
mer’s performance. This is similar to what a “humanize”
plug-in does but is achieved in a totally different way.

We recorded 15 hours of real drummers performing on
MIDI drum kits as part of the Groove MIDI Dataset (Gillick
et al., 2019). These recordings were quantized, removing all
velocity and microtiming, and were used to train a GrooVAE
with the original performances as the output to learn a
mapping between quantized beats and human-performed
grooves. When the user provides a quantized beat, we have
the GrooVAE apply its learned transformation to map their
beat into a groove that feels as if it were performed by a
human.

4

https://goo.gl/magenta/studio-examples
https://goo.gl/magenta/studio-examples


Drumify
Drumify creates drum grooves based on arbitrary input se-
quences. It can be used in multiple ways:

• as an accompaniment tool that generates a drum track
based on the rhythm of another instrument, or

• as an interpretive tool that creates a full drum track from
a monophonic rhythm.

Similar to the Groove plug-in, Drumify uses the Groove
MIDI Dataset as its training data. However, in this case we
first squashed the drum grooves down to a single rhythm
instrument (a “tap”) with constant velocity and trained a
GrooVAE to learn the mapping from this 1-dimensional sig-
nal back to the full grooves. When the user supplies an input
sequence (be it a drum pattern, a bass line, or a melody),
we squash it to a rhythm in the same manner and have the
GrooVAE map it to a new groove.

Evaluation
With our initial public release of Magenta Studio for macOS
and Windows, we asked early adopters to fill out a short sur-
vey. Of the approximately 2,500 users who downloaded the
plug-ins in the first week, 89 responded to this request.

Results
In the first section of the survey, we learned about our of
users by asking them to select from a list of descriptions
those that matched their background. 71% of the respon-
dents are musicians or producers (31% professional) and
49% are machine learning enthusiasts. 22% label themselves
as machine learning researchers and 20% music researchers,
with 9% selecting both of these labels.

In the second section of our survey, we sought to deter-
mine the ease of installation and usability of the Magenta
Studio plug-ins. On a Likert scale, we asked respondents to
judge their experience of installation (76% easy, 16% neu-
tral, 8% difficult), using Ableton clips as input (74% easy,
15% neutral, 11% difficult), and using Magenta Studio out-
puts in their work (66% easy, 24% neutral, 10% difficult).
Since the the models powering the plug-ins are fairly large,
we also asked about the observed response time in produc-
ing outputs. 58% of respondents said they experienced little
to no delay and only 6% reported significant delays.

In the third section, we wanted to discover how useful
the respondents found the plug-ins to be as part of their cre-
ative workflow. While users did not overwhelmingly find it
easy to achieve their “desired” musical effect with the plug-
ins (41% easy, 40% neutral, 19% difficult), a slight major-
ity found them to perform better than they expected (51%
better, 38% neutral, 11% worse), a clear majority of users
reported the plug-ins helped them feel more creative (72%
more, 20% neutral, 8% less), and 93% said it made them feel
more productive in their creative process.

Finally, we allowed users to provide open-ended feedback
about Magenta Studio. We report selected responses in the
following section.

Discussion
While we cannot draw any firm, scientific conclusions from
this self-selected and informal study, the results do provide
some evidence for the utility of this project.

First, we note that the responses suggest we reaching our
target audience of musicians and producers, with the major-
ity of respondents describing themselves as such (71%).

Second, most respondents found the plug-ins easy to in-
stall (76%) and easy to use with Ableton (74% for selecting
inputs, 66% for using outputs). Furthermore, very few re-
ported significant latency (6%), confirming that the WebGL
acceleration provided by TensorFlow.js results in efficient
computation across platforms.

Most importantly, respondents found the plug-ins to be
a useful addition to their workflows, helping them be more
creative (72%) and productive (93%). An interesting finding
is that users’ opinions were more mixed on how easy it was
for them to achieve their desired results. One interpretation
of this apparent discrepancy is that users may have unreal-
istic expectations of the capabilities of our models–perhaps
due to our messaging or general misconceptions about ma-
chine learning and AI. However, the users overwhelmingly
reported that the plug-ins matched or exceeded their ex-
pectations (89%) and open-ended responses suggest a more
likely explanation is that while the models did not always
output exactly what they wanted, they still did something
useful. One user who was able to achieve desired results said
“sometimes it just did what I had in my mind,” while a more
common refrain was that the plug-ins helped users to “ex-
plore alternate variations with surprisingly unexpected re-
sults”, “take a simple idea into a direction [they] never would
have considered”, and “‘make seemingly disparate ideas and
sequences that [they] would not normally be as experimen-
tal with work.” This is a very exciting result that shows these
tools do not replace or minimize human creativity, but can
instead be used to augment and extend it. While one user did
not see things this way (“Music should be hard to make in
order to weed out the unenthused.”), many more praised the
plug-ins as useful for helping them to “break out of a rut”
with its ability to generate a“seed to then be inspired from”
or to “bring together loops and ideas that I would formerly
put in my junkyard, and possibly create another song”.

It is also useful to look back at our original design prin-
ciples and see how these results comport with them. The
makeup of our user base and the ease with which they were
able to install and use Magenta Studio provides evidence
that we succeeded with principles 1 − 3. One user specif-
ically pointed out the simple interface (principle 3), writing
“The layout is simple and straight to the point, which I like.”
While we did not directly address principle 4 in our survey,
many of the open-ended responses supported this idea with-
out any prompting. For example, multiple users echoed this
one: “It helped me come up with with new ideas I could ex-
plore or modify.” Similarly, we did not address principle 5
directly in the survey but our success in this regard is sup-
ported by the numerous workflows described by respondents
in the open-ended section, such as “I end up in a feedback
loop with Continue. I’ll play an idea, it will extend that idea,
I riff off of the output, feed it back into Continue. It’s super

5



fun.” and “Generate gets juices flowing. Interpolation and
Continue allow me explore alternate variation.”

Conclusions and Future Work
We introduced Magenta Studio, a suite of co-creative mu-
sic generation plug-ins for Ableton Live, powered by deep
learning models implemented in TensorFlow.js.

While it is too early to fully measure the success of our
approach, we are excited about its potential to reach a large
audience of creators, and we are pleased with the response
of early adopters.

Magenta Studio is open-source and can be used as a tem-
plate for future plug-ins that also wish to bridge the gap be-
tween Ableton Live and TensorFlow. We have demonstrated
its use with Magenta.js, an open-source library that is meant
to be a communal repository of music generation models,
and we welcome contributions from the community to help
it grow. Furthermore, we believe it will be useful to inte-
grate these tools with existing MuMe frameworks such as
MuseBots (Eigenfeldt, Bown, and Carey, 2015) to increase
interoperability of various developments in the field and help
them reach end users.

Our hope is that others will build upon this work to bring
their research systems to a professional audience earlier in
the process of development, allowing them to gather useful
feedback and training data from their target users.

We also see value in using this framework to create per-
sonalized models for individual users in real-time with local
training by TensorFlow.js, for example applying techniques
such as latent constraints (Engel, Hoffman, and Roberts,
2018). This could further empower creators to customize
their own models to do things researchers may not have in-
tended or imagined – a truly meta-metacreative experience!

Acknowledgements
The authors wish to thank Nikhil Thorat and Daniel Smilkov
for their enormous help with all things related to Tensor-
Flow.js. Thanks to Colin Raffel for his thoughtful review
of this paper. Thanks to the valuable feedback from early
adopters and user study participants. Magenta Studio is
based on work by members of the Google Brain team’s Ma-
genta project along with contributors to the Magenta and
Magenta.js libraries.

References
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.;

Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.;
Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Is-
ard, M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.;
Levenberg, J.; Mané, D.; Monga, R.; Moore, S.; Mur-
ray, D.; Olah, C.; Schuster, M.; Shlens, J.; Steiner, B.;
Sutskever, I.; Talwar, K.; Tucker, P.; Vanhoucke, V.; Va-
sudevan, V.; Viégas, F.; Vinyals, O.; Warden, P.; Watten-
berg, M.; Wicke, M.; Yu, Y.; and Zheng, X. 2015. Ten-
sorFlow: Large-scale machine learning on heterogeneous
systems. Software available from tensorflow.org.

Briot, J.; Hadjeres, G.; and Pachet, F. 2017. Deep learn-
ing techniques for music generation - A survey. arXiv
Preprint.

Brooks, F. P.; Hopkins, A. L.; Neumann, P. G.; and Wright,
W. V. 1957. An experiment in musical composition. IRE
Transactions on Electronic Computers EC-6(3):175–182.

Carter, S., and Nielsen, M. 2017. Using artificial intelli-
gence to augment human intelligence. Distill. https:
//distill.pub/2017/aia.

Cope, D. 1996. Experiments in Musical Intelligence. Madi-
son, WI: A-R Editions.

Eck, D., and Schmidhuber, J. 2002. Finding temporal struc-
ture in music: blues improvisation with LSTM recurrent
networks. In Proceedings of the 12th IEEE Workshop on
Neural Networks for Signal Processing, 747–756.

Eigenfeldt, A.; Bown, O.; and Carey, B. 2015. Collabo-
rative composition with creative systems: Reflections on
the first musebot ensemble. In International Symposium
on Electronic Art (ISEA), 214–219.

Engel, J.; Hoffman, M.; and Roberts, A. 2018. Latent con-
straints: Learning to generate conditionally from uncon-
ditional generative models. In International Conference
on Learning Representations (ICLR).

Gillick, J.; Roberts, A.; Engel, J.; Eck, D.; and Bammam, D.
2019. Learning to groove with inverse sequence transfor-
mations. In Proceedings of the 36th International Confer-
ence on Machine Learning (ICML).

Hadjeres, G.; Pachet, F.; and Nielsen, F. 2017. Deep-
Bach: a steerable model for Bach chorales generation.
In Precup, D., and Teh, Y. W., eds., Proceedings of the
34th International Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Research,
1362–1371. International Convention Centre, Sydney,
Australia: PMLR.

Huang, C.-Z. A.; Vaswani, A.; Uszkoreit, J.; Simon, I.;
Hawthorne, C.; Shazeer, N.; Dai, A. M.; Hoffman, M. D.;
Dinculescu, M.; and Eck, D. 2019. Music transformer. In
International Conference on Learning Representations.

Kayacik, C.; Chen, S.; Nørly, S.; Holbrook, J. S.; Roberts,
A.; and Eck, D. 2019. Identifying the intersections: User
experience + research scientist collaboration in a genera-
tive machine learning interface. In Extended Abstracts of
the 2019 CHI Conference on Human Factors in Comput-
ing Systems, CS09:1–CS09:8.

Mozer, M. C. 1994. Neural network music composition by
prediction: Exploring the benefits of psychoacoustic con-
straints and multi-scale processing. Connection Science
6(2-3):247–280.

Pachet, F. 2003. The continuator: Musical interaction with
style. Journal of New Music Research 32(3):333–341.

Papadopoulos, A.; Roy, P.; and Pachet, F. 2016. Assisted
lead sheet composition using FlowComposer. In Inter-
national Conference on Principles and Practice of Con-
straint Programming, volume 9892, 769–785.

6

https://distill.pub/2017/aia
https://distill.pub/2017/aia


Pasquier, P.; Eigenfeldt, A.; Bown, O.; and Dubnov, S. 2016.
An introduction to musical metacreation. Computers in
Entertainment 14:2:1–2:14.

Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
A. 2017. Automatic differentiation in PyTorch. In Autod-
iff Workshop, NIPS.

Roberts, A.; Engel, J.; Raffel, C.; Hawthorne, C.; and Eck,
D. 2018. A hierarchical latent vector model for learning
long-term structure in music. In Proceedings of the 35th
International Conference on Machine Learning (ICML),
volume 80, 4364–4373.

Roberts, A.; Hawthorne, C.; and Simon, I. 2018. Ma-
genta.js: A JavaScript API for augmenting creativity with
deep learning. In Joint Workshop on Machine Learning
for Music (ICML).

Simon, I. 2016. Improv rnn. https://goo.gl/
magenta/improvrnn. Accessed: 2019-5-20.

Smilkov, D.; Thorat, N.; Assogba, Y.; Yuan, A.; Kreeger,
N.; Yu, P.; Zhang, K.; Cai, S.; Nielsen, E.; Soergel, D.;
Bileschi, S.; Terry, M.; Nicholson, C.; Gupta, S. N.; Sira-
juddin, S.; Sculley, D.; Monga, R.; Corrado, G.; Viégas,
F. B.; and Wattenberg, M. 2019. TensorFlow.js: Ma-
chine learning for the web and beyond. arxiv Preprint
abs/1901.05350.

Sullivan, C. 2012. Jnana. https://ccrma.stanford.
edu/˜colinsul/projects/jnana/. Accessed:
2019-1-15.

Todd, P. M. 1991. A connectionist approach to algorithmic
composition. In Todd, P. M., and Loy, D. G., eds., Music
and connectionism. Cambridge, MA: MIT Press/Bradford
Books. 173–194.

Waite, E. 2017. Generating long-term structure in songs and
stories. https://magenta.tensorflow.org/
2016/07/15/lookback-rnn-attention-rnn.
Accessed: 2019-5-20.

Zicarelli, D. 1987. M and Jam Factory. Computer Music
Journal 11(4):13–29.

7

https://goo.gl/magenta/improvrnn
https://goo.gl/magenta/improvrnn
https://ccrma.stanford.edu/~colinsul/projects/jnana/
https://ccrma.stanford.edu/~colinsul/projects/jnana/
https://magenta.tensorflow.org/2016/07/15/lookback-rnn-attention-rnn
https://magenta.tensorflow.org/2016/07/15/lookback-rnn-attention-rnn

	Introduction
	Design
	Implementation
	Models
	MusicRNN
	MusicVAE

	Plug-ins
	Generate
	Continue
	Interpolate
	Groove
	Drumify

	Evaluation
	Results
	Discussion

	Conclusions and Future Work
	Acknowledgements

