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ABSTRACT

Crowdsourcing has enabled the collection, aggregation and refine-
ment of human knowledge and judgment, i.e. ground truth, for
problem domains with data of increasing complexity and scale.
This scale of ground truth data generation, especially towards the
development of machine learning based medical applications that
require large volumes of consistent diagnoses, poses significant
and unique challenges to quality control. Poor quality control in
crowdsourced labeling of medical data can result in undesired ef-
fects on patients’ health. In this paper, we study medicine-specific
quality control problems, including the diversity of grader exper-
tise and diagnosis guidelines’ ambiguity in novel datasets of three
eye diseases. We present analytical findings on physicians’ work
patterns, evaluate existing quality control methods that rely on task
completion time to circumvent the scarcity and cost problems of
generating ground truth medical data, and share our experiences
with a real-world system that collects medical labels at scale.
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1 INTRODUCTION

The process of generating ground truth data, or data labeling,
through human annotation is a major bottleneck in the development
and deployment of machine learning applications. Crowdsourcing
has become an important labor tool to address the issues of large
data volume and work-human annotator matching [9]. Quality
control in a crowdsourcing platform seeks to evaluate the quality
of answers in order to reward or correct graders accordingly to
ensure that graders generate high-quality, valid ground truth data.
Time and financial costs for medical diagnoses are high, which re-
stricts frequent performance re-evaluation. Graders may not meet
requesters’ desired quality bar because they lack the expertise to
complete the task, attempt to game the system, or have misaligned
motivations [2].

Golden datasets with known labels are often employed to control
for quality [2]. Each label in a golden dataset is often generated by
aggregating opinions from a panel of graders on the same input case.
The final label can be the result of a simple majority vote among
all graders’ labels or multiple rounds of voting until a consensus is
reached [2, 17]. These methods often incur high cost as they entail
having the same input data labeled by multiple graders, sometimes
repeatedly, or employing scarce specialist graders.

Alternative methods of identifying low quality graders often
involve analyzing task-completion times. Cheng et al. [1] suggested
the existence of a minimum time amount needed to complete a
labeling task, although computing such time can be difficult. Once
that minimum task-completion time is found, a grader completing a
task in less time is a signal indicating low quality. However, as this
minimum time estimation is an average for all graders, it cannot
be directly applied to tasks with the intent of utilizing graders with
varied levels of education and experience [1]. As medical graders are
scarce for complex or difficult diagnoses, allowing grader diversity
in skill, time availability, and compensation is critical for medical
labeling at scale.

This study analyzes three novel datasets of eye diseases, pro-
duced from a real-world large-scale medical labeling tool, and
presents the problems and measurements of quality control as-
sociated to them and other works. In section 2, we summarize our
data. Next, in section 3 we present a qualitative and quantitative
overview of factors that render medical data labeling and quality
control uniquely challenging. In section 4, we examine alternative
quality control methods in the absence of golden data and provide
analyses that rely on task completion times and its derivatives for
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identifying low performers. Finally, in section 5 we discuss our ob-
servations and suggest future works and improvements for medical
labeling tools.

2 DATA OVERVIEW

We focus on the applications of machine learning in assisting physi-
cians to diagnose common eye conditions, though our analyses
and observations for quality control should be applicable in other
medical labeling problems outside of ophthalmology. We exam-
ine four separate labeling efforts designed for three eye conditions.
Since this study’s primary focus is the performance and consistency
of graders, and these datasets pertain to ongoing and developing
research, the eye conditions are left unnamed. Table 1 provides a
brief summary.

- Total
Dataset  Classes Images Graders Replication Grades
Ao 52,238 38 1 52,238
Aq 1,519 11 3 4,517
B 4 891 9 9 6,749
C 6 994 9 3 2,947

Table 1: Summary of unnamed ophthalmology datasets.
Dataset Ay and A; are labeling tasks of the same eye disease.

Replication indicates the number of ophthalmologists grading
each image and classes is the number of diagnostic outcomes of
interest for the dataset’s disease. The total number of grades in repli-
cated datasets is not simply images - replication due the changing
direction of each dataset’s associated research.

3 CHALLENGES IN HIGH-QUALITY
IMAGE-BASED DIAGNOSES AT SCALE

With large amounts of highly consistent labeled data, deep learning
[12] has recently been applied in developing very accurate clas-
sification applications in medical imaging fields, including breast
cancer lymph node metastasis detection [14], pneumonia [15], and
diabetic retinopathy (DR) [7, 8]. Labeling data at this large scale re-
quires employing medical experts or professionals, often as graders
on crowdsourcing platforms.

Low agreement rate among physicians has long been observed
in all medical imaging fields, from grading DR [6], analyzing breast
cancer specimens [4], and interpreting mammograms [5]. There
have been various methods developed to improve diagnostic agree-
ment and consistency. Physicians’ interpretation variability can be
narrowed by establishing reference standards or guidelines that
include a rich corpus of example images [16]. Adjudication is a
protocol that involves discussions among physicians examining the
same patient case until a diagnosis consensus is reached. Adjudica-
tion has been shown to be valuable in the evaluation of these deep
learning models [11]. However, the high cost of these approaches,
both monetary and time-wise, hinders the creation of large golden
datasets that form the foundation of many quality control solutions
in crowdsourcing.
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Varied grader practices and skill in interpreting images and dis-
ease grading guidelines produce disagreement that is well doc-
umented across many medical domains [13, 18]. These grading
practices continue to diverge between images in the same labeling
task, and even more so across medical domains. Even after adjust-
ing for differences in graders’ software usage in our datasets, we
still observed different types of variability inherent to the tasks of
medical data labeling and diagnosis.

3.1 Variability in Diagnostic Labels

Within ophthalmology, many factors contribute to diagnostic label
variability, e.g. graders operating in clinics or reading centers [18]
and diagnosing from digital or film-based images [13]. Analysis on
data replicated to multiple graders shows high levels of disagree-
ment in out datasets A1, B, and C at 64%, 27%, and 32%, respectively,
of images with any disagreement. Table 2 shows the disagreement
matrix of individual labels against the majority vote for each image
of dataset B.

Individual Labels
Ungradeable Absent Possible Present
Majority Label
Ungradeable 144 52 10 1
Absent 94 5869 244 30
Possible 7 81 147 25
Present 1 7 10 27

Table 2: Disagreement matrix for the dataset B, showing all
grader’s labels against the majority vote. The categories re-
flect a grading scale for the unspecified eye disease evalu-
ated on retina images by multiple graders.

The categories of grades correspond to the three severity levels
of the disease, and graders may consider an image ungradeable if
image quality issues prevent diagnosing severity, e.g. due to image
blur or capturing an incorrect region. In the 15 cases which the
majority vote indicated the presence of the disease, close to half had
grades that indicated the disease was not present. These disagree-
ments may be caused by the difficulty of the task, which motivates
improved grading guidelines, or the performance of the grader.
This ambiguity of grade quality in large disparity disagreements
generalizes to all other datasets.

3.2 Variability in Grading Time

While different graders are expected to spend varying amounts of
time on their assigned tasks, such variability is particularly pro-
nounced in medical labeling. In particular, the very long-tailed
distributions of task-completion time across all graders for dataset
Ay, depicted as the black line in Figure 1, and other datasets, illus-
trate large inherent differences among tasks of the same labeling
task. Moreover, different graders exhibit different work patterns:
figure 1 highlights how seven graders, with the most grades, in
dataset Ag differ in time spent on a majority of their tasks. As
graders are assigned tasks uniformly randomly, tasks of similar
difficulty levels demonstrably took varying amounts of time from
these seven graders.
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Figure 1: Task-completion times of the seven graders with
the most grades in the dataset A(, along with average times
in black-dashed.

4 ASSESSING GRADER PERFORMANCE IN
THE ABSENCE OF GOLDEN DATA

The aforementioned variability in grading practices, diagnostic
outcomes and labeling efforts poses serious additional challenges
to the creation of golden datasets. In the absence or scarcity of
expensive golden data, medical labeling requesters often gravitate
towards time-based quality control methods.

4.1 Time-based Assessment

A potential indicator of graders’ performance is their grading speed.
Assuming a majority of skilled graders have similar grading pace,
grading speed outliers may be a signal of a low or high quality
grader. To demonstrate this variety in grading speed we computed
for each grader their median grading time per session, during which
any two consecutive tasks are less than twenty minutes apart. Fig-
ure 2 displays median grading times over the progression of labeling
dataset Ag for the seven graders that labeled the most images in
dataset Ay.
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Figure 2: Median grading time per session over the progres-
sion of labeling dataset Aj. The red-triangle series captures
a known low quality grader.

In dataset Ao, graders had been independently evaluated by
interleaving images with known golden labels. The grader plotted
in red triangle, grader G,, was found to be low quality as they failed
to produce a sufficient number of correct labels on these golden
images. Noticeably in Figure 2, G, is on average 6 times faster
than the second fastest grader. We also examine median grading
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Figure 3: Median grading time per session over the progres-
sion of labeling datasets top) A1, middle) B and bottom) C.

times per session in datasets A, B and C in figure 3. Unlike dataset
Ay, there was no golden label dataset available, since labeling cost
and complexity were prohibitive for interleaving golden images
into these datasets. As a result, additional signals are needed to
retroactively assess the quality of graders as well as the effectiveness
of grading time as an indicator for grader quality.

4.2 Estimates of Grader Quality

All of the aforementioned datasets that lack golden data, A;, B
and C, have multiple graders labeling each image. This enables the
usage of expectation maximization (EM) [3] to estimate graders’
error rates, or their confusion matrices, which form our baseline
measure for grader quality. Each grader’s confusion matrix value
ﬁfj gives the probability that grader k, when presented with a task
of true diagnostic label i, will label it j. The EM algorithm is run on
all images on datasets with replication Aj, B, and C. The resulting
confusion matrices, 7z, form the foundation for computing soft cost
to capture grader quality [10].

Given that grader k assigns label j to an image, the corresponding
soft label vector softF (j) (i.e. posterior estimate), derived from ﬂf j
is the best possible probability estimate for the true class of the
image over all possible classes. A grader’s soft label vector allows
one to account for the grader’s systemic biases as well as true label
priors [10].

Given a grader’s soft label vector, Ipeirotis et al. [10] provides us

with the computation of a grader’s expected soft cost Cost({softk M)

given their soft label vectors over all classes, weighted by the prob-
ability of grader k assigning label j. For generalizability, we assume
the cost of each classification error to be uniform.
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Figure 4 shows example soft cost matrices for graders Gy and
Gy in B. Grader Gy labeled questions Possible’ 4.9% of the time. Of
those, 64% of the time the label should be switched to ’Absent’, and
2.5% of the time the label should be switched to 'Ungradable’, and
33% of the time the label should stay "Possible’, as demonstrated in
our soft cost matrix.

Grader G; achieved perfect precision when they label "Present,
but only labeled "Present’ 0.1% of the time. The soft cost matrix
suggests that G; should have been less conservative in their labeling:
19% of their "Possible’ labels should be switched to "Present’, and
56% of their 'Ungradable’ labels were assigned to images whose
image quality are sufficiently good for other graders to label.
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Figure 4: Example soft cost matrices for graders left) Go and
right) G; in B. A grader’s distribution of assigned labels is
added to the column labels.

4.3 Evaluating Time-Based Methods Against
Estimated Grader Quality

Given our hypothesized relationship between a grader’s grading
time and quality, we tested the relationship between statistics of
grading time distribution and their soft cost. First, we combined all
replicated datasets (A1, B, C) by linearly normalizing the individual
grading times in each dataset to a scale between 0 and 1. We then
checked the p-value of correlation between their soft cost and each
of the mean, standard deviation, and median of graders’ times.
Correlations were statistically insignificant (at level 0.05) with p
values of 0.53 (mean), 0.13 (standard deviation), and 0.87 (median).

Next, we performed linear regression (with a bias term) on the
combined datasets. The features for said regression were as above:
mean, standard deviation, and median. The correlation between
predicted soft cost values produced by these regressors and actual
soft cost values was statistically insignificant (p-value of 0.11).

Finally, we performed linear regression (with a bias term) on the
individual normalized datasets. The features for regression were the
same. P-values corresponding to the correlations between predicted
soft cost values and actual soft cost values are 0.02 (A1), 0.16 (B),
and 0.11 (C). Figures 5 depicts the relationships between grading
time’s median and standard deviation (x and y axes) and soft cost
(color shade).
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Figure 5: A comparison of grading time’s statistics and soft
cost for top-left) Ai, top-right) B, and bottom) C.

5 DISCUSSIONS

Grading time appears to be a useful signal in detecting low-quality
graders in both datasets Ap and A; from the same eye condition: a
low-quality grader G, was identified due to their unusually high
speed in Ay (figure 2), and grader soft cost is found to be inversely
correlated with grading time’s statistics in A; (figure 5). Note that
G, was only present in Agbut not A;. Outside of the aforementioned
condition, there is insufficient evidence to confirm the role of grad-
ing time’s statistics in determining grader quality, as described in
Section 4.3. A number of factors other than grader quality may
influence grading time. For example, higher quality images may
need less time to interpret, resulting in short grading time. An op-
tometrist likely has less experience in grading when compared to
a retina specialist, but only in certain cases does that difference
translate to additional grading time.

While the EM-generated soft cost provides us with an estimate
of grader quality, the approach’s replication requirement limits
it to only datasets with replication. Even in such datasets with
replication, computing grading time’s statistics demands much less
data than running EM. As a result, one may be able to compute and
use grading time for quality estimation much earlier in the lifetime
of a labeling effort.

Comparing variations in grading time across tasks is a promising
first step towards identifying useful proxy metrics for label quality.
More data with golden labels will be needed to further explore
methods that solve this difficult problem. Furthermore, additional
types of data, such as grader interactions with the medical labeling
tool, may provide higher granularity and fidelity signals per session
to assess quality.
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