FUDGE: Fuzz Driver Generation at Scale

Domagoj Babi¢* Yaohui Chen* Franjo Ivanci¢* Caroline Laszl6 Szekeres®
Stefan Bucur* yaohway@ccs.neu.edu Tim King’ Lemieux” Wei Wang®
dbabic@google.com Northeastern Markus Kusano® clemieux@cs.berkeley.edu lszekeres@google.com
sbucur@google.com University ivancic@google.com UC Berkeley wwweiwang@google.com
Google USA taking@google.com USA Google
USA kusano@google.com USA

Google, USA

ABSTRACT

At Google we have found tens of thousands of security and robust-
ness bugs by fuzzing C and C++ libraries. To fuzz a library, a fuzzer
requires a fuzz driver—which exercises some library code—to which
it can pass inputs. Unfortunately, writing fuzz drivers remains a
primarily manual exercise, a major hindrance to the widespread
adoption of fuzzing. In this paper, we address this major hindrance
by introducing the FUDGE system for automated fuzz driver gen-
eration. FUDGE automatically generates fuzz driver candidates for
libraries based on existing client code. We have used FUDGE to
generate thousands of new drivers for a wide variety of libraries.
Each generated driver includes a synthesized C/C++ program and a
corresponding build script, and is automatically analyzed for qual-
ity. Developers have integrated over 200 of these generated drivers
into continuous fuzzing services and have committed to address
reported security bugs. Further, several of these fuzz drivers have
been upstreamed to open source projects and integrated into the
OSS-Fuzz fuzzing infrastructure. Running these fuzz drivers has re-
sulted in over 150 bug fixes, including the elimination of numerous
exploitable security vulnerabilities.

CCS CONCEPTS

« Security and privacy — Software security engineering; «
Software and its engineering — Software testing and debug-
ging; Software evolution; Automated static analysis.

KEYWORDS

software security, testing, fuzzing, fuzz testing, automated test gen-
eration, program slicing, code synthesis

ACM Reference Format:

Domagoj Babi¢, Stefan Bucur, Yaohui Chen, Franjo Ivanci¢, Tim King,
Markus Kusano, Caroline Lemieux, Laszlo Szekeres, and Wei Wang. 2019.
FUDGE: Fuzz Driver Generation at Scale. In Proceedings of the 27th ACM
Joint European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (ESEC/FSE ’19), August 26-30, 2019, Tallinn,
Estonia. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3338906.
3340456

*Authors listed in alphabetical order.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE 19, August 26-30, 2019, Tallinn, Estonia

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5572-8/19/08.

https://doi.org/10.1145/3338906.3340456

1 INTRODUCTION

Fuzzing has emerged as one of the most effective testing tech-
niques for discovering security vulnerabilities and reliability issues
in software. The idea behind fuzzing is simple: the fuzzer executes
programs with randomly generated inputs, and monitors their be-
havior for invalid operations, such as memory corruption issues.
Recent advancements in fuzzing technologies, such as coverage-
guided fuzzing [22, 32, 42], have enabled fuzzing to reach even
deeper program paths and uncover significantly more bugs.

The success of fuzzing has led to significant adoption in the in-
dustry, and the emergence of services providing continuous fuzzing
for open source and commercial software. For example, Google has
developed continuous fuzzing infrastructures to test the security
of C/C++ libraries, both for its internal software and externally
for open-source code. Google’s ClusterFuzz project, through its
OSS-Fuzz [1, 3] instance, has alone filed tens of thousands of bugs
to developers by fuzzing over 200 open source projects.

C/C++ code is a primary target for fuzzing, due to unsafe lan-
guage features, such as explicit memory management, that makes
it prone to bugs and vulnerabilities. To detect such bugs, the fuzzed
programs are usually instrumented with checks (e.g., ASAN [33])
that can expose memory corruption issues and other undefined
behavior in C/C++ code. Several classes of these bugs, such as
buffer overflows, use-after-frees, integer overflows, and uninitial-
ized memory, are often exploitable security vulnerabilities.

Despite the increasing adoption, most C/C++ codebase still can-
not be fuzz tested due to the absence of testing harnesses, known
as fuzz drivers, which exercise the library code.! In this paper, we
argue that we can significantly accelerate the adoption of fuzzing
by automatically generating these fuzz drivers.

There are two main challenges in writing a fuzz driver for a given
library. The driver author needs to understand (a) the codebase un-
der test and (b) how the fuzzer engine operates. Listing 1 shows an
example of a fuzz driver for the OpenCV library. Fuzzing infrastruc-
tures have converged to use the shown LLVMFuzzerTestOneInput
interface between fuzzers and fuzz drivers, which was introduced
by libFuzzer [32]. This interface is called a fuzz target [31], and is
the de facto standard interface of fuzz drivers—we will use the terms
fuzz target and fuzz driver interchangeably. Fuzz targets receive an
input buffer generated by a fuzzer through the data argument and
use it to invoke some relevant functionality of the targeted code,
e.g., in Listing 1, feed it into an OpenCV datatype (cv: :Mat).

!An alternative to library-based fuzzing is fuzzing an entire binary, provided the
functionality is available as a stand-alone tool. This paper does not cover this setting.

https://doi.org/10.1145/3338906.3340456
https://doi.org/10.1145/3338906.3340456
https://doi.org/10.1145/3338906.3340456

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

The fuzz target can be linked with various fuzzer engines (e.g., lib-
Fuzzer [32], AFL [42], Hongfuzz [36], SBF [37]) to produce a fuzzer
test executable. The fuzzer engines execute the fuzz target function
in-process, generating and executing tens of thousands of test inputs
per second. Moreover, these engines gain direct access to real-time
coverage information through instrumentation callbacks, used to
guide the test generation.

Listing 1 FuDGE-generated fuzz target for OpenCV.

int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) {
std: :vector<uint8_t> arr = {data, data + size};
cv::Mat row = cv::Mat(1, arr.size(), CV_8UC1, arr.data());
try {
cv::Mat decoded = cv::imdecode(row, CV_LOAD_IMAGE_UNCHANGED);
} catch (cv::Exception e) { }
return 0;

Writing effective targets can be time-consuming and requires
knowledge of the target codebase. Developers need to understand
what the interface of the target library is and how to use it correctly.
For example, fuzzing an image format library requires knowing
how to specify the image contents and how to trigger the format
parsing operations. Moreover, the library calls must be configured
such that crashes only happen in the case of implementation bugs.
Crashes caused by violating a function’s preconditions are unhelp-
ful distractions (e.g., trying to read from a file that was not opened
first). Further, fuzz targets should be deterministic and free of side
effects, such that crashes can be reproduced reliably.

In this paper, we present FUDGE — a system for accelerating
fuzz target creation. FUDGE helps developers create fuzz targets for
libraries quickly and easily by providing automatically synthesized
candidate fuzz targets. These automatically-generated targets typ-
ically only need cosmetic modifications and small fix-ups before
adoption. For example, the target in Listing 1 was generated by
FuDGE.

The key insight behind FUDGE is that fuzz targets which exercise
library functions in a valid and useful manner can be synthesized
from existing uses of the library in a codebase. To this end, the
FUDGE technique benefits from Google’s monolithic source code
repository [27], which includes third-party open source code [17].

FUDGE generates fuzz target candidates via a backend pipeline
that processes the entire Google codebase. The pipeline scans the
codebase for usages of target libraries, extracts interesting code
snippets, and automatically synthesizes runnable fuzz target candi-
dates and build instructions. It then runs the synthesized fuzz target
candidates with libFuzzer at scale to collect runtime feedback. The
runtime feedback contains relevant features such as code coverage,
size of generated tests, observed crashes, etc. Finally, FUDGE col-
lects the generated candidates and execution statistics so that they
can be browsed through the frontend by developers. Developers
are encouraged to modify fuzz targets (e.g., to increase generality,
improve efficiency, or remove potential side effects) and adopt them
to enable continuous fuzzing going forward. FUDGE is built on top
of ClangMR [41] in order to handle the analysis and code synthesis
at a large scale.

Generating a fuzz driver from scratch, using only the target
library code, is a challenging program synthesis problem. FUDGE

Babi¢, Bucur, Chen, Ivanéi¢, King, Kusano, Lemieux, Szekeres, Wang

leverages existing usage patterns in client code to produce fuzz
targets that discover valid crashes instead of API misuses. Moreover,
by observing the runtime behavior of the generated target, FUDGE
is able to filter out uninteresting behavior. FUDGE surfaces drivers
with interesting behaviors via a user interface. Users can then
choose to integrate the synthesized drivers into continuous fuzzing
services. The human in the loop provides an important check on
the correctness of the drivers before developers are asked to fix any
reported bugs.
Contributions. This paper makes the following contributions:
e We describe the FUDGE system for automatic fuzz driver
generation. FUDGE statically analyzes the client code to learn
valid usages of a library of interest, adapts these usages using
code mutations, and emits buildable fuzz targets.
e We present case studies from our experience with using
FupGE. FUDGE has created thousands of fuzz targets, over
200 of which have been vetted by developers and accepted for
continuous fuzzing. Several of these targets were generated
for open-source libraries, and are continuously running on
the OSS-Fuzz infrastructure. They have found numerous ex-
ploitable security vulnerabilities in widely used open-source
projects.
o We distill a number of lessons that we have learned in the
process of developing FUDGE and handling fuzz target syn-
thesis at a large scale.

Overview. Section 2 provides a high-level overview of the FUDGE
system, walking through the generation of an example fuzz target;
Section 3 provides more technical details. We demonstrate the
use of FUDGE through three open-source case studies in Section 4.
Section 5 discusses the lessons that we have learned in using FUDGE.
Section 6 presents related work, and potential future directions are
described in Section 7. Section 8 concludes the paper.

2 OVERVIEW

Figure 1 shows the high-level architecture of the FUDGE system. It
consists of two main components: a backend pipeline generating
fuzz target candidates, and a frontend UI exposing these to the user.

- - - -

Code Code Fuzz target Evaluation

FUDGE UI

Figure 1: FUDGE high-level overview. The Slicing module ex-
tracts code snippets of library usages. These code snippets
are mutated and transformed into fuzz targets by the Syn-
thesis module. The Evaluation module builds and runs the
candidate fuzz targets. The results are post-processed and
presented to the user on the FUDGE User Interface.

The pipeline consists of the Slicing, Synthesis, and Evaluation
modules. This is a distributed pipeline that runs daily, processing the
entire Google code repository. It attempts to generate fuzz targets

FUDGE: Fuzz Driver Generation at Scale

for thousands of packages, and stores the resulting candidates and
related metadata in a database. The results can be conveniently
browsed using the FupncGe Ul frontend, where developers can take
candidate fuzz targets, modify them if needed, and adopt them. We
describe each phase of the pipeline by walking through the life of
an example fuzz target.

Slicing phase. We will consider the FreeImage library as our
target library in our running example. The Slicer module scans the
whole code repository looking for usages of this library, to extract
code snippets. It processes each C++ source file in the codebase
through a custom Clang frontend action, an extension mechanism
of the LLVM compiler framework [21]. Suppose the Slicer module
encounters the function shown in Listing 2. This is a function
inside the Ogre 3D graphics engine library [25], slightly modified
for brevity, that calls into the FreeImage library.

Listing 2 Example use site of FreeImage in Ogre.

Codec: :DecodeResult FreeImageCodec: :decode(DataStreamPtr &input) {
FreeImage_SetOutputMessage(FreeImagelLoadErrorHandler);
MemoryDataStream memStream(input, true);

FIMEMORY *fiMem = FreeImage_OpenMemory (
memStream.getPtr() , memStream.size());
FIBITMAP *fiBitmap =
FreeImage_LoadFromMemory ((FREE_IMAGE_FORMAT) mImageType , fiMem);
if (!fiBitmap) {
OGRE_EXCEPT (Exception: : ERR_INTERNAL_ERROR,
"Error decoding image", "FreeImageCodec::decode");

}
ImageData *imgData = OGRE_NEW ImageData();
MemoryDataStreamPtr output;

imgData->width = FreeImage_GetWidth(fiBitmap);

imgData->height = FreeImage_GetHeight(fiBitmap);

FREE_IMAGE_TYPE imageType = FreeImage_GetImageType(fiBitmap);
if (imageType == FIT_BITMAP) {
FIBITMAP *newBitmap = FreeImage_ConvertToGreyscale(fiBitmap);
FreeImage_Unload(fiBitmap);
fiBitmap = newBitmap;
}
/...
FreeImage_Unload(fiBitmap);
FreeImage_CloseMemory(fiMem);
DecodeResult ret;
ret.first = output;
ret.second = CodecDataPtr(imgData);
return ret;

The slicer analyzes the abstract syntax tree (AST) of this function
to determine the relevant statements that should be extracted. A
function is considered for slicing only if there is at least one call to
the target library that might be a parsing AP, e.g., the APIreceives a
byte buffer argument. The FreeImage_OpenMemory call has the signa-
ture (uint8_tx data, uint32_t size_in_bytes), so the slicer pro-
cesses this function. The slicer algorithm first selects all FreeImage
calls as statements of interest. Then it collects dependent statements
by following control and data-flow dependencies. In our example,
it ends up collecting the statements highlighted in Listing 2 for
inclusion in the output code snippet.

Some expressions inside the selected statements are not sliced
out (see gaps in highlighted lines). This happens when an AST
expression contains symbols that are defined outside of the func-
tion or have types defined outside of the target library. E.g., the

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

memStream.getPtr() expression is left out from the extracted code
snippet, because MemoryDataStream is a type defined in the Ogre
library, and not in the targeted FreeImage library. This expression
is replaced with a placeholder variable of type uint8_tx, which is
the type of memStream.getPtr(). Similarly, the mImageType variable
reference is replaced with a placeholder, because—although it has
type int—it is a member variable of the FreeImageCodec Ogre class,
and out of scope of the extracted code snippet.

Synthesis phase. The Synthesis module receives the extracted
code snippet and completes it by concretizing the introduced place-
holder variables, and sending the fuzzer input to the function call
arguments. There are many possible ways to fill in these placehold-
ers. For example, we could replace the placeholder of the original
mImageType with an int constant (e.g., 0, 1), or we can also choose
to fuzz this argument and feed the first few bytes of the fuzzer-
provided input into it. We do not know in advance what the best
way is to finalize the snippet. Thus, FUDGE synthesizes multiple
versions of the code, using different replacement options and their
combinations. This results in multiple candidate fuzz target variants
for each sliced code snippet. Listing 3 shows one of the candidates,
which feeds the fuzzer input into FreeImage_OpenMemory, and re-
places the original mImageType reference with o.

Listing 3 One of the candidate fuzz targets output by Synthesis.

int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
FIMEMORY *fiMem = FreeImage_OpenMemory((uint8_t*)data, size);
FIBITMAP *fiBitmap =
FreeImage_LoadFromMemory ((FREE_IMAGE_FORMAT)®, fiMem);
if (!fiBitmap) return 0;
FreeImage_GetWidth(fiBitmap);
FreeImage_GetHeight(fiBitmap);
FREE_IMAGE_TYPE imageType = FreeImage_GetImageType(fiBitmap);
if (imageType == FIT_BITMAP) {
FIBITMAP *newBitmap = FreeImage_ConvertToGreyscale(fiBitmap);
FreeImage_Unload(fiBitmap);
fiBitmap = newBitmap;
3
FreeImage_Unload(fiBitmap);
FreeImage_CloseMemory(fiMem);
return 0;

Evaluation phase. Finally, each of these synthesized candidate
targets is evaluated by building and running it with a preconfigured
time bound. This evaluation step allows FUDGE to quickly weed
out drivers with obvious API misuse issues that cause immediate,
uninteresting, crashes. For example, generating a fuzz target that
attempts to write to a file before having first opened said file leads
to immediate crashes of low value to the user. The candidates that
build and run successfully are saved to a temporary code repository,
and their evaluation results are stored in a database.

User interface and workflow. From the user’s perspective,
checking in a new target works as follows. The user goes to the web-
based FUuDGE UI where they can browse, filter, and rank the evalu-
ated candidates among all packages, or find all the FUDGE-generated
candidates for a particular package or API For the FreeImage li-
brary, the UI shows that the candidate in Listing 3 was built and run
successfully, created 21 new test inputs during the evaluation, and
covered the most new lines among the candidates for FreeImage.
It also shows that the target crashed with an out-of-memory error
after a while.

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

The user pulls the source and build file of this candidate fuzz
target into their local working directory by clicking a button on the
code browser that saves the necessary copy command to their clip-
board. The fuzz target can be tested locally immediately, e.g., with
libFuzzer, as the build file is available. The log of libFuzzer reveals
that the OOM is due to leaking fiMem. The user spends a few minutes
fixing the leak and doing minor cleanups and is ready to check in the
finalized target into the main repository. This is the process followed
by the authors to check in the example target into the FreeImage
directory of the OSS-Fuzz GitHub repository (https://git.io/fjZNb).

This illustrates how FUDGE increases the productivity of users
that are either not familiar with fuzzing or not familiar with the
target project: It pre-generates a set of potentially interesting can-
didate fuzz targets and provides execution statistics to the user.
Contrast this few minutes of work to the manual process of writing
a fuzz target, which requires a significant time investment into
discovering library code and finding the relevant APIs to fuzz.

3 FUDGE DESIGN

This section describes each component of the system in more detail,
starting with the backend modules, then the frontend. All modules
of the backend are massively parallelized pipelines, built on top of
Google’s MapReduce technology [8]; in particular, the more recent
C++ implementation of Flume [6].

3.1 AST Slicing

The goal of the slicing module is to extract code snippets from ex-
isting client code of the target library. The snippet will serve as the
basis of the generated fuzz targets. The slicing pipeline processes
the entire Google codebase in a few hours using ClangMR [41]. This
massively parallelized process parses every source file in the reposi-
tory using the Clang compiler frontend and runs the code extraction
method shown in Algorithm 1 on each function definition.

Algorithm 1 The slicing algorithm of FuDGE.

Input: abstract syntax tree (AST) of function func.
Output: selected set of statements to extract S.

1: S « SELECTTARGETLIBRARYCALLS(func)

2 Sprei} — 0

3: while S # Spreo do > fixed point is not reached
4: Spre-u)

5 S « S U DATAFLOWDEPENDENCIESOF(S)

6 S « S U CONTROLFLOWDEPENDENCIESOF(S)

7: return S

We use an algorithm similar to standard program slicing [38,
40] on the AST of a given function, starting from a set of seed
statements and following both backward and forward dependencies.
If a function contains at least one target library call that looks
fuzzable (e.g., takes a character buffer like argument), then we
select all the calls to the target library as seed statements. If there
are no fuzzable calls, we select no seed statements. If we have seed
statements, we propagate their dependencies until a fixed point
is reached. Specifically, we iteratively find and mark the set of
transitively relevant statements according to both data flow and

Babi¢, Bucur, Chen, Ivanéi¢, King, Kusano, Lemieux, Szekeres, Wang

control flow dependencies. For efficiency purposes, FUDGE utilizes
syntactic slicing only, i.e., we do not perform alias analysis.

In Algorithm 1, data flow dependencies of statements in S are
(1) variable definition statements of variables used in S, and (2)
control statements that use variables defined by statements in S.
Control flow dependencies of S are (1) control statements that dom-
inate a statement in S and (2) control flow terminator statements
(e.g., return, break). We add dependent statements until a fixed
point is reached.

Listing 4 Code snippet sliced out from the example use site.

uint8_t* UnknownA; uint32_t UnknownB; int UnknownC;
unsigned UnknownD; unsigned UnknownE;

int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
FIMEMORY *fiMem = FreeImage_OpenMemory(UnknownA, UnknownB);
FIBITMAP *fiBitmap =
FreeImage_LoadFromMemory ((FREE_IMAGE_FORMAT)UnknownC, fiMem);
if (!fiBitmap)
return 0;
UnknownD = FreeImage_GetWidth(fiBitmap);
UnknownE = FreelImage_GetHeight(fiBitmap);
FREE_IMAGE_TYPE imageType = Freelmage_GetImageType(fiBitmap);
if (imageType == FIT_BITMAP) {
FIBITMAP *newBitmap = FreelImage_ConvertToGreyscale(fiBitmap);
FreeImage_Unload(fiBitmap);
fiBitmap = newBitmap;
3
FreeImage_Unload(fiBitmap);
FreeImage_CloseMemory(fiMem);
return 0;

While propagating dependencies, we also remove expressions
with unknown symbols or types from newly added statements. An
unknown symbol can be a reference to a variable defined outside
of the sliced function, e.g., a function parameter, or a member vari-
able (e.g., mImageType in Listing 2). It can also be a reference to a
global variable or function defined outside of the translation unit
(e.g., reference to the FreeImageLoadErrorHandler function on the
first line of the example). Note that if a referenced function is de-
fined in the same translation unit, we can slice it interprocedurally.
An unknown type is a non-primitive data type defined outside of the
target library, e.g., the type of memStream is the Ogre library defined
MemoryDataStream in Listing 2. These expressions are replaced with
UnknownX placeholder variables as shown in the code snippet ex-
tracted from the example function in Listing 4. Doing this prevents
the algorithm from slicing out client library specific code, as we
do not follow the dependencies of these out-of-scope expressions.
Note that the introduction of placeholder variables keeps the code
syntactically correct and compilable.

Once we selected the statements to extract from the source
function, we rebuild the code in a new AST context, inside an
LLVMFuzzerTestOneInput function. While rebuilding, we lazily im-
port any global variable definition or constant that is referenced in
the sliced code (and defined in the same source file). We support
slicing out called functions recursively from the same compilation
unit: If the sliced function references another function defined in
the same source file, we perform another round of intra-procedural
slicing on the referenced function (seeded with target library calls)
and import it to the new context. Finally, we replace all return

https://git.io/fjZNb

FUDGE: Fuzz Driver Generation at Scale

statements with return 0; as the fuzz target interface expects the
target function to return zero for successful executions.

In addition to extracting the code snippet from the client code, we
extract how the client code includes and builds against the target
library. In Google’s monolithic repository, all build dependency
information is directly available in standard Bazel [15] BUILD rules.
From the Clang AST we can establish the set of header files that
need to be included, and from the build dependencies of the client
library we can find the target libraries to link against. The headers
and build instructions are added as metadata to the snippets and
sent to the synthesis module.

3.2 Target Synthesis

The goal of the code synthesis module is to complete the code
snippets extracted by the slicer — i.e., ensure that (1) our target
API call is fed with the fuzzer input and (2) there are no UnknownX
placeholders left in the code. An incomplete code snippet can be
made complete through a series of rewrites. Table 1 lists some of
these rewrites.

Table 1: Examples of matched type patterns of UnknownX ex-
pressions and the corresponding replacement carried out by
the synthesizer.

Matched UnknownX type = Replacement expression
(char#*, int)

(FuzzerInputPtr(), FuzzerInputSize())

std: :string FuzzerInputAsString()
std::string FuzzerInputAsTempFilePath()
int 0

int 1

int temp_var_a

int FuzzerInputAsInt32()

int* &temp_var_a

int& temp_var_a

int& FuzzerInputAsInt32()

For instance, in our working example snippet in Listing 4, the call
FreeImage_OpenMemory (UnknownA, UnknownB) has arguments of type
uint8_t* and uint32_t. This function call argument pair matches
one of our rewrite patterns: the one that replaces the two matched
UnknownX expressions with FuzzerInputPtr() and FuzzerInputSize()
(first line of Table 1). We similarly match expressions with string-
like types as potential fuzz inputs. Another rewriting possibility for
string arguments is to pass a file path. This works for APIs such as
FreeImage_Load that loads an image from a file. In this case, we ex-
tend the final fuzz target code with some code that saves the fuzzer
input in a temporary file (TempFile f(data, size);) and pass the
file path to the function (f.path()); see Listing 7.

There are a few other ways of rewriting UnknownX expressions
of different types, beyond feeding the fuzzer input. Consider argu-
ments, such as the mImageType in our working example (see List-
ing 2), that are initialized outside of the sliced function and therefore
replaced with UnknownX placeholders. These arguments can be ei-
ther input or output variables (passed by pointer or reference). One
rewrite option that often works, is to create a local variable for them
and default initialize it. This means that we rewrite the expression
to a symbol like temp_var_a and add a line SomeType temp_var_a {3};
preceding it.

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Listing 5 Pseudo-code of the synthesis algorithm of FUDGE.

def FuzzTargetSynthesis(extracted_ast):
complete_asts = []
incomplete_asts = [extracted_ast]
seen_before = Set([extracted_ast])
while incomplete_asts is not []:
ast = incomplete_asts.pop()
if HasUnknownExpressions(ast):
for rewrite in MatchingRewrites(ast):
new_ast = Apply(rewrite, ast)
if new_ast not in seen_before:
incomplete_asts.append(new_ast)
seen_before.add(new_ast)
else:
complete_asts.append(Finalize(ast))
return complete_asts

To summarize, the synthesis module is searching in the space of
all possible completions of extracted code snippets. The algorithm
enumerating all completions is shown in Listing 5. We maintain
and process a work list of ASTs that are not fully complete yet. For
each AST, we identify all the locations (AST nodes) where each
rewrite could be applied, and apply it. We also maintain a hash set
of ASTs that we have seen before, to avoid generating duplicates or
rediscovering the same sub-tree of the search tree multiple times.
The shown algorithm returns all possibilities, but if the resulting
set is too large, we randomly sample a given maximum number
from them to keep for evaluation.

The Finalize function is necessary to clean up and concretize
the final code. For instance, if we selected multiple arguments as
FuzzerInput(), then this finalization step adds the necessary code
that splits up the input buffer into multiple slices and feeds them
into the different fuzzable arguments. We also add the necessary
#include directives. For example, if the finalization pass introduced a
std: :string type we include <string>. Finally, we generate a Bazel
BUILD file that contains the rule for building the synthesized fuzz
target that depends on the target library. The generated fuzz target
source files and their corresponding BUILD files are saved and
passed to the evaluation module.

3.3 Target Evaluation

The goal of the evaluation phase is to weed out non-functional fuzz
target candidates, and rank the rest by fitness. The FUDGE pipeline
resorts to heuristics for extracting and transforming code snippets
from library client code. These heuristics do not guarantee that
the resulting code is a suitable fuzz driver. For example, the APIs
exercised may be irrelevant (e.g., code that does not perform any
interesting logic), or the API may not be used in a way suitable for
fuzzing, such as performing too strict error checking. To maximize
the chance of generating a valid driver, we resort to generating a
large and diverse set of candidates for each library API, and ranking
them when presented to developers.

Deciding whether a fuzz driver candidate is suitable for the li-
brary is ultimately a holistic process. It involves answering whether
(a) the driver fuzzes the right API for the library, and (b) the APIs
are used correctly for the purpose of fuzzing. Fully automating this
process is imprecise and complex. Instead, our approach is to resort
mainly to human judgment for answering the first question and
provide signals computed automatically to help answer the second

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

question. By looking at the fuzz drivers shortlisted and ranked ac-
cording to the correctness signals, developers need only to filter
out the candidates that do not fuzz the correct APIs.

The evaluation module computes the signals indicating whether
the APIs are used correctly. We currently use the following signals
to filter and rank the candidates:

(1) The candidate should build successfully.

(2) It should run successfully without generating a crashing
input for at least a few seconds.

(3) The size of the minimized corpus of the target should be
larger than some lower threshold.

(4) The larger the number of lines of the library covered, the
better. We measure both absolute coverage and increase in
coverage relative to the existing fuzz drivers for the library.

In practice, we found that these metrics provide good precision:
those fuzz targets that build successfully and generate a non-trivial
amount of coverage with a non-trivial corpus size are likely to be
valid candidates. We filter out fuzz targets which find a crashing
input in very few seconds. While this may miss some targets that
expose very shallow bugs in the target library, the reduction in
false positives due to API misuse in the target is more important
for FUDGE’s usability.

We compute the evaluation signals using a pipeline whose input
is the set of candidate fuzz targets generated. The first stage of the
pipeline builds each target and records the build status and the
build logs.

For those targets that build successfully, the next stage consists
of performing fuzzer runs and collecting any crashes or generated
tests. Given that fuzzing is random by nature, we replicate the
fuzzer run N times for each driver (in our implementation, N = 10)
and collect the artifacts from all runs. We use libFuzzer as the fuzzer
engine; its in-process fuzzing approach has the performance needed
to make a fuzz target fitness judgment in a limited time. Each fuzzer
run takes 5 minutes, which we found to provide a good trade-off
between resource consumption and sensitivity to fuzzer saturation.
More specifically, by experimenting with multiple fuzzing times,
we found that for 95% of the targets, fuzzing for 5 minutes attains
99% of the coverage attained by doubling the fuzzing time.

The next evaluation stage collects all the generated tests for
each fuzz driver and performs corpus minimization. The resulting
corpus is used to perform a coverage run. Finally, the collected
line coverage information is aggregated and compared to baseline
coverage achieved by all other pre-existing fuzz drivers.

Each fuzzer run performed in the pipeline is sandboxed. This is
required not only for security reasons, but also for robustness: a
synthesized fuzz driver may behave in arbitrary ways, including
attempting I/O or leaking file descriptors and other resources. With-
out proper sandboxing, these drivers may starve and eventually
lead to the crash of the pipeline nodes.

The pipeline execution is massively parallel, each stage being
performed on all the fuzz drivers at once. The parallelism enables
the pipeline to finish all the stages within hours. The results of the
evaluation are saved in a database.

Babi¢, Bucur, Chen, Ivanéi¢, King, Kusano, Lemieux, Szekeres, Wang

3.4 User Interface

Users interact with the system through a web-based UI, which
shows the information produced by the backend candidate genera-
tion pipeline. Recall that the goal of FUDGE is to minimize the time
of adding a new fuzz target for a library, even for users that are
not intimately familiar with the target libraries (packages). To do
so, the Fupce UI provides different views, presenting the available
packages, their APIs, the extracted code snippets, and the generated
candidates.

Candidate targets view. The candidates view lets users browse
the list of promising candidates that were built and executed suc-
cessfully. Targets are presented similarly as shown in Figure 2.

Package Fuzz Called New Lines Corpus Use
Name Target APIs Covered Size Site
free_image > view= Freelmage_OpenMemory - 318 1= view <
Freelmage_GetFileType
Freelmage_CloseMemory
libxml = view= xmlURIEscapeStr = 43> 23> viewe
xmlParseURIReference -
xmlFreeURI

Figure 2: Candidates view of UL

The < in the table represents links. E.g., clicking the package
name takes the user to the package directory in the main repository.
The Ul is integrated with Google’s internal code search engine [29]
and browser. The target view leads the user to the fuzz target source
code with its BUILD file. The Called APIs column shows the sequence
of the target library functions that the candidate calls. The API
names that are exercised by existing fuzz targets are color-coded
with green; the ones that are not covered yet are shown in red.

We also indicate the number of new lines the candidate covered
during its evaluation relative to the coverage of existing fuzz targets.
We link to the coverage report showing the coverage information
overlayed on the code in the code browser. The Corpus Size column
shows the number of test cases generated during the evaluation
run. Additional evaluation results are also presented, such as the
number of crashes found so far. Finally, for each candidate, we link
to the original use site and the code snippet sliced out from it (see
Use sites view below).

The results can be searched, sorted, and filtered by package or by
APIs exercised. That is, the user can choose to only see candidates
for 1ibxml or only candidates that call FreeImage_OpenMemory, sorted
by new lines covered relative to existing fuzz targets, etc. This lets
users pick interesting candidates based on their actual coverage and
performance measured during the evaluation. Once the user finds
a candidate worthy of checking in, they can easily pull it into their
local working directory; the necessary command can be copied
from the code browser.

Packages view. The packages view, depicted in Figure 3, focuses
on packages that may require further fuzzing. It lists the available
packages (i.e., different third-party libraries) in the code repository
with their relevant information, such as the number of existing
fuzz targets for the package and their aggregated coverage. This

FUDGE: Fuzz Driver Generation at Scale

provides a high-level overview of the fuzzing progress across the
whole codebase and enables engineers to prioritize and decide
which packages to add more fuzzers to.

Package User Existing Fuzz Candidate Public
Name Packages Targets Coverage Targets APIs
free_image < 5< 1 4% > 63 9
libxml = 43~ 5< 39% < 82 12

Figure 3: Packages view of UL

One signal that helps determine a package’s importance is the
number of other packages depending on it. This number is shown
in the User Packages column with a link (<) to the view that lists
all client libraries and their details. The next column shows the
number of existing targets with a link to a view listing the existing
targets of the given package (described later). Fuzz Coverage is the
percentage of code covered by the checked in fuzz targets, with a
link to a detailed report. Clicking the number of candidate targets

links to the candidate view filtered down for the given package.

Once users pick their package of interests, they typically want to
see the interfaces of the package in order to find fuzzable APIs. This
is done by following the link in the number of Public APIs column,
leading to the APIs view.

APIs view. The APIs of a package are shown in a table like that
in Figure 4. The primary purpose of this view is to identify APIs
that should be fuzzed. The interfaces that are most useful to fuzz

are the ones that do non-trivial parsing or processing on user input.

We use heuristics to filter these APIs, based on their names and
type signatures. For example, we look for words like "parse", "load",
or "open" in the function names, and look for character-buffer-like
input argument types. Using these heuristics, we narrow down a

potentially very long list of functions for the user to select from.
By default, we also rank the APIs by their number of use sites.
The names and the canonicalized types are shown on the interface.

Clicking on the API name takes the user to the function definition.

API Function Use Candidate Existing
Name Type Signature Sites Targets Targets
Freelmage_ (uint8_t* data, uint32_t size_in_bytes) 31« 2
OpenMemory b struct FIBITMAP
Freelmage_Load (enum FREE_IMAGE_FORMAT fif, 12
const char* filename, int flags)

L struct FIBITMAP *
Freelmage_ (enum FREE_IMAGE_FORMAT fif, 9 6 1
LoadFromMemory struct FIMEMORY* stream, int flags)
> L struct FIBITMAP*

Figure 4: APIs view of UL

By default, we only show the APIs that are called from other
packages to focus on the ones that are actually used. The Existing
Targets column indicates whether the API is covered by an existing
fuzz target, while the Candidate Targets column shows the number
of candidate targets calling the APIL. Already covered API names

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

are also marked green. Existing targets can be viewed by clicking
the existing target number. Yellow APIs are not covered yet, but
working candidates are available. The candidates can be viewed
similarly, by following the provided link. Red means that the API
is neither covered nor are there any new candidates yet. When
APIs are neither covered nor available, this could highlight current
limitations of FUDGE that we try to address in the future.

Use sites view. Given a package or an API, the use sites view
lists all caller functions in a table form, similarly to the previously
described views. Each row shows the caller function name, the
sequence of API calls at the call site, e.g., FreeImage_OpenMemory
— FreeImage_GetFileTypeFromMemory +— FreeImage_CloseMemory, a
link to the call site location shown in the code browser, and a link
to the extracted code snippet (such as the one on Listing 4). We also
link to the candidates generated from the given call site. In cases
where the system failed to generate a working candidate target
from a call site, users can use intermediate code snippets extracted
from it and complete it manually.

Existing targets view. Finally, the existing targets view of the
Ul lists all fuzz targets, potentially filtered down for a particular
package or APL For each target, we show the APIs it calls, its
coverage, the bugs it found, and other statistics.

The Ul also provides views showing the overall state and progress
made in terms of checked in fuzz targets, their coverage, the bugs
found, and bugs fixed. This helps users keep track of the impact of
fuzzing and fuzz target generation.

4 CASE STUDIES

We have been using and continue to use FUDGE to increase the fuzz
coverage of both internal and external third-party C/C++ libraries.
FupGe has synthesized thousands of fuzz targets across hundreds of
security-sensitive open source projects used by Google. The most
promising targets are surfaced in the Funce Ul and vetted by engi-
neers interested in applying fuzzing to their project or third party
projects. The engineers choose whether to integrate a candidate
into our continuous fuzzing services. Each integration indicates
that an engineer is willing to triage and fix bugs reported on the
fuzzing targets. Integration thus gives us a high degree of certainty
that the generated target is exercising the library correctly and the
resulting bugs are expected to be useful (up to human judgment).
200+ FUDGE-generated targets have been integrated to date and are
being continuously fuzzed. Over 600 bugs have been discovered by
fuzzing these targets and more than 150 likely exploitable security
bugs (e.g., buffer overflows) have already been fixed.

In November 2018, the Google Security Team announced an ef-
fort to “admit as many OSS projects as possible [into OSS-Fuzz]
and ensure that they are continuously fuzzed” [28]. As a part of this
effort, we have integrated more than 10 new open source projects
with OSS-Fuzz using FUDGE targets. These targets are fully open
sourced and the bugs that they find are eventually publicly dis-
closed [10]. The already public bugs can be seen in the OSS-Fuzz
issue tracker [16]. We present case studies on two projects that
have been integrated into OSS-Fuzz using FUDGE-generated fuzzing
targets. We also present a case study of sending a FUDGE-derived
target directly to a project.

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

4.1 Leptonica

Leptonica [4] is an open source, general-purpose image processing
library. Users of Leptonica include the popular Tesseract [34] OCR
(Optical Character Recognition) library (26k stars on GitHub). Lep-
tonica supports I/O operations on a large number of underlying im-
age formats (PDF, SVG, JPEG, webp, ...), and provides convenience
utilities for handling many of these types in a uniform fashion. Dan
Bloomberg, the main author of Leptonica, had previously fuzzed
Leptonica “with random number generators modifying input, and
had found some issues, and thought the code was well-protected.”

Listing 6 FUDGE generated fuzz target for Leptonica.

int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) {
const int16_t angle = ReadInt16(&data, &size);
const int16_t x_center = ReadIntli6(&data, &size);
const int16_t y_center = ReadIntl16(&data, &size);

Pix* pix = pixReadMem(

reinterpret_cast<const unsigned char*>(data), size);
if (pix == nullptr) { return 0; }
Pix* pix_rotated = pixRotateShear(

pix, x_center, y_center, (M_PI / 180.) * angle, L_BRING_IN_WHITE);

if (pix_rotated) { pixDestroy(&pix_rotated); }
pixDestroy(&pix);
return 0;

FuDGE synthesized 14 fuzz targets for Leptonica, all of which are
now continuously fuzzed. One of the targets synthesized by FUDGE
is given in Fig. 6.2 At its core, the target attempts to read a byte
array as an image and rotates the image around a center point by
an angle. The generated target has many common characteristics
of a hand written fuzz target: it begins by parsing fuzzed data
(pixReadMem), it does a simple operation (pixRotateShear), it has
minimal error checking, and it ends with cleaning up memory
(pixDestroy). Generating the fuzz target required extracting: library
constants (L_BRING_IN_WHITE), sub-expressions (M_PI / 180), and
error handling (if (pix == nullptr)). Generation further required
replacing UnknownX values for the int16_t variables, and adding
conversion expressions between types. However, observe that the
final synthesized program is not much more complicated than a
unit test of the same library code.

The FupGE-generated fuzz targets have been highly effective at
discovering bugs in Leptonica. Developers have already fixed 73
reported bugs found by the generated fuzz targets. This includes 22
security sensitive bugs (e.g., heap-out-of-bounds memory reads).?
After working with us for several months, Dan Bloomberg had
this to say about FUDGE: “I believe that this is a very important and
innovative project, one that can potentially have a major impact on
the stability and security of open source libraries.”

4.2 OpenCV

OpenCV [7] contains over 2,500 C++ implementations of computer
vision algorithms. It is used within the industry by companies such
as Google, Yahoo, Microsoft, Intel, IBM, Sony, Honda, and Toyota4.

2 The target was modified for clarity before open-sourcing. Full source at git.io/fjsOv
3 Example patches to github.com/DanBloomberg/leptonica: git.io/fjsOU, git.io/fjsOL
4 https://opencv.org/about

Babi¢, Bucur, Chen, Ivanéi¢, King, Kusano, Lemieux, Szekeres, Wang

OpenCV uses unit tests for both logical and performance regres-
sions. There are currently 353 logical test files and 110 performance
test files.

We upstreamed two fuzz targets®, that were automatically gen-
erated by FUDGE, which are currently fuzzed continuously within
OSS-Fuzz. These fuzz targets, both just a few lines of code, led to
39 bugs® being fixed in OpenCV so far, 12 of which were deemed
security relevant (e.g., heap-buffer overflows)’.

One of these targets, shown in Listing 1,% consists only of load-
ing the fuzzed input into a matrix’ and reading the matrix as an
image. Notice the try-block around the decoding API call. This
control structure was extracted from the original client code of
the library and included in the target. Catching exceptions thrown
by cv::imdecode is important to avoid crashing when the fuzzed
library legitimately detects that the input is malformed. Otherwise,
the fuzzer would not be productive.

This example demonstrates the benefit of synthesizing numerous
candidate targets and ranking them by performance characteristics.
The FUDGE pipeline generated many candidates fuzzing the same
API without the try-catch block. Those candidates were deemed
less effective per the collected fuzzing performance statistics.

4.3 HTSlib

HTSlib'? (380 GitHub stars) is a C library for handling genome
sequencing data in different formats. It is a core component of
Samtools [35] (755 GitHub stars), which provides utilities for post-
processing gene sequence alignments. The authors directly up-
streamed a fuzz target (pull request #796)!! to the HTSlib maintain-
ers who have used it to identify and fix over 36 bugs (PR#805)'2.

Listing 7 FuDGE generated fuzzing target for HTSIib.

int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) {
const TempFile file(data, size);
htsFile* ht_file = hts_open(file.path().c_str(), "r");
if (ht_file == nullptr) { return 0; }
hts_close(ht_file);
return 0;

The upstreamed fuzz target was derived from the FUDGE gener-
ated fuzz target in Listing 7. The generated target starts by writing
data to a temporary file using a fuzz target utility class TempFile.
This first line was added by the synthesis module described in
Section 3.2: the first argument of the sliced out hts_open call was
rewritten to FuzzerInputAsTempFilePath() (see Table 1), which was
finalized to this code in the last step of the algorithm in Listing 5.
Again, this was just one of the variants that we synthesized from
the sliced out code snippet (which was only the hts_open call with
nullptr checking and with hts_close). In this variant the library
function interprets the fuzzed argument as a filename. This version
was ranked on top of other variants, as its coverage was the highest.
5 https://github.com/google/oss-fuzz/pull/2034
© Public bug reports at https://bugs.chromium.org/p/oss-fuzz?q=proj:opencv.

7 E.g., bug fixes at https://github.com/opencv/opencv/pulls/{14193,14201,14268}.

8 Headers are omitted. See full source at https://git.io/fjsz7.

% The vector arr is there to provide cv: :Mat a mutable copy of the fuzzed input.
10 https://github.com/samtools/htslib

1 https://github.com/samtools/htslib/pull/796
12 https://github.com/samtools/htslib/pull/805

git.io/fjsOv
github.com/DanBloomberg/leptonica
git.io/fjsOU
git.io/fjsOI
https://opencv.org/about
https://github.com/google/oss-fuzz/pull/2034
https://bugs.chromium.org/p/oss-fuzz?q=proj:opencv
https://github.com/opencv/opencv/pulls/{14193, 14201, 14268}
https://git.io/fjsz7
https://github.com/samtools/htslib
https://github.com/samtools/htslib/pull/796
https://github.com/samtools/htslib/pull/805

FUDGE: Fuzz Driver Generation at Scale

As the candidate fuzz target stood out it was selected to be
manually vetted. Once it was clear it was plausible and finding
likely bugs, it was manually written to more fully process different
formats in C (HTSIlib’s language). The modified target was sent
to the maintainers of HTSlib, who gave advice for how to avoid
writing and reading temporary files. The resulting target was the
one upstreamed in PR#796.

While the FuDGE-generated target was rewritten manually be-
fore checking it in, it did: (1) identify a function of interest, (2)
find concrete evidence that this needs attention, (3) focus the user
attention, and (4) accelerate the creation of the first fuzz target for
the library. The issues reported by this target helped the HTSlib
developers fix 36 bugs.

5 LESSONS LEARNED

This section describes a number of lessons that we learned while
designing FUDGE and utilizing it to generate fuzz targets.

Lesson 1: Choosing a suitable fuzz target (still) requires
a human. During the early phases of the FUDGE design, we en-
visioned the system as providing a one-click experience for the
developers: they would be presented with a generated fuzz target
and its performance parameters, and a single button click would
check that target into the repository. It turns out that execution
feedback, as discussed in Section 3.3, provides valuable signals to
deduce when a candidate target is clearly misusing an APIL This
information is used to remove the vast majority of candidate fuzz
targets from consideration. However, we discovered that a fully au-
tomated workflow to pick a final fuzz target was not yet attainable,
both for technical reasons and due to human factors.

First, the existing API uses of a library do not always capture all
the properties desired in a fuzz driver. While execution feedback
is very effective at weeding out bad candidates, the corpora sizes
or the coverage improvements alone are not enough to decide
which fuzz target is the most appropriate. Factors like security
relevance, depth of functionality, and parameter choices can only
be determined through an understanding of the intended role of an
APL In the absence of a formal specification for the library, this is a
task best performed by a human. Fortunately, FUDGE substantially
simplifies this task by presenting the developer only with a short
list of choices for investigation.

Second, the role of the source code is not only to specify an algo-
rithm for computer execution, but to communicate intent between
developers. Google has a strong engineering culture of code read-
ability, underpinned by rigorous code reviews, and the fuzz targets
are no exceptions. We found that choosing appropriate variable
names, achieving modularity, implementing defensive program-
ming practices, and otherwise implementing style guide recom-
mendations are a task much better suited for humans today.

To support developers, we provide code review recommenda-
tions. For example, we ask developers to check whether fuzzing
efficiency could be improved, by rewriting a candidate target from
potentially relying on a file parsing API with an equivalent in-
memory parsing APL Finally, the generated fuzz target is expected
to become the maintenance responsibility of developers once it is
checked in. Therefore, during code review, developers are expected

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

to thoroughly scrutinize the code for issues at all levels before
accepting it in the codebase.

Lesson 2: API call sites present good locality. In theory, the
set of APIs called for a library at a given use site could be arbitrarily
distributed across functions, classes, and units. This would pose a
serious challenge for any static analysis technique trying to extract
the control and data flow relations between the APIs. In practice,
we have discovered that, for surprisingly many APIs, enough uses
exist that exhibit unit- and even function-level locality. Extracting
these uses often requires only an intraprocedural analysis. Even
when an interprocedural analysis is required, confining it to the
same translation unit renders it massively parallelizable.

Lesson 3: Analyzing C++ is challenging due to a long tail
of language features. C++ is a complex language, with language
features spanning classes, template metaprogramming, and com-
plex scoping rules. At the scale of Google’s codebase, we found that
it is almost certain that even the most esoteric language features
are used somewhere in the code. While we were able to extract a
reasonable first set of API use sites by supporting basic language
features (C-like free functions), going after the long tail required
handling increasingly more types of language syntax. In our Clang-
based implementation, this translated into AST visitors handling
an increasing number of AST expressions, declarations, and types.

Lesson 4: Randomized algorithms have a good cost-value
tradeoff for program synthesis. Randomized algorithms are gen-
erally a powerful technique for navigating a search space with
complex rules. Fuzzing has been a prime example in the field of
test generation, becoming more affordable, yet still more effective
than more precise techniques such as symbolic execution. We ob-
served that this rule applies to the fuzz driver generation problem,
too. A priori generating a meaningful fuzz driver of an APl is a
difficult program synthesis problem. However, randomly generat-
ing variations of an extracted usage pattern and keeping only the
most promising candidates is more tractable. In practice, we have
found that we can reach valid API uses using a single generation
of mutations — given the scalability of our infrastructure.

Lesson 5: Program synthesis artifacts can be presented as
code findings to developers. One of the challenges we tackled in
FupGr’s design is how to interface the target generation workflow
with the development workflow of a Google engineer. We discov-
ered that a code findings approach provides minimal disruption to
developers, while integrating with the rest of their workflow. The
Fupce Ul implements this approach by associating each generated
fuzz target with the location in the source repository (i.e., library
package) where it is relevant. Developers maintaining or working
with the code see the associated list of candidate targets and may
decide to take further action by inspecting and checking in the
targets. In turn, the target generation pipeline lends itself well to a
batch computation model, where a periodic pipeline refreshes the
list of all candidates available to developers.

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

6 RELATED WORK

6.1 API Usage Analysis and Code Snippet
Extraction

There has been a lot of previous work mining and analyzing API
usage patterns that are related to the code snippet extraction of
FupGe. The existing tools are primarily created to help developers
understand and use a library new to them. Some of these tools only
mine function call sequences (without arguments or control-flow)
to build some presentable model, other extract code snippets.

In the former category, MAPO [45] was one of the first sys-
tems mining sequences of API calls from code search engines, find-
ing and reporting the most frequent sequences. UP-Miner [39] ex-
tends MAPO to reduce the redundancy of the mined call sequences.
MLUP [30] extended these systems by doing a multi-level analysis
of the sequences to find out which methods calls are often used
together. PAM [11] uses probabilistic machine learning to mine
a less redundant and more representative set of sequences than
MAPO or UP-Miner.

Some more advanced tools extract actual source code snippets,
similarly to FUDGE, typically to serve as the auto-generated doc-
umentation of the given API. The tool developed by Buse and
Weimer [5] uses a path-sensitive data-flow analysis to generate
code snippets for API usage documentation. eXoaDocs [20] also
generates usage example snippets for single APIs using program
slicing. UsETeC [46] builds on this research but instead of extract-
ing usage examples from client code, it mines them from unit tests.
APIMiner [23], MUSE [24] and CLAMS [19] are similar tools. All
the above tools work on Java, while Funce works on C/C++. FUDGE
uses a somewhat similar slicing algorithm to UsETeC’s or to the
summarization algorithm of APIMiner and CLAMS, but with a dif-
ferent slicing criteria, with the extension of introducing UnknownX
expressions, and with support for interprocedural slicing inside the
same translation unit.

6.2 Unit-test Generation

While fuzz test generation is a new research area, a closely related
area is automated unit-test generation. Randoop [26] is pure ran-
dom test generation tool for Java. It uses feedback information
as guidance to generate random method-calls. Palulu [2] in turn
uses a dynamic-random approach. It first infers a call sequence
model from a sample execution, then follows that model to create
random tests. It has no information about arguments and neither
uses the source code to extract additional information statically.
RecGen [44], on the other hand, is a static-random approach. It
does not have a dynamic analysis phase, it only relies on static
analysis to guide the random generation. Because of this, it may
fail to create valid sequences of calls for complex interfaces. Finally,
Palus [43], a tool developed at Google, improves the above tools,
by combining both static and dynamic approaches. All the above
tools were developed for Java unit test generation. The synthesis
module of FUDGE has a significantly simpler task than these tools,
as it only needs to complete an extracted code snippet, while the
unit-test generators start from scratch.

Another approach to generating unit-tests is to carve them from
existing tests, e.g., extracting unit tests from execution traces of

Babi¢, Bucur, Chen, Ivanéi¢, King, Kusano, Lemieux, Szekeres, Wang

system tests [9]. Basilisk uses a similar notion to carve parame-
terized unit tests from system tests for C programs [18]. Given a
particular system test execution which calls a function to be fuzzed,
this method could be utilized to precisely extract a fuzz target for
the function. FUDGE, having only static information, uses more
heuristic approaches to parameterize the extracted code snippets.
On the other hand, FUDGE has a broader goal: providing a tool to
both discover the functions to fuzz as well as expose fuzz targets
for those functions.

Some automated testing tools can generate a test driver when
the target of testing is a single top level function. For example, the
symbolic execution tool DART [13] can extract the interface of a
given function and automatically create a driver for it. Micro execu-
tion [12] can also execute a function without a user-provided driver,
by automatically identifing its I/O interface, allowing randomized
test input generation or white-box fuzz testing [14] for the given
function. This form of test driver generation focuses on enabling
the execution of single function, without having to write set-up or
tear-down driver code, while FUDGE focuses on creating drivers
exercising typical sequences of library API calls.

7 FUTURE WORK

We continue to apply FUDGE to additional target packages of in-
terest. This also includes on-going integrations with OSS-Fuzz for
additional OSS packages. In terms of technological improvements to
FuDGE, we continue to improve the synthesizer to handle additional
language features. Furthermore, we are working on generating fuzz
targets based on dynamic execution tracing of unit tests that ex-
ercise a target library as well. We are also considering leveraging
machine learning to improve some of the heuristics or human deci-
sions our system relies on. For example, an ML model could be used
to triage candidate fuzz targets based on a mix of static signals (API
names, the call graph of the library) and dynamic signals (coverage,
corpus size, number of crashes).

8 CONCLUSION

In this paper, we presented FUDGE, an automated fuzz driver gen-
erating system. FUDGE enables developers to apply fuzz testing to
their projects faster and easier than ever before. FUDGE has already
helped significantly increase fuzzing coverage inside Google and in
the open source community, and in making fuzz testing more wide-
spread in general. The FUDGE-generated targets that were added to
various projects helped to find numerous security vulnerabilities
and stability issues. Our case studies make us believe that most
C/C++ codebase that is not fuzzed yet could see major security and
robustness improvements if fuzz testing was applied to them.

ACKNOWLEDGMENTS

We would like to thank the many insightful collaborators, including:
Abhishek Arya, Christopher Moon, Dan Bloomberg, Daniel Austin,
Daniel Berlin, Felix Grobert, Fermin Serna, Jonathan Metzman, Jose
Duart, Kostya Serebryany, Martin Barbella, Matt Ruhstaller, Max
Moroz, Michael Specter, Oliver Chang, Phil Ames, Sam Kerner,
Wontae Choi, Yang Yang, and others. Additionally, we would like to
appreciate the various OSS project owners that have helped us to
get their projects and new fuzzing targets integrated into OSS-Fuzz.

FUDGE: Fuzz Driver Generation at Scale ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

REFERENCES 1109/WCRE.2013.6671315

[1] Mike Aizatsky, Kostya Serebryany, Oliver Chang, Abhishek Arya, and Mered- [24] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and

[

ith Whittaker. 2016. Announcing OSS-Fuzz: Continuous Fuzzing for Open
Source Software. Google Testing Blog. https://testing.googleblog.com/2016/12/
announcing- oss-fuzz- continuous-fuzzing.html

Shay Artzi, Michael D. Ernst, Adam Kiezun, Carlos Pacheco, and Jeff H. Perkins.
2006. Finding the needles in the haystack: Generating legal test inputs for
object-oriented programs. In M-TOOS: 1st Workshop on Model-Based Testing and
Object-Oriented Systems. Portland, OR, USA, 27-34.

Abhishek Arya, Oliver Chang, Max Moroz, Martin Barbella, Jonathan Metzman,
and the ClusterFuzz Team. 2019. Open sourcing ClusterFuzz. Google Open Source
Blog. https://opensource.googleblog.com/2019/02/open-sourcing-clusterfuzz.
html

Dan Bloomberg. 2001-2018. Leptonica. http://www.leptonica.com.

Raymond P. L. Buse and Westley Weimer. 2012. Synthesizing API Usage Examples.
In Proceedings of the 34th International Conference on Software Engineering (ICSE
’12). IEEE Press, Piscataway, NJ, USA, 782-792. http://dl.acm.org/citation.cfm?
1d=2337223.2337316

Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R.
Henry, Robert Bradshaw, and Nathan Weizenbaum. 2010. FlumeJava: Easy, Effi-
cient Data-parallel Pipelines. In Proceedings of the 31st ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’10). ACM, New
York, NY, USA, 363-375. https://doi.org/10.1145/1806596.1806638

Intel Corporation, Willow Garage, and Itseez. 2019. Open Source Computer
Vision Library. https://opencv.org

Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing
on Large Clusters. In Proceedings of the 6th Conference on Symposium on Opearting
Systems Design & Implementation - Volume 6 (OSDI'04). USENIX Association,
Berkeley, CA, USA, 10-10. http://dl.acm.org/citation.cfm?id=1251254.1251264
S. Elbaum, H. N. Chin, M. B. Dwyer, and M. Jorde. 2009. Carving and Replaying
Differential Unit Test Cases from System Test Cases. IEEE Transactions on Software
Engineering 35, 1 (Jan 2009), 29-45. https://doi.org/10.1109/TSE.2008.103
Chris Evans, Ben Hawkes, Heather Adkins, Matt Moore, Michal Zalewski, and
Gerhard Eschelbeck. 2015. Feedback and data-driven updates to Google’s disclo-
sure policy. https://googleprojectzero.blogspot.com/2015/02/feedback-and-data-
driven-updates-to.html.

Jaroslav Fowkes and Charles Sutton. 2016. Parameter-free Probabilistic API
Mining Across GitHub. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2016). ACM, New York,
NY, USA, 254-265. https://doi.org/10.1145/2950290.2950319

Patrice Godefroid. 2014. Micro Execution. In Proceedings of the 36th International
Conference on Software Engineering (ICSE 2014). ACM, New York, NY, USA, 539-
549. https://doi.org/10.1145/2568225.2568273

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-
mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI "05).

Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated
Whitebox Fuzz Testing. In Proceedings of the Network and Distributed System
Security Symposium, NDSS 2008, San Diego, California, USA, 10th February - 13th
February 2008.

Google Inc. 2015. Bazel - a fast, scalable, multi-language and extensible build
system. http://www.bazel.io

Google Inc. 2018. OSS-Fuzz Issue Tracker. https://bugs.chromium.org/p/oss-fuzz
Google Inc. 2019. Third-Party. Google’s open source documentation. https:
//opensource.google.com/docs/thirdparty

Alexander Kampmann and Andreas Zeller. 2018. Carving Parameterized Unit
Tests. CoRR abs/1812.07932 (2018). arXiv:1812.07932 http://arxiv.org/abs/1812.
07932

Nikolaos Katirtzis, Themistoklis Diamantopoulos, and Charles Sutton. 2018. Sum-
marizing Software API Usage Examples Using Clustering Techniques. In Funda-
mental Approaches to Software Engineering, Alessandra Russo and Andy Schiirr
(Eds.). Springer International Publishing, Cham, 189-206.

Jinhan Kim, Sanghoon Lee, Seung-Won Hwang, and Sunghun Kim. 2013. Enrich-
ing Documents with Examples: A Corpus Mining Approach. ACM Trans. Inf. Syst.
31, 1, Article 1 (January 2013), 27 pages. https://doi.org/10.1145/2414782.2414783
Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation. In Proceedings of the international
symposium on Code generation and optimization: feedback-directed and runtime
optimization (CGO °04). IEEE Computer Society, Washington, DC, USA, 75-.
http://dl.acm.org/citation.cfm?id=977395.977673

Valentin J. M. Manes, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. 2018. Fuzzing: Art, Science, and
Engineering. CoRR abs/1812.00140 (2018). arXiv:1812.00140 http://arxiv.org/abs/
1812.00140

[23] J. E. Montandon, H. Borges, D. Felix, and M. T. Valente. 2013. Documenting

APIs with examples: Lessons learned with the APIMiner platform. In 2013 20th
Working Conference on Reverse Engineering (WCRE). 401-408. https://doi.org/10.

[25]

[26

~
=

[28

[29

[30]

=
fla

[32

[33

(34

(35]

[46

Andrian Marcus. 2015. How Can I Use This Method?. In Proceedings of the 37th
International Conference on Software Engineering - Volume 1 (ICSE ’15). IEEE
Press, Piscataway, NJ, USA, 880-890. http://dl.acm.org/citation.cfm?id=2818754.
2818860

Ogre Development Team. 2019. OGRE - Open Source 3D Graphics Engine.
https://www.ogre3d.org/.

Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-Directed Random Test Generation. In Proceedings of the 29th Interna-
tional Conference on Software Engineering (ICSE ’07). IEEE Computer Society,
Washington, DC, USA, 75-84. https://doi.org/10.1109/ICSE.2007.37

Rachel Potvin and Josh Levenberg. 2016. Why Google Stores Billions of Lines
of Code in a Single Repository. Commun. ACM 59, 7 (June 2016), 78-87. https:
//doi.org/10.1145/2854146

Matt Ruhstaller and Oliver Chang. 2018. A New Chapter for OSS-Fuzz. Google
Security Blog. https://security.googleblog.com/2018/11/a-new-chapter-for-oss-
fuzz.html

Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. 2015. How Developers
Search for Code: A Case Study. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York, NY, USA,
191-201. https://doi.org/10.1145/2786805.2786855

M. A. Saied, O. Benomar, H. Abdeen, and H. Sahraoui. 2015. Mining Multi-
level API Usage Patterns. In 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER). 23-32. https://doi.org/10.1109/
SANER.2015.7081812

Kostya Serebryany. 2015. libFuzzer - a library for coverage-guided fuzz testing.
https://llvm.org/docs/LibFuzzer.html#fuzz-target.

Kostya Serebryany. 2015. Simple guided fuzzing for libraries using LLVM’s new
libFuzzer. http://blog.llvm.org/2015/04/fuzz-all-clangs.html.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In USENIX
ATC 2012. https://www.usenix.org/conference/usenixfederatedconferencesweek/
addresssanitizer-fast-address-sanity-checker

Ray Smith. 2007. An Overview of the Tesseract OCR Engine. In Proc. Ninth Int.
Conference on Document Analysis and Recognition (ICDAR). 629-633.

1000 Genome Project Data Processing Subgroup, Alec Wysoker, Bob Hand-
saker, Gabor Marth, Goncalo Abecasis, Heng Li, Jue Ruan, Nils Homer, Richard
Durbin, and Tim Fennell. 2009. The Sequence Alignment/Map format and
SAMtools. Bioinformatics 25, 16 (06 2009), 2078-2079. https://doi.org/10.
1093/bioinformatics/btp352 arXiv:http://oup.prod.sis.lan/bioinformatics/article-
pdf/25/16/2078/531810/btp352.pdf

Robert Swiecki. 2015. Honggfuzz. http://honggfuzz.com.

Laszl6 Szekeres. 2017. Memory Corruption Mitigation via Hardening and Testing.
Ph.D. Dissertation. Stony Brook University.

Frank Tip. 1994. A Survey of Program Slicing Techniques. Technical Report.
Amsterdam, The Netherlands, The Netherlands.

J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang. 2013. Mining
succinct and high-coverage API usage patterns from source code. In 2013 10th
Working Conference on Mining Software Repositories (MSR). 319-328. https:
//doi.org/10.1109/MSR.2013.6624045

Mark Weiser. 1981. Program Slicing. In Proceedings of the 5th International
Conference on Software Engineering (ICSE °81). IEEE Press, Piscataway, NJ, USA,
439-449. http://dl.acm.org/citation.cfm?id=800078.802557

H. K. Wright, D. Jasper, M. Klimek, C. Carruth, and Z. Wan. 2013. Large-Scale
Automated Refactoring Using ClangMR. In 2013 IEEE International Conference on
Software Maintenance. 548-551. https://doi.org/10.1109/ICSM.2013.93

Michat Zalewski. 2014. American Fuzzy Lop. http://Icamtuf.coredump.cx/afl.
Sai Zhang, David Saff, Yingyi Bu, and Michael D. Ernst. 2011. Combined Static
and Dynamic Automated Test Generation. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis (ISSTA '11). ACM, New York, NY,
USA, 353-363. https://doi.org/10.1145/2001420.2001463

Woujie Zheng, Qirun Zhang, Michael Lyu, and Tao Xie. 2010. Random Unit-test
Generation with MUT-aware Sequence Recommendation. In Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering (ASE ’10).
ACM, New York, NY, USA, 293-296. https://doi.org/10.1145/1858996.1859054
Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. 2009. MAPO: Mining
and Recommending API Usage Patterns. In Proceedings of the 23rd European
Conference on ECOOP 2009 — Object-Oriented Programming (Genoa). Springer-
Verlag, Berlin, Heidelberg, 318-343. https://doi.org/10.1007/978-3-642-03013-
0_15

Z.Zhu, Y. Zou, B. Xie, Y. Jin, Z. Lin, and L. Zhang. 2014. Mining API Usage
Examples from Test Code. In 2014 IEEE International Conference on Software
Maintenance and Evolution. 301-310. https://doi.org/10.1109/ICSME.2014.52

https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://opensource.googleblog.com/2019/02/open-sourcing-clusterfuzz.html
https://opensource.googleblog.com/2019/02/open-sourcing-clusterfuzz.html
http://www.leptonica.com
http://dl.acm.org/citation.cfm?id=2337223.2337316
http://dl.acm.org/citation.cfm?id=2337223.2337316
https://doi.org/10.1145/1806596.1806638
https://opencv.org
http://dl.acm.org/citation.cfm?id=1251254.1251264
https://doi.org/10.1109/TSE.2008.103
https://googleprojectzero.blogspot.com/2015/02/feedback-and-data-driven-updates-to.html
https://googleprojectzero.blogspot.com/2015/02/feedback-and-data-driven-updates-to.html
https://doi.org/10.1145/2950290.2950319
https://doi.org/10.1145/2568225.2568273
http://www.bazel.io
https://bugs.chromium.org/p/oss-fuzz
https://opensource.google.com/docs/thirdparty
https://opensource.google.com/docs/thirdparty
http://arxiv.org/abs/1812.07932
http://arxiv.org/abs/1812.07932
http://arxiv.org/abs/1812.07932
https://doi.org/10.1145/2414782.2414783
http://dl.acm.org/citation.cfm?id=977395.977673
http://arxiv.org/abs/1812.00140
http://arxiv.org/abs/1812.00140
http://arxiv.org/abs/1812.00140
https://doi.org/10.1109/WCRE.2013.6671315
https://doi.org/10.1109/WCRE.2013.6671315
http://dl.acm.org/citation.cfm?id=2818754.2818860
http://dl.acm.org/citation.cfm?id=2818754.2818860
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1145/2854146
https://doi.org/10.1145/2854146
https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html
https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html
https://doi.org/10.1145/2786805.2786855
https://doi.org/10.1109/SANER.2015.7081812
https://doi.org/10.1109/SANER.2015.7081812
https://llvm.org/docs/LibFuzzer.html#fuzz-target
http://blog.llvm.org/2015/04/fuzz-all-clangs.html
https://www.usenix.org/conference/usenixfederatedconferencesweek/addresssanitizer-fast-address-sanity-checker
https://www.usenix.org/conference/usenixfederatedconferencesweek/addresssanitizer-fast-address-sanity-checker
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
http://arxiv.org/abs/http://oup.prod.sis.lan/bioinformatics/article-pdf/25/16/2078/531810/btp352.pdf
http://arxiv.org/abs/http://oup.prod.sis.lan/bioinformatics/article-pdf/25/16/2078/531810/btp352.pdf
http://honggfuzz.com
https://doi.org/10.1109/MSR.2013.6624045
https://doi.org/10.1109/MSR.2013.6624045
http://dl.acm.org/citation.cfm?id=800078.802557
https://doi.org/10.1109/ICSM.2013.93
http://lcamtuf.coredump.cx/afl
https://doi.org/10.1145/2001420.2001463
https://doi.org/10.1145/1858996.1859054
https://doi.org/10.1007/978-3-642-03013-0_15
https://doi.org/10.1007/978-3-642-03013-0_15
https://doi.org/10.1109/ICSME.2014.52

	Abstract
	1 Introduction
	2 Overview
	3 Fudge Design
	3.1 AST Slicing
	3.2 Target Synthesis
	3.3 Target Evaluation
	3.4 User Interface

	4 Case Studies
	4.1 Leptonica
	4.2 OpenCV
	4.3 HTSlib

	5 Lessons Learned
	6 Related Work
	6.1 API Usage Analysis and Code Snippet Extraction
	6.2 Unit-test Generation

	7 Future work
	8 Conclusion
	Acknowledgments
	References

