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Abstract

Ammonia (NH3) production is an industrial pro-
cess that consumes between 1-2% of global en-
ergy annually and is responsible for 2-3% of
greenhouse gas emissions (Van der Ham et al.,
2014). Ammonia is primarily used for agricul-
tural fertilizers, but it also conforms to the US
DOE targets for hydrogen storage materials (Lan
et al., 2012). Modern industrial facilities use the
century-old Haber-Bosch process, whose energy
usage and carbon emissions are strongly dom-
inated by the use of methane as the combined
energy source and hydrogen feedstock, not by the
energy used to maintain elevated temperatures and
pressures (Pfromm, 2017). Generating the hydro-
gen feedstock with renewable electricity through
water electrolysis is an option that would allow
retrofitting the billions of dollars of invested cap-
ital in Haber-Bosch production capacity. Eco-
nomic viability is however strongly dependent
on the relative regional prices of methane and
renewable energy; renewables have been trend-
ing lower in cost but forecasting methane prices
is difficult (Stehly et al., 2018; IRENA, 2017;
Wainberg et al., 2017). Electrochemical ammonia
production, which can use aqueous or steam HoO
as its hydrogen source (first demonstrated ~20
years ago) is a promising means of emissions-free
ammonia production. Its viability is also linked
to the relative price of renewable energy versus
methane, but in principle it can be significantly
more cost-effective than Haber-Bosch (Giddey
et al., 2013) and also downscale to developing
areas lacking ammonia transport infrastructure
(Shipman & Symes, 2017). However to date it has
only been demonstrated at laboratory scales with
yields and Faradaic efficiencies insufficient to be
economically competitive. Promising machine-
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learning approaches to fix this are discussed.

1. Why current approaches have failed

Two distinct approaches to electrochemical ammonia pro-
duction have been demonstrated to date (Kyriakou et al.,
2017): fluid electrocatalysis and solid-state ammonia syn-
thesis (SSAS).

Fluid electrocatalysis approaches use aqueous or gaseous
mixes of nitrogen, hydrogen (possibly from HyO) and elec-
trolyte to reduce di-nitrogen to ammonia at catalyzed elec-
trodes. The key challenge has been discovery of electrode
catalysts that are preferentially selective for adsorption of
nitrogen and its reduction intermediates over adsorption of
oxygen or hydrogen (Singh et al., 2016; Foster et al., 2018).

SSAS cells use a solid/polymer ion-conductor membrane
to decrease the preferentially selective adsorption require-
ment: the feedstocks are in separate chambers and the ion-
conductor mediates delivery of protons, driven by electrical
current. The key challenge has been finding combinations
of membrane and electrode materials that have high ammo-
nia yields per area/time, good Faradaic efficiency and that
are stable (i.e. don’t melt or chemically react) in a given
temperature regime (Kyriakou et al., 2017).

In both approaches, relevant materials properties can be ap-
proximated from first principles. Relative adsorption ener-
gies can be calculated from density functional theory (DFT)
(Hoskuldsson et al., 2017). Melting point, ion-conductivity,
and reactivity can all be estimated from first principles (Seko
et al., 2014; Hong & van de Walle, 2015; Pornprasertsuk
et al., 2005; Chermette, 1999). However large scale com-
putational screens have not been performed, due to the
relatively large computational cost involved (single-digit
CPU-hours for each candidate material and active-surface
geometry) coupled with uncertainty about how well first-
principles calculations predict reality for any given material
class (Pilania et al., 2013).

2. Filling the gap with machine-learning

Machine learning (ML) models have demonstrated they
are able to predict small-molecule and materials energies
and properties calculated from first-principles (Smith et al.,
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2017; Gilmer et al., 2017; Xie & Grossman, 2018; Singh
et al., 2019). Small molecule equilibrium structures can be
auto-regressively generated (Gebauer et al., 2018): demon-
stration of similar for crystal structures modeled as unit
cells with periodic boundary conditions is needed because
existing random/evolutionary approaches are still quite com-
putationally intensive (Pickard & Needs, 2006; Glass et al.,
2006). Rapid property prediction with ML models could
enable screening the space of 734,000 plausibly stable metal
oxides catalogued in the Materials Project (Jain et al., 2013)
for suitability as preferentially-selective electrodes.

To our knowledge the electrode catalyst that comes closest
to demonstrating economic viability is a doped disordered
carbon (Mukherjee et al., 2018), where first-principles cal-
culations done on typical unit-cell sizes miss crucial defect
effects. ML can generate tractable, predictive representa-
tions of disordered materials (Sharp et al., 2018); such repre-
sentations should be developed for optimizing preferentially
selective adsorption in doped disordered carbons.

As noted by (Kyriakou et al., 2017), a proton conductor
in the 250°C and 450°C range could be the missing piece
that enables economical SSAS. There are multiple material
classes and physical mechanisms of proton conductivity
(Nowick & Du, 1995; Quartarone et al., 2017; Tao et al.,
2015; Giddey et al., 2013). A pragmatic near-term model-
ing approach may be to use ML models tailored for each
material class and mechanism to predict ion conductivity
and stability in that temperature range.

For both fluid electrocatalysts and SSAS materials, the nui-
sance factors of active-site geometries (Calle-Vallejo et al.,
2015) and of optimal unit-cell size to model with (Wang
et al., 2010) argue for multi-objective optimization using
autoencoders or generative models, similar to those recently
developed in drug-discovery research (Gémez-Bombarelli
et al., 2018; Jin et al., 2018; Zhou et al., 2018). It is highly
recommended to restrict/bias the generator to materials that
have plausible synthesis paths, to facilitate experimental
verification. An active-learning loop using 3-stage funnel
screening (generator — first-principles properties verifica-
tion — experimental properties verification) is an efficient
use of resources in such a search (Aspuru-Guzik & Persson,
2018).
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