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Efficient and noise resilient measurements for quantum
chemistry on near-term quantum computers
William J. Huggins 1,2,3✉, Jarrod R. McClean1, Nicholas C. Rubin1, Zhang Jiang1, Nathan Wiebe1,4,5, K. Birgitta Whaley2,3 and
Ryan Babbush 1✉

Variational algorithms are a promising paradigm for utilizing near-term quantum devices for modeling electronic states of molecular
systems. However, previous bounds on the measurement time required have suggested that the application of these techniques to
larger molecules might be infeasible. We present a measurement strategy based on a low-rank factorization of the two-electron
integral tensor. Our approach provides a cubic reduction in term groupings over prior state-of-the-art and enables measurement
times three orders of magnitude smaller than those suggested by commonly referenced bounds for the largest systems we consider.
Although our technique requires execution of a linear-depth circuit prior to measurement, this is compensated for by eliminating
challenges associated with sampling nonlocal Jordan–Wigner transformed operators in the presence of measurement error, while
enabling a powerful form of error mitigation based on efficient postselection. We numerically characterize these benefits with noisy
quantum circuit simulations for ground-state energies of strongly correlated electronic systems.
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INTRODUCTION
Given the recent progress in quantum computing hardware, it is
natural to ask where the first demonstration of a quantum
advantage for a practical problem will occur. Since the first
experimental demonstration by Peruzzo et al.1, the variational
quantum eigensolver (VQE) framework has offered a promising
path towards utilizing small and noisy quantum devices for
simulating quantum chemistry. The essence of the VQE approach
is the use of the quantum device as a coprocessor, which prepares
a parameterized quantum wavefunction and measures the
expectation value of observables. In conjunction with a classical
optimization algorithm, it is possible to then minimize the
expectation value of the Hamiltonian as a function of the
parameters, arriving at approximations for the wavefunction,
energy, and other properties of the ground state1–8. A growing
body of work attempting to understand and ameliorate the
challenges associated with using VQE to target nontrivial systems
has emerged in recent years9–22. In this article, we address the
challenge posed by the large number of circuit repetitions needed
to perform accurate measurements and propose a scheme that
dramatically reduces this cost. In addition, we explain how our
approach to measurement has reduced sensitivity to readout
errors and also enables a powerful form of error mitigation.
Within VQE, expectation values are typically estimated by

Hamiltonian averaging. Under this approach, the Hamiltonian is
decomposed into a sum of operators that are tensor products of
single-qubit Pauli operators, commonly referred to as Pauli words.
The expectation values of the Pauli words are determined
independently by repeated measurement. When measurements
are distributed optimally between the Pauli words Pℓ, the total
number of measurements M is upper bounded by

M �
P

‘ ω‘j j
ϵ

� �2

; where H ¼
X
‘

ω‘P‘ (1)

is the Hamiltonian whose expectation value we estimate as
∑ℓωℓ〈Pℓ〉, the ωℓ are scalars, and ϵ is the target precision3,23. Prior
work assessing the viability of VQE has used bounds of this form
and concluded that chemistry applications require “a number of
measurements which is astronomically large” (quoting from ref. 3).
Several recent proposals attempt to address this obstacle by

developing more sophisticated strategies for partitioning the
Hamiltonian into sets of simultaneously measurable operators16–21.
We summarize their key findings in Table 1. This work has a similar
aim, but we take an approach rooted in a decomposition of the
two-electron integral tensor rather than focusing on properties of
Pauli words. We quantify the performance of our proposal by
numerically simulating the variances of our term groupings to
more accurately determine the number of circuit repetitions
required for measurement of the ground state energy. This
contrasts with the analysis in other recent papers that have
instead focused on using the number of separate terms which
must be measured as a proxy for this quantity. By that metric, our
approach requires a number of term groupings that is linear in the
number of qubits—a quartic improvement over the naive strategy
and a cubic improvement relative to these recent papers.
However, we argue that the number of distinct term groupings
alone is not generally predictive of the total number of circuit
repetitions required, because it does not consider how the
covariances of the different terms in these groupings can collude
to either reduce or increase the overall variance. We will show
below that our approach benefits from having these covariances
conspire in our favor; for the systems considered here, our
approach gives up to three orders of magnitude reduction in the
total number of measurements, while also providing an empiri-
cally observed asymptotic improvement.
Although there are a variety of approaches to simulating

indistinguishable fermions with distinguishable qubits24–26, the
Jordan–Wigner transformation is the most widely used. This is due
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to its simplicity and to the fact that it allows for the explicit
construction of a number of useful circuit primitives not available
under more sophisticated encodings. These include the Givens
rotation network that exactly implements a change of single-
particle basis16,27–29. A disadvantage of using the Jordan–Wigner
transformation is the fact that it maps operators acting on a
constant number of fermionic modes to qubit operators with
support on up to all N qubits. In the context of measurement, the
impact of this nonlocality can be seen by considering a simple
model of readout error such as a symmetric bitflip channel. Under
this model, a Pauli word with support on N qubits has N
opportunities for an error that reverses the sign of the measured
value, leading to estimates of expectation values that are
exponentially suppressed in N (see section “Error mitigation”). It
has recently been shown that techniques based on fermionic
swap networks can avoid the overheads and disadvantages
imposed by the nonlocality of the Jordan–Wigner encoding in a
variety of contexts, including during measurement16,28,29. Our
work will likewise avoid this challenge without leaving the
Jordan–Wigner framework, allowing estimation of single- and
two-particle fermionic operator expectation values by the
measurement of only one- and two-local qubit operators,
respectively.
In addition to this reduction in the support of the operators that

we measure, our work offers another opportunity for mitigating
errors. It has been observed that when one is interested in states
with a definite eigenvalue of a symmetry operator, such as the
total particle number, η, or the z-component of spin, Sz, it can be
useful to have a method that removes the components of some
experimentally prepared state with support on the wrong
symmetry manifold8–11. Two basic strategies to accomplish this
have been proposed. The first of these strategies is to directly and
nondestructively measure the symmetry operator and discard
those outcomes where the undesired eigenvalue is observed,
projecting into the proper symmetry sector by postselection. In
order to construct efficient measurement schemes, prior work in
this direction has focused on measuring the parities of η and Sz,

rather than the full symmetry operators9,11. These proposals
involve nonlocal operations that usually require O(N) depth, which
may induce further errors during their implementation. The
second class of strategies builds upon the foundation of ref. 14

and uses additional measurements together with classical
postprocessing to calculate expectation values of the projected
state without requiring additional circuit depth8–10, a procedure
that can be efficiently applied to the parity of the number
operator in each spin sector. In this work, we show how our
proposal for measurement naturally leads to the ability to
postselect directly on the proper eigenvalues of the operators η
and Sz, rather than on their parities.

RESULTS
Using Hamiltonian factorization for measurements
The crux of our strategy for improving the efficiency and error
resilience of Hamiltonian averaging is the application of tensor
factorization techniques to the measurement problem. Using a
representation discussed in the context of quantum computing in
refs. 29–31, we begin with the factorized form of the electronic
structure Hamiltonian in second quantization:

H ¼ U0

X
p

gpnp

 !
Uy
0 þ

XL
‘¼1

U‘

X
pq

gð‘Þpq npnq

 !
Uy
‘; (2)

where the values gp and gð‘Þpq are scalars, np ¼ aypap, and the Uℓ are
unitary operators that implement a single-particle change of
orbital basis. Specifically,

U ¼ exp
X
pq

κpqa
y
paq

 !
; UaypU

y ¼
X
q

eκ½ �pqayq; (3)

where ½eκ �pq is the p,q entry of the matrix exponential of the anti-
Hermitian matrix κ that characterizes U.
Numerous approaches that accomplish this goal exist, including

the density fitting approximation32,33, and a double factorization

Table 1. A history of ideas reducing the measurements required for estimating the energy of arbitrary basis chemistry Hamiltonians with the
variational quantum eigensolver.

Ref. Partitioning method Circuit sescription # of partitions Gate count Depth Connectivity Diagonal

2 Commuting Pauli heuristic – O(N4) – – – –
5 Compatible Pauli heuristic Single rotations O(N4) N 1 Any No
23 n-representability constraints Single rotations O(N4) N 1 Any No
21 Mean-field partitioning Fast feed-forward O(N4) O(N) O(N) Full No
17 Compatible Pauli clique cov. Single rotations O(N4) N 1 Any No
16 Counting argument Swap networks O(N3) O(N2) O(N) Linear No
18 Commuting Pauli graph color. Stabilizer formalism O(N3) – – Full No
20 Anticommuting Pauli clique cov. Pauli evolutions O(N3) OðN2log ðNÞÞ – Full No
19 Commuting Pauli clique cover Symplectic subspaces O(N3) OðN2=logNÞ – Full No
22 Commuting Pauli clique cover Stabilizer formalism O(N3) O(N2) – Full No

Here Integral tensor factorization Givens rotations O(N) N2/4 N/2 Linear Yes

Here N represents the number of spin orbitals in the basis. Gate counts and depths are given in terms of arbitrary single- or two-qubit gates restricted to the
geometry of two-qubit gates specified in the connectivity column. What we mean by compatible Pauli groupings is that the terms can be measured at the
same time with only single-qubit rotations prior to measurement. We report whether terms are measured in a diagonal representation as this is important for
enabling strategies of error mitigation by postselection. The number of partitions refers to the number of unique term groupings, which can each be
measured with a single circuit—thus, this reflects the number of unique circuits required to generate at least one sample of each term in the Hamiltonian.
However, we caution that one cannot infer the total number of measurements required from the number of partitions, and often this metric is highly
misleading. The overall number of measurements required is also critically determined by the variance of the estimator of the energy. As explained in the first
entry of this table, when terms are measured simultaneously one must also consider the covariance of those terms. In some cases, a grouping strategy can
decrease the number of partitions but increase the total number of measurements required by grouping terms with positive covariances. Alternatively,
strategies such as the third entry in this table actually increase the number of partitions while reducing the number of measurements required overall by
lowering the variance of the estimator.
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that begins with a Cholesky decomposition or eigendecomposi-
tion of the two-electron integral tensor29,33–39. In this work, we use
such an eigendecomposition and refer readers to the Supple-
mentary Note III and to refs. 29,31 for further details. The
eigendecomposition step permits discarding small eigenvalues
to yield a controllable approximation to the original Hamiltonian.
While such low-rank truncations are not central to our approach
and would not significantly reduce the number of measurements,
doing so would asymptotically reduce L (and thus ultimately, the
number of distinct measurement term groupings). Such decom-
positions have been explored extensively in the context of
electronic structure on classical computers on a far wider range of
systems than those considered here34,36,39–42. It has been found
that L=O(N) is sufficient for the case of arbitrary basis quantum
chemistry, both in the large system and large basis set limits34.
Furthermore, specific basis sets exist where L= 1, such as the
plane wave basis or dual basis of ref. 27.
Our measurement strategy, which we shall refer to as Basis

Rotation Grouping, is to apply the Uℓ circuit directly to the
quantum state prior to measurement. This allows us to
simultaneously sample all of the 〈np〉 and 〈npnq〉 expectation
values in the rotated basis. We can then estimate the energy as

hHi ¼
X
p

gphnpi0 þ
XL
‘¼1

X
pq

gð‘Þpq hnpnqi‘; (4)

where the subscript ℓ on the expectation values denotes that they
are sampled after applying the basis transformation Uℓ. The reason
that the hnpi‘ and hnpnqi‘ expectation values can be sampled
simultaneously is because under the Jordan–Wigner transforma-
tion, np= (1+ Zp)/2, which is a diagonal qubit operator. In
practice, we assume a standard measurement in the computa-
tional basis, giving us access to measurement outcomes for all
diagonal qubit operators simultaneously. Thus, our approach is
able to sample all terms in the Hamiltonian with only L+ 1=O(N)
distinct term groups.
Fortunately, the Uℓ are exceptionally efficient to implement,

even on hardware with minimal connectivity. Following the
strategy described in ref. 28, and assuming that the system is an
eigenstate of the total spin operator, any change of single-particle
basis can be performed using N2/4− N/2 two-qubit gates and
gate depth of exactly N, even with the connectivity of only a linear
array of qubits28. This gate depth can actually be improved to N/2
by further parallelizing the approach of ref. 28, making use of ideas
that are explained in the context of multiport interferometry in
ref. 43. In fact, a further optimization is possible by performing the
second matrix factorization discussed in ref. 29. This would result in
only Oðlog 2NÞ distinct values of the gð‘Þpq and a gate complexity for
implementing the Uℓ, which is reduced to OðNlogNÞ; however, we
note that this scaling is only realized in fairly large systems when N
is growing towards the thermodynamic (large system) rather than
continuum (large basis) limit.
The primary objective of our measurement strategy is to reduce

the time required to measure the energy to within a fixed
accuracy. Because different hardware platforms have different
repetition rates, we focus on quantifying the time required in
terms of the number of circuit repetitions. We shall present data
for electronic ground states that demonstrate the effectiveness of
our Basis Rotation Grouping approach in comparison to three
other measurement strategies and the upper bound of Eq. (1). All
calculations were performed using the open-source software
packages OpenFermion and Psi444,45. Specifically, we used exact
calculations of the variance of expectation values with respect to
the full configuration interaction ground state to determine the
number of circuit repetitions required. The calculations presented
here are performed for symmetrically stretched hydrogen chains
with various bond lengths and numbers of atoms, for a
symmetrically stretched water molecule, and for a stretched

nitrogen dimer, all in multiple basis sets. We justify our focus on
the electronic ground states here by noting that most variational
algorithms for chemistry attempt to optimize ansatz that are
already initialized near the ground state. For reference, we provide
analogous data calculated with respect to the Hartree–Fock state
in Supplementary Table II.
In order to calculate the variance of the estimator of the

expectation value of the energy, it is necessary to determine the
distribution of measurements between the different term group-
ings. References3,23 provide a prescription for the optimal choice.
They demand that (in the notation of Eq. (1)) each term Hℓ is
measured a fraction of the time fℓ equal to

f ‘ ¼
ω‘j j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hH‘i2

q
P

j ωj

�� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hHji2

q : (5)

In practice, the expectation values in the above expression are not
known ahead of time and so the optimal measurement fractions fℓ
cannot be efficiently and exactly determined a priori. For the
purposes of this paper, we approximated the ideal distribution of
measurements by first performing a classically tractable config-
uration interaction singles and doubles (CISD) calculation of the
quantities in Eq. (5). We shall show that this approximation
introduces a negligible overhead in measurement time for all
systems considered in this work. One could also envisage using an
adaptive measurement scheme that makes additional measure-
ments based on the observed sample variance, in order to
approximate the ideal partitioning of measurement time, such as
the one described in ref. 46.

Circuit repetitions required for energy measurement
In Fig. 1 we plot the number of circuit repetitions for our proposed
Basis Rotation Grouping measurement approach (black circles),
together with three other measurement strategies and the upper
bound based on Eq. (1) for the systems listed in Table 2. The first
and most basic alternative strategy is simply to apply no term
groupings and measure each Pauli word independently, a strategy
we refer to as Separate Measurements (lime green circles). A more
sophisticated approach, similar to the one described in ref. 17, is to
partition the Pauli words into groups of terms that can be
measured simultaneously. In the context of a near-term device, we
consider two Pauli words Pj and Pk simultaneously measurable if
and only if they act with the same Pauli operator on all qubits on
which they both act nontrivially. Pauli words that satisfy this
condition can be simultaneously measured using only single-qubit
rotations and measurement. In order to efficiently partition the
Pauli words into groups, we choose to take all of the terms that
only contain Z operators as one partition and then account for the
remaining Pauli words heuristically by adding them at random to
a group until no more valid choices remain before beginning a
new group. We refer to this approach as Pauli Word Grouping (teal
circles). The final strategy that we compare with preprocesses the
Hamiltonian by applying the techniques based on the fermionic
marginal (RDM) constraints described in ref. 23, before applying
the Jordan–Wigner transformation and using the same heuristic
grouping strategy to group simultaneously measurable Pauli
words together. We call this latter strategy Pauli Word Grouping,
RDM Constraints (dark blue circles).
We refer to the bound of Eq. (1) as being based on the

Hamiltonian coefficients and calculate it from the Jordan–Wigner
transformed Hamiltonian, (meaning that the ωℓ in Eq. (1) are the
coefficients of Pauli words). This bound is indicated by salmon-
colored circles in Fig. 1. We note that attempting to calculate a
similar bound directly from the fermionic Hamiltonian (meaning
that the ωℓ in Eq. (1) would be the coefficients of the terms aypaq or
aypa

y
qaras) leads to different bounds. These are derived in

Supplementary Note I, where they are shown to be substantially
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looser for the systems we consider in this work. While one would
not measure the fermion operators directly, it is surprising that
these bounds would be significantly different. We refer the
interested reader to the supplementary information for an analysis
and discussion of this phenomenon.
Considering first the hydrogen chain systems in Fig. 1 (left

panel, a), we note that our Basis Rotation Grouping approach
consistently outperforms the other strategies for simulations with
more than four fermionic modes, requiring significantly fewer
measurements. Interestingly, while the bounds from the qubit
Hamiltonian and other three methods appear to have relative
performances that are stable across a variety of system sizes, the
Basis Rotation Grouping method appears to have a different

asymptotic scaling, at least for hydrogen chains of increasing
length and basis set size. This is likely due to large-scale effects
that only manifest when approaching a system’s thermodynamic
limit (which one approaches particularly quickly for hydrogen
chains)47. In Table 3 we quantify this asymptotic scaling by
assuming that the dependence of the variance on the number of
qubits N in the hydrogen chain’s Hamiltonian can be modeled by
the functional form aNb for some constants a and b, which we fit
using a Bayesian analysis described in the table footnote48. By
contrast, the data from the minimal basis water molecule (panel B
in Fig. 1) shows no benefit in measurement time from our method
compared to the heuristic grouping strategies. However, the
advantage of our approach becomes significant for that system in
larger basis sets, a trend that is also apparent to a lesser extent for
the nitrogen dimer (panel C in Fig. 1).
We find that applying the RDM Constraints of ref. 23 to our Pauli

Word Grouping strategy (the combination is plotted with dark
blue circles in Fig. 1) does not significantly reduce the observed
variance, despite the fact that the use of the RDM Constraints have
been previously shown to dramatically reduce the bounds on the
number of circuit repetitions required23. In Supplementary Note II,
we explore the possibility that this is due to the fact that these
constraints were applied to minimize a bound of the same form as
Eq. (1) that is, however, formulated using the fermionic
representation of the Hamiltonian. We present evidence in the
Supplementary Note I of the Supplementary information that, in
the context of such bounds, the use of the Jordan–Wigner
transformed operators leads to surprisingly different results.
However, as we show there, we find that the actual variance with
respect to the ground state is not substantially changed by
applying the same constraints and performing the minimization
using the qubit representation of the Hamiltonian.
Earlier we explained that the data presented in Fig. 1 were

calculated by distributing the measurements between different
term groupings according to Eq. (1) using the variance of each
term calculated with a classically efficient CISD approximation to
the ground state. Any deviation from the ideal allocation of
measurement cycles (obtained by evaluating Eq. (1) with respect
to the true ground state) must increase the time required for
measurement. In Fig. 2 we present the ratio between the time
required with the approximate distribution and the time required
under the optimal one for each of the systems treated in the work.
We find that impact from this approximation is negligible, with the
largest observed increase in measurement time being below 3%.
For systems where CISD no longer provides a qualitatively good
approximation to the ground state, it would also be possible to

Table 2. List of the molecular systems considered in this work,
displayed in order of increasing number of qubits, for each type of
system.

System Interatomic
spacings (Å)

Basis set Frozen
orbitals

Number
of qubits

H2 0.6, 0.7, …1.3 STO-3G None 4

H2 0.6, 0.7, …1.3 6-31G None 8

H4 0.6, 0.7, …1.3 STO-3G None 8

H6 0.6, 0.7, …1.3 STO-3G None 12

H4 0.6, 0.7, …1.3 6-31G None 16

H8 0.6, 0.7, …1.3 STO-3G None 16

H2 0.6, 0.7, …1.3 cc-pVDZ None 20

H10 0.6, 0.7, …1.3 STO-3G None 20

H6 0.6, 0.7, …1.3 6-31G None 24

H2O 0.8, 0.9, …1.5 STO-3G 1 12

H2O 0.8, 0.9, …1.5 STO-3G None 14

H2O 0.8, 0.9, …1.5 6-31G 1 24

N2 0.9, 1.0, …1.6 STO-3G 2 16

N2 0.9, 1.0, …1.6 STO-3G None 20

The hydrogen systems consist of a chain of atoms arranged in a line, with
equal interatomic spacing. The interatomic spacing for the water
molecules refers to the length of the symmetrically stretched bonds O–H
bonds, which are separated by a fixed angle of 104.5°. The active space
used for each system has one spatial orbital for every two qubits. A
nonzero number of frozen orbitals indicates the number of molecular
orbitals fixed in a totally occupied state.

Fig. 1 The number of circuit repetitions required to estimate the ground state energy of various systems using five different
measurement strategies. The number of circuit repetitions required to estimate the ground state energy of various systems. From left to
right: A hydrogen chains of varying lengths in varying basis sets, B a water molecules in varying basis sets, C a nitrogen dimer in varying basis
sets. The specific systems considered are enumerated in Table 2. A target precision corresponding to a 2σ error bar of 1.0millihartree is
assumed. Calculations performed on systems that require the same number of qubits (spin orbitals) are plotted together in columns. The cost
of our proposed measurement strategy appears to have a lower asymptotic scaling than any other method we consider and obtains a
speedup of more than an order of magnitude compared to the next best approach for a number of systems.
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calculate the required quantities with a more sophisticated method,
such as the density matrix renormalization group algorithm49.
Overall, Fig. 1 speaks for itself in showing that in most cases

there is a very significant reduction in the number of measure-
ments required when using our strategy—sometimes by up to
three orders of magnitude for even modestly sized systems.
Furthermore, these improvements become more significant as
system size grows.

Error mitigation
Beyond the reduction in measurement time, our approach also
provides two distinct forms of error mitigation. First, it reduces the

susceptibility to readout errors by replacing the measurement of O
(N) qubit operators with one- and two-qubit operators. Second, it
allows us to perform postselection based on the eigenvalues of
the particle number operators in each spin sector. Both properties
stem from measuring the Hamiltonian only in terms of density
operators in different basis sets.
The first benefit, the reduction in readout errors, is a

consequence of only needing to measure expectation values of
operators that have support on one or two qubits. Direct
measurement of the Jordan–Wigner transformed Hamiltonian
using only single-qubit rotations and measurement involves
measuring operators with support on O(N) qubits. To demonstrate
how reducing the support of the operators helps to mitigate
errors, we consider a simple model of measurement error: the
independent, single-qubit symmetric bitflip channel. When
estimating the expectation value of a Pauli word Pℓ acting on K
qubits with a single-qubit bitflip error rate p, a simple Kraus
operator analysis shows that Pℓ is modified to

hP‘ibitflip ¼ ð1� 2pÞKhP‘itrue; (6)

which means that the noise channel will bias the estimator of the
expectation value towards zero by a factor exponential in K. Thus,
the determination of expectation values is highly sensitive to the
extent of the locality of the Pℓ, a behavior that we expect to persist
under more realistic models of readout errors.
One could also accomplish the reduction in the support of the

operators that our method achieves by other means. For example,
one could measure each of the O(N4) terms separately, localizing
each one to a single-qubit operator by applying O(N) two-qubit
gates. Other schemes have been proposed that simultaneously
allow generic two-electron terms to be measured using O(1)
qubits each while simultaneously accomplishing the parallel
measurement of O(N) terms at a time, at the cost of using O(N2)
or O(N2log(N)) two-qubit gates16,20,22. One advantage of our
approach is that we achieve this reduction in operator support at
the same time as the large reduction in the number of
measurement repetitions presented in section “Circuit repetitions
required for energy measurement” above.
Our approach also enables a second form of error mitigation.

Each measurement we prescribe is also simultaneously a
measurement of the total particle number operator, η, and of
the z-component of spin, Sz. We can therefore reduce the impact
of circuit and measurement errors by performing postselection
conditioned on a desired combination of quantum numbers for
each of these operators. Let P denote the projector onto the
corresponding subspace and let ρ denote the density matrix of
our state. We obtain access to the projected expectation value,

hHiproj ¼
Tr PρHð Þ
Tr Pρð Þ ; (7)

directly from the experimental measurement record by discarding
those data points that fall outside the desired subspace. The
remaining data points are used to evaluate the expectation values
of the desired Pauli words.
This postselection is efficient in the sense that it requires no

additional machinery beyond what we have already proposed.
The only cost is a factor of �1=TrðPρÞ additional measurements.
This factor is approximate because discarding measurements with
the wrong particle number is likely to lead to a lower observed
variance. Specifically, by removing measurements in the wrong
particle number sector, we avoid having to average over large
fluctuations caused by the energetic effects of adding or removing
particles. This, therefore, presents an additional route by which our
Basis Rotation Grouping scheme will reduce the number of
measurements in practice.
Several recent works have proposed error mitigation strategies

that allow for the targeting of specific symmetry sectors. We make

Fig. 2 The overhead in measurement time incurred by using a
sub-optimal distribution of measurement effort. Specifically, the
increase in the time (or the number of circuit repetitions) required to
measure the ground state energy to a fixed precision when the
measurements are distributed between groups using the variances
calculated with the configuration interaction singles and doubles
(CISD) approximation rather than the true ground state. For each of
the systems and measurement techniques considered in this work,
we present the ratio of the time required when using this
approximate distribution of measurement repetitions compared
with the time required using the optimal distribution, both
calculated using Eq. (5) and then applied to the measurement of
the actual ground state of the system. We find that using a
classically tractable CISD calculation to determine the distribution of
measurements between groups results in only a small increase in
total measurement time.

Table 3. Bounds and uncertainties resulting from Bayesian inference
using a Monte-Carlo approximation with 106 particles for all hydrogen
full configuration interaction data48.

Measurement strategy log ðaÞh i Δ(a) bh i σ(b)

Bound from qubit Hamiltonian −6.0 0.3 4.90 0.02

Separate Measurements −9.3 0.4 5.70 0.06

Pauli Word Grouping −8.9 0.4 4.88 0.06

RDM Constraints −10.8 0.4 5.63 0.06

Basis Rotation Grouping −6.0 0.3 2.75 0.01

We assume log ðNmeasÞ ¼ log ðaÞ þ x̂ þ blog ðNÞ, where x̂ � Nð0; 0:1Þ. We
highlight the column containing the mean values of b by using a bold font,
as this quantity summarizes the asymptotic scaling of the number of
measurements required for a fixed accuracy. The prior distributions are
uniform for log ðaÞ and b over [−15,1] and [1,20] respectively. Here σ(b) is
the posterior standard deviation for b and Δ(a) is the posterior standard
deviation of log ðaÞ þ x̂. RDM Constraints refers to the Pauli Word Grouping
approach with the RDM Constraints applied, as in the text. For Bayesian
methods to work a likelihood for all data must be computed. Here, we
assume additive Gaussian noise, similar to what is customary to justify
least-squares fitting, but choose a definite standard deviation. This
standard deviation is chosen to be

ffiffiffiffiffiffiffi
0:1

p
, which is chosen to upper bound

the observed standard deviation over our data sets for fixed values of N.
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a brief comparative review of these here in order to place our
work in context. One class of strategies focuses on nondestruc-
tively measuring one or more symmetry operators9,11. After
performing the measurements and conditioning on the desired
eigenvalues, the postmeasurement state becomes PρP=TrðPρÞ and
the usual Hamiltonian averaging can be performed. These
approaches share some features with our strategy in that they
also require an additional number of measurements that scale as
1=TrðPρÞ and an increased circuit depth. However, they also have
some drawbacks that we avoid. Because they separate the
measurement of the symmetry operator from the measurement
of the Hamiltonian, they require the implementation of relatively
complicated nondestructive measurements. As a consequence,
existing proposals focus on measuring only the parity of the η and
Sz operators, leading to a strictly less powerful form of error
mitigation than the approach we propose. In addition, most errors
that occur during or after the symmetry operator measurement
are undetectable, including errors incurred during readout.
A different class of approaches avoids the need for additional

circuit depth at the expense of requiring more measurements8–10.
To understand this, let Π denote the fermionic parity operator and
P= (1+ Π)/2 the projector onto the +1 parity subspace. Then,

hHiproj ¼
Tr PρHð Þ
Tr Pρð Þ ¼ Tr ρHð Þ þ Tr ρΠHð Þ

1þ Tr ρΠð Þ : (8)

To construct the projected energy it then suffices to measure the
expectation values of the Hamiltonian, the parity operator, and the
product of the Hamiltonian and parity operators. A stochastic
sampling scheme and a careful analysis of the cost of such an
approach reveals that it is possible to use postprocessing to
estimate the projection onto the subspace with the correct
particle number parity in each spin sector at a cost of roughly
1=TrðP"P#ρÞ2 (where P↑ and P↓ are the parity projectors for the two
spin sectors)10. Unlike our approach, this class of error mitigation
techniques does not easily allow for the projection onto the
correct eigenvalues of η and Sz, owing to the large number of
terms required to construct these projection operators. Further-
more, the scaling in the number of additional measurements we
described above, already more costly than our approach, is also
too generous. This is because the product of the parity operators
and the Hamiltonian will contain a larger number nonsimulta-
neously measurable terms than the same Hamiltonian on its own.
Maximum efficiency may require grouping schemes that consider
this larger number of term groupings.

The most significant drawback of our method in the context of
error mitigation is that the additional time and gates required for
the basis transformation circuit lead to additional opportunities for
errors. We believe that the reduction in circuit repetitions we have
shown makes our method the most attractive choice when it is
feasible to use an additional O(N2) two-qubit gates during the
measurement process. We therefore, focus, on comparing the
performance of our strategy with a strategy that requires no
additional gates and uses a quantum subspace error mitigation
approach that effectively projects onto the correct parity of the
number operator on each spin sector9,10. In order to do so, we use
the open-source software package Cirq50 to simulate the
performance of both strategies for measuring the ground state
energy of a chain of six hydrogen atoms symmetrically stretched
to 1.3Å in an STO-3G basis. We take an error model consisting of
(i) applying a single-qubit depolarizing channel with some
probability to both qubits following each two-qubit gate, and (ii)
applying a bitflip channel during the measurement process with
some other probability. We report results for a wide range of gate
and readout noise levels inspired by the capabilities of state-of-
the-art superconducting and ion trap quantum computers51–54.
Specifically, we consider single-qubit depolarizing noise with
probabilities ranging from 2.5 × 10−4 to 8 × 10−3 and single-qubit
bitflip error probabilities between 6.25 × 10−4 and 1 × 10−2. Here,
we do not consider the effect of a finite number of measurements
and instead report the expectation values from the final density
matrix.
Figure 3 shows the error in the measurement of the ground

state energy for the error-mitigated Basis Rotation Grouping (far
right panel) and Pauli Word Grouping (second panel from right)
approaches together with the expectation values for both
measurement strategies without error mitigation (two left panels).
In these calculations, we assumed that the ground state
wavefunction under the Jordan–Wigner transformation is pre-
pared without error. Circuit level noise is considered only during
the execution of the Givens rotation required for our Basis
Rotation Grouping approach. In order to include the impact of our
proposed error mitigation strategy on state preparation as well as
measurement, we have also carried out calculations including
circuit noise during state preparation. The results of these
calculations are presented in Fig. 4. Here, we have approximated
a realistic state preparation circuit by applying three random basis
rotations that compose to the identity to the ground state
wavefunction. These state preparation circuits are simulated with
the same gate noise as the measurement circuits. This choice is

Fig. 3 The error in the ground state energy of a hydrogen chain using various measurement strategies.We report the error in millihartrees
for measurements of the ground state energy of a stretched chain of six hydrogen atoms under an error model composed of single-qubit
dephasing noise applied after every two-qubit gate together with a symmetric bitflip channel during readout. We consider single-qubit
depolarizing noise with probabilities ranging from 2.5 × 10−4 to 8 × 10−3, corresponding to two-qubit gate error rates of ≈5 × 10−4 to 1.6 ×
10−2. For the measurement noise, we take the single-qubit bitflip error probabilities to be between 6.25 × 10−4 and 1 × 10−2. From left to right:
A The error incurred by a Pauli Grouping measurement strategy involving simultaneously measuring compatible Pauli words in the usual
molecular orbital basis. B The error when using our Basis Rotation Grouping scheme, which performs a change of single-particle basis before
measurement. C The errors using the same Pauli Word Grouping strategy together with additional measurements and postprocessing, which
effectively project the measured state onto a manifold with the correct parities of the total particle number and Sz operators. D Those found
when using our basis rotation strategy and postselecting on outcomes where the correct particle number and Sz were observed. In all panels,
we consider the measurement of the exact ground state without any error during state preparation.
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motivated by the assumption that low-depth circuits will be
required for the successful application of VQE and the expectation
that 90 two-qubit gates represent a reasonable lower bound to
the size of the circuit for a strongly correlated problem on 12
qubits.
Figures 3 and 4 show that the Pauli Word Grouping and Basis

Rotation Grouping approaches to measurement benefit signifi-
cantly from their respective error mitigation strategies. Despite the
fact that our proposed Basis Rotation Grouping technique requires
30 additional two-qubit gates compared to the Pauli Word
Grouping approach, we see that the errors remaining after
mitigation are comparable in some regimes and are lower for our
strategy when noise during a measurement is the dominant error
channel (compare the bottom right corners of the two rightmost
panels in both figures). Focusing first on Fig. 3, we can see that this
is true even when the errors during state preparation are not
taken into account. Examining the left two panels of both figures,
we can see that even without applying postselection, the locality
of our Jordan–Wigner transformed operators leads to a consider-
able benefit in suppressing the impact of readout errors. In the
low-noise regime, we expect the quantity 1− tr(Pρ) to scale
linearly with the number of errors coupling the different symmetry
sectors. For an error model dominated by two-qubit gate errors,
this quantity should itself scale linearly with the number of two-
qubit gates. For all of the simulations presented in this work, we
find that 1 � 1

trðPρÞ � 3. This implies that the postselection (or
postprocessing) can be performed at a reasonable cost, as
discussed above.
We note that the absolute errors we find when including noise

during state preparation (Fig. 4), even at the lowest noise levels
considered here, are larger than the usual target of chemical
accuracy (~1 mHa). In practice, an experimental implementation of
VQE on nontrivial systems will require the combination of multiple
forms of error mitigation. Prior work has shown that error
mitigation by symmetry projection combines favorably with
proposals to extrapolate expectation values to the zero noise
limit11. We expect that such an extrapolation procedure could
significantly improve the numbers we present here. Other
avenues for potential improvements are also available. For
example, one could rely on the error mitigation and efficiency
provided by our measurement strategy during the outer loop
optimization procedure, before utilizing a richer quantum sub-
space expansion in an attempt to reduce errors in the ground
state energy after determining the optimal ansatz parameters.

DISCUSSION
We have presented an improved strategy for measuring the
expectation value of the quantum chemical Hamiltonian on near-
term quantum computers. Our approach makes use of well-
studied factorizations of the two-electron integral tensor, in order
to rewrite the Hamiltonian in a form that is especially convenient
for measuring under the Jordan–Wigner transformation. By doing
so, we obtain O(N) distinct sets of terms that must be measured
separately, instead of the O(N4) required by a naive counting of
terms approach. Application to specific molecular systems shows
that in practice, we require a much smaller number of repetitions
to measure the ground state energy to within a fixed accuracy
target. For example, assuming an experimental repetition rate of
10 kHz (consistent with the capabilities of commercial super-
conducting qubit platforms), a commonly referenced bound
based on the Hamiltonian coefficients suggests that approxi-
mately 55 days are required to estimate the ground state energy
of a symmetrically stretched chain of six hydrogen atoms encoded
as a wavefunction on 24 qubits to within chemical accuracy, while
our approach requires only 44 min. Our proposed measurement
approach also removes the susceptibility to readout error caused
by long Jordan–Wigner strings and allows for postselection by
simultaneously measuring the total particle number and Sz
operators with each measurement shot.
The tensor factorization that we used to realize our measure-

ment strategy is only one of a family of such factorizations. Future
work might explore the use of different factorizations, or even
tailor the choice of single-particle bases for measurement to a
particular system, by choosing them with some knowledge of the
variances and covariances between terms in the Hamiltonian. As a
more concrete direction for future work, the data we show in
Supplementary Note I, regarding the difference between the
bounds when calculated directly from the fermionic operators and
the same approach applied to the Jordan–Wigner transformed
operators, suggests that the cost estimates for error-corrected
quantum algorithms should be recalculated using the qubit
Hamiltonian.
For the largest systems we consider in this work, the 24-qubit

hydrogen chain and water simulations, and the 20-qubit nitrogen
calculations, our numerical results indicate that using our
approach results in a speedup of more than an order of
magnitude when compared to recent state-of-the-art measure-
ment strategies. Furthermore, we observe a speedup of more than
three orders of magnitude compared to the bounds commonly

Fig. 4 The error in the ground state energy of a hydrogen chain using various measurement strategies and a noisy state preparation
step. We report the error in millihartrees for measurements of the ground state energy of a stretched chain of six hydrogen atoms under an
error model composed of single-qubit dephasing noise applied after every two-qubit gate together with a symmetric bitflip channel during
readout. We consider single-qubit depolarizing noise with probabilities ranging from 2.5 × 10−4 to 8 × 10−3, corresponding to two-qubit gate
error rates of ≈5 × 10−4 to 1.6 × 10−2. For the measurement noise, we take the single-qubit bitflip error probabilities to be between 6.25 × 10−4

and 1 × 10−2. From left to right: A The error incurred by a Pauli Grouping measurement strategy involving simultaneously measuring
compatible Pauli words in the usual molecular orbital basis. B The error when using our Basis Rotation Grouping scheme, which performs a
change of single-particle basis before measurement. C The errors using the same Pauli Word Grouping strategy together with additional
measurements and postprocessing, which effectively project the measured state onto a manifold with the correct parities of the total particle
number and Sz operators. D Those found when using our basis rotation strategy and postselecting on outcomes where the correct particle
number and Sz were observed. In all panels, for the purpose of approximating a realistic ansatz circuit, three random Givens rotation networks
that compose to the identity were simulated acting on the ground state prior to measurement.
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used to perform estimates in the literature. We also present strong
evidence for an asymptotic improvement in our data on hydrogen
chains of various sizes. We performed detailed circuit simulations
that show that reduction in readout errors combined with the
error mitigation enabled by our work largely balances out the
requirement for deeper circuits, even when compared against a
moderately expensive error mitigation strategy based on the
quantum subspace expansion9. We expect that the balance of
reduced measurement time and efficient error mitigation
provided by our approach will be useful in the application of
variational quantum algorithms to more complex molecular
systems.
Finally, we note that these techniques will generally be useful

for quantum simulating any fermionic system, even those for
which the tensor factorization cannot be truncated, such as the
Sachdev-Ye-Kitaev model of many-body chaotic dynamics55,56. In
that case, L will attain its maximal value of N2, and our scheme will
require N2+ 1 partitions. Likewise, if the goal is to use the basis
rotation grouping technique to estimate the fermionic two-
particle reduced density matrix rather than just the energy, one
would need to measure in all O(N2) bases.
In the process of preparing this manuscript, we have become

aware of several recent works that employ more sophisticated
strategies for grouping Pauli words together or employing a
different family of unitary transformations than those we consider
to enhance the measurement process17–20. It would be an
interesting subject of future work to calculate and compare the
number of circuit repetitions required by these approaches.
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