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Abstract

We introduce a method for serving models that estimate reach and demographics of cross-device
online audiences. The method assigns virtual people identifiers to events. The reach of a set of
events is estimated as a simple count of distinct virtual people assigned to these events. This
allows efficient serving of reach models at large scale. We formalize what it means for a reach
model to be actionable and prove that any actionable reach model is equivalent to some virtual
people model. We present algorithms for encoding reach models with virtual people and show that
a wide variety of modeling techniques can be implemented with this approach.

1 Introduction

Koehler, Skvortsov, and Vos (2013) [1] (KSV) presents a method for measuring reach and frequency
of online ad campaigns by audience attributes for one device (or cookie) type. The method combines
ad server logs, publisher provided user data (PPD), census data, and a representative panel to
produce corrected cookie and impression counts by these audience attributes. The method corrects
for cookie issues such as deletion and sharing, and for PPD issues such as non-representativeness
and poor quality of demographic labels. It also proposes a model that converts cookie counts to
user counts.

Koehler, Skvortsov, Ma, Liu (2016) [2] (KSML) extends the method to today’s world of multiple
device types such as desktop, smartphone, and tablet. A formulation for converting multiple
cookie counts to people counts was proposed. The article introduced the concept of an Activity
Distribution Function (ADF), which describes the probability of a person generating cookies of
each type. A theory relating ADFs to matching cross-device reach functions was presented and it
was shown that ADFs can be approximated by a mixture of Dirac delta functions [3] which can
be estimated empirically using panel data. A natural extension of the demographic correction to
multiple devices was presented as well.

This paper presents a technology that implements the measuring methodologies [1] and [2] in large
scale production systems efficiently. We convert reach and demographic correction models into
assignments of virtual people to each of the events in the logs. Each virtual person has demographic
attributes (age and gender) assigned to them. Total reach of an audience (ad campaign, web site,
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YouTube channel etc) can be estimated as a simple count of unique virtual people assigned to
the corresponding set of events. Demographic composition of an audience is estimated as the
demographic composition of the set of virtual people.

Encoding a reach and demo correction model as virtual people assignment comes with multiple
benefits. The most important benefits are

1. Protection of user privacy.

2. Simplicity of engineering implementation and maintenance.

3. Guarantee of reach and demographics model self-consistency.

Privacy. Attempting to identify the set of cookies that belong to a particular person would entail
privacy risks, even if only aggregate level reach is reported. Techniques outlined here assign cookies
to people according to random distributions with large domains, thus the probabilty that cookies
of a real person are assigned to the same virtual person is low. For almost all virtual people no
two cookies assigned to them belong to the same real person. Yet through these assignments, large
aggregate counts of virtual people closely approximate counts of real people.

Simplicity. To understand the simplicity of the virtual people model we provide a brief overview
of an infrastructure required for an aggregate model application.

Aggregate methods usually require unique user id (cookie, logged-in id) counting for each audience
report (campaign, site etc). The counts need to be obtained for each modelled sub-dimension. For
example, to estimate the reach of demographic categories with an aggregate model, counts of unique
identifiers needs to be obtained for each demographic label separately. Then once these aggregate
counts are accumulated a call to the aggregate model needs to be made. This call can be done via
a remote call to a server containing the model (e.g. via HTTP request), or via a library function
call. Both approaches have pros and cons and require engineering resources to maintain, require
workflows to be developed for model rollout, change of the labeling algorithms etc. For instance
if the source of demographic labels changes then the aggregate model likely needs to change and
these two changes need to be synchronized.

In contrast, virtual people model requires a single unique counting to be done for each audience
and the count can immediately be reported. For years the Internet industry built systems to report
impression and unique cookie counts. Any such system can be updated to unique people reach
reporting by simply changing the cookie identifier to virtual person identifier.

Consistency. It is important that a reach measurement is actionable, i.e. an advertiser should be
able to inspect slices of traffic and assess whether these slices are beneficial for reach, or should be
turned off. For a model, actionabilty requires that the model should be applicable to an arbitrary
set of events and should produce numbers for those sets that are consistent with each other. For
instance, the number of people reached via desktop must not be greater than the total number
of people reached by campaign. While this expectation is highly intuitive it is violated (at least
for some audiences) by many off-the-shelf machine learning models. For example, a multi-layer
perceptron would have no guarantee that its output reach for the first day of the week would
always be smaller than its output reach for the whole week.

Virutal people models are inherently consistent for arbitrary slices and are thus actionable. More-
over, in Section 3 we show (under a reasonable formal definition) that any actionable model is
equivalent to a virtual people model.
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The rest of the paper is organized as follows. In Section 2 we review the cross-device measurement
methods presented in [1] and [2]. In Section 3 we give a formal definition of actionable models,
we then formulate Theorem 1 that any actionable model is equivalent to a virtual people model
(the proof of the theorem is given in the Appendix). Section 4 presents three algorithms for
virtual people assignment. We start with an algorithm required to implement a multi-device reach
function with no demo reporting. The second algorithm allows implementation of a reach function
with demo correction via a stochastic redistribution matrix. Algorithm 3 is the most general and
allows implementation of a variety of modeling methodologies. Next in Section 5 we illustrate the
generality of Algorithm 3 discussing three modeling approaches and how they can be encoded as
virtual people by the algorithm. In particular in subsection 5.1 we show how the demographic
correction methodology [2] can be implemented via virtual people. We conclude with Section 6
running simulations verifying on two examples that virtual people indeed produces results that
closely follow the aggregate model application.

Appendix contains proof of Theorem 1 and Notation Glossary.

2 Review of Cross-Device Measurement

2.1 Demographic Correction Model

In [1] it was proposed to estimate the distribution (in form of a vector) of true demographics of
cookies belonging to audience ŷ from distribution of publisher provided labels of the cookies x as

ŷ = (1− α)Ax/||Ax||1 + αBx (1)

where A is a D × D “correction” matrix, B is a D x D left-stochastic matrix1, and α represents
the fraction of cookies (impressions) for the given audience either served on the publisher’s site or
via cookie targeting using the PPD. Hence, 1 − α represents the fraction of unlabeled cookies (or
unlabeled impressions) for that audience. Matrices A and B are trained from the panel data and
are fixed in the model. Parameters x and α are computed from logs data for each audience.

This approach was generalized in [2] for multiple devices. The generalization amounts to an appli-
cation of Equation 1 for each device, i.e. for device b we would have

ŷb = (1− αb)Axb/||Axb||1 + αBxb (2)

where x is the distribution of labels of the audience on device b, α is the fraction of cookies for the
given audience on device b that has an assigned PPD label and ŷb is the estimated distribution of
cookies with respect to true demographics.

2.2 Mapping Cookies to Users

It was shown in [2] that reach functions can be modeled via distributions describing activity of users
generating cookies of different types. Assume that there is an underlying population of people, and
each person has a certain probability of generating a cookie of each type. Let the (multivariate)

1A left-stochastic matrix is a square matrix with non-negative entries and columns that sum to one.
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probability distribution A model the heterogeneity of these probabilities. Distribution A can be
converted to a cross-device reach surface using the formula

RA(t) =

∫
x∈(R+)dimx

A(x) · (1− e−tx)dx. (3)

Here x and t are vectors of equal dimensionality and i-th coordinate of x corresponds to activity
of users generating the i-th cookie while i-th coordinate of cookie reach vector t corresponds to the
number of cookies reached by a web audience, scaled by the total number of people in the modeled
population. Distribution A is called the Activity Distribution Function (ADF). Function R is called
a reach function and it maps the vector cookie reach vector to the total number of unique people
reached.

Function 1 − RA(t) is known as the (multivariate) moment generating function (mgf) of distri-
bution A. Moments and moment generating functions are useful tools of modern statistics and
have found applications in multiple areas including climate science [5] and astrophysics [4]. While
moment generating functions usually play a role in an aggregate abstract description of a studied
distribution, in reach modeling the moment generating function and distribution switch roles. The
reach curve (mgf) is fit directly to panel data and the distribution (ADF) is used as an abstract
representaiton of it.

A few forms of ADF were discussed in [2]. In this paper we will use the Dirac Mixture and
Exponential Bow.

Dirac Mixture is a linear combination of Dirac Deltas, i.e. functions of finite volume that are zero
everywhere except for an infinitely small area around a certain point. A Dirac Mixture Activity
Density Function has an interpretation that the population consists of a finite number of sub-
populations. Each sub-population has a different cookie generation behavior, but people within a
sub-population have identical cookie generation behavior. Sub-population k is characterized by a
vector xk and its coordinate xτk is the activity of people in the pool generating user identifiers of
type τ . For instance, xmobile1 could be activity of people in the first pool generating mobile cookies.

Dirac Mixture Activity Density Function is defined as

D(x) =
∑
k

αkδ(x− xk). (4)

Substituting Dirac Mixture in Equation 3 and doing integration we obtain the formula for reach

RD(t) =

n∑
k=1

αk(1− e−xk·t). (5)

Dirac Mixtures are of interest to us because they can approximate reach of an arbitrary ADF with
arbitrary precision and can be efficiently trained to the observed data. Moreover it turns out that
Dirac Mixture reach functions can be naturally implemented as virtual people models.

Exponential Bow is a reach curve corresponding to an ADF equal to the exponential distribution.
That is

AExponentialBow(x) =
e−

x
κ

κ
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and consequently

ExponentialBow(t) = RAExponentialBow(t) =
κt

κt+ 1
.

Coefficient κ is the only parameter of an Exponential Bow and it happens to be equal to the
derivative of the corresponding reach function at 0.

Exponential Bow is of interest because it is observed to match Desktop reach curves reasonably
closely. In this paper we will use it as an example of a non-Dirac Mixture reach function when
encoding models with virtual people.

3 Actionable Reach Models

In practice it is not enough to simply report after the fact on a campaign, the model needs to
be actionable. That is the model should give an advertiser the power to plan and monitor reach
performance of the campaign. This makes an initial campaign plan more efficient and enables the
advertiser to do real-time adjustments to maximize their goals. To enable this planning the model
should support slicing on arbitrary dimensions (e.g. device type, time intervals, time of day etc).
The model should also produce internally consistent numbers for these slices.

We propose the following definition.

Definition 1. A model is actionable if and only if

• The model is applicable to any set of events. (In industry language: “The model allows
arbitrary slicing.”)

• The model is self-consistent.

Self-consistency is expected by any agent/analyst working with the model. For example, it is
expected that the model over a month reports reach of more people than it reports over the first
week of the month. It is also expected that reach over a week is smaller than the sum of the reach
over all days of the week. Yet most standard machine-learning techniques (neural networks for
instance) have no a priori guarantee of self-consistency.

How to achieve self-consistency of a model? One way is to encode the model as a virtual people
assignment. For each event we assign a virtual person identifier and the model simply reports the
number of unique identifiers corresponding to the set of events. It is obvious that such model is
actionable.

It may seem that constraining modeling techniques to virtual people assignment is too much of a
burden on model design. But it turns out that any actionable model is equivalent to a model based
on virtual people.

Theorem 1. Let E be a set of events and a function F : 2E → Z mapping sets of events to integers
satisfy the following properties for any sets of events A,B,C:

1. Monotonicity: F (A ∪B) ≥ F (A).
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2. Convexity: F (A ∪B) ≤ F (A) + F (B).

3. Attribution of incremental reach: If F (A ∪ B ∪ C) > F (A) then F (A ∪ B) > F (A) or
F (A ∪ C) > F (A).

4. Disjoint sets property: If F (A ∪ B) = F (A) + F (B) and F (A ∪ C) = F (A) + F (C) and
F (B ∪ C) = F (B) + F (C) then F (A ∪B ∪ C) = F (A) + F (B) + F (C).

Let also for any individual impression i we have F ({i}) ≤ 1.

Then there exists a set V (which we call a set of virtual people) and a mapping V : E → V, such
that for any set of events A we have F (A) = |V (A)|. Recall that by definition V (A) = {V (i)|i ∈ A}.
In other words F (A) is equal to the count of virtual people corresponding to elements of A.

The proof of Theorem 1 is given in Appendix.

Fortunately virtual people assignments can be efficiently obtained and a wide variety of modeling
techniques can be encoded via virtual people, such algorithms are discussed in Section 4.

4 Virtual People Assignment

In this section we introduce algorithms of virtual people assignment. These algorithms assign virtual
people identifiers to events in the logs in such a way that reach of a set of events can be estimated
by counting the number of unique identifiers assigned to these events. We start with algorithms
that handle simple intuitive models and finally introduce Algorithm 3 that can implement a wide
variety of modeling techniques, which will be illustrated in Section 5.

Formally, for a set of all events in the logs E and an abstract set of virtual people V, of cardinality
|V| equal to the size of the modeled population, a virtual people assignment function V : E → V
defines reach of set of events E ⊆ E as

RV (E) = |{V (e)|e ∈ E}|. (6)

We allow V to be undefined for some events, then these events bring no incremental reach. This is
required to implement reach curves that have partial derviative at zero less than one.

4.1 Assignment for Dirac Mixture

An assignment that matches a reach surface defined by an Dirac Mixture ADF (see Equation 5)
can be obtained as follows.

Recall that D(x) =
∑

k αkδ(x − xk) and let t(C) denote the vector of counts of cookies in C for
each cookie type. Then a virtual people assignment V follows a surface of Dirac Mixture D if and
only if

RV (E)

|V|
≈ RD(t(C(E))), (7)
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where C(E) is the set of user identifiers (cookies, log-in identifiers etc) corresponding to the set of
events E.

Without loss of generality we will assume that we model a single country of population m. For
simplicity we shall also assume that for any i the number m ·αi is an integer. Algorithm 1 performs
the assignment of virtual people to cookies.

input : total population per census data m, set of events E , correspondence of
events to user identifiers C : E → C, correspondence of user identifiers to
types of cookies T : C → T , Dirac Mixture Activity Distribution
D(x) =

∑n
k=1 αkδ(x− xk),

output : a set of virtual people identifiers V and a mapping V : C → V
// Allocating pools of virtual people per Dirac Delta.

let r = 1;
for i ∈ {1 . . . n} do

let Pi be the set of m · αi integers {r, . . . , r +m · αi − 1};
let r = r +m · αi;

end

let V =
n⋃
i=1

Pi;

assert V is a set of integers {1 . . .m};
// Assigning virtual people to log events.

for e ∈ E do
let c = C(e);
let τ = T (c);
let κτ =

∑
k αk · xτk;

with probability 1− κτ assign no virtual person to e and continue to next iteration of
the for loop;

sample i randomly, according to distribution P (i) =
αi·xτi
κτ

;

sample p uniformly at random from Pi ;
let V (e) = p

end

Algorithm 1: Assignment of virtual people following a Dirac Mixture reach surface

Each cookie should be mapped to the same virtual person for all events, so both random samplings
in Algorithm 1 should be done deterministically, e.g. using hash of the cookie id as a source of
randomness.

From the definition of Dirac Mixture follows

Observation 1. Assignment produced by Algorithm 1 follows Dirac Mixture D.

It may be required that more than 1 virtual person is assigned to an event. In particular connected
TV may have κ > 1, because it it is often located in a living room and is exposed to co-viewing.
Extension of the algorithms to mutliple virtual people assignment can be done, but is beyond the
scope of this paper.
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4.2 Assignment for Dirac Mixture into People Categories

In practice the reach surface is not the only constraint that a reach function has to fullfill. The model
may be enriched with information about the degree of reach penetration into certain categories
(e.g. age, gender, location) of the population. Formally speaking we may be able to estimate the
probability of a given cookie reaching certain segments of the population conditional on information
that can be directly observed about the cookie, i.e.

{P (event reaches population category c | cookie belongs to class `)}`∈L,c∈C,

where C are some categories of population and L is the set of user identifier labels. These estimations
can be made from panel data if categories of panelists are known.

To provide accurate consistent estimates per population category, virtual person assignment needs
to be done per category. Or, equivalently, each virtual person has to have a category assigned to it.
Otherwise by Theorem 1 we would be at risk of inconsistent reach numbers per some categories.

For example, a distribution of the audience over demographic buckets may be required to be
reported.

Another example is that we can estimate a mapping from information available for the event (e.g.
IP-address approximate location) to the distribution over some geographic regions. In important
practical cases this mapping can in fact be virtually deterministic. For instance if we need to
estimate the number of users reached in each state of the USA then approximate IP address
location can be used to assign states directly. Errors due to inaccuracy of IP to geo mapping at
such a coarse level would be insignificant.

Generally each category may have its own reach surface.

Algorithm 2 does the assignment assuming that we have training data that is granular enough to
fit the mapping from cookie attributes to probability distribution over people categories as well as
reach surfaces per category. This mapping is given to the algorithm via a matrix of conditional
probabilities

{rc,` = P (person(c) ∈ c|L(c) = `)}c∈C,`∈L.

Each rc,` is the probability of a person who generated a cookie c to belong to the category c given
than the cookie c has label ` ∈ L. In the simplest case the set of all labels L could have a similar
structure to the set of categories, e.g. ` ∈ L could be a demographic that the user declared when
they logged-in while c ∈ C could be their true demographic. But in general sets L and C could
have a very different structure, for instance ` ∈ L could be a combination of user’s declared and
inferred demographic, as well as a mask of their IP-address and c ∈ C be a combination of their
true demographic and geographic region.

Without loss of generality we assume that ADFs of all categories have the same dimensionality (as
the max of dimensionalities can be used otherwise).

4.3 Generic framework: Dirac Mixture of People Categories

Algorithm 2 allows to do the estimate of reach in an arbitrary set of categories. Yet in practice the
number of categories may be too large to divide the population into. Panel data is also too sparse
for the analysis of large number of categories.
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input : set of events E and a set of categories of people C,
total population per category from census data {mc}c∈C, correspon-
dence of events to user identifiers C : E → C,
correspondence of user identifiers to labels L : C → L,
correspondence of user identifiers to types of identifiers T : C → T , a
matrix of probabilities {rc,` = P (p(c) ∈ c|L(c) = `)}c∈C,`∈L,
Dirac Mixture Activity Distribution per category
{Dc(x) =

∑n
k=1 αk,cδ(x− xk,c)}c∈C

output : a set of virtual people identifiers partitioned by people categories V =
⋃

c∈C
Vc

and a mapping V : C → V
// Allocating pools of virtual people per people categories and Dirac

Deltas.

let r = 1;
for c ∈ C do

for i ∈ {1 . . . n} do
let Pi,c be the set of mc · αi,c integers {r, . . . , r +m · αi,c − 1};
let r = r +m · αi;

end

let Vc =
n⋃
i=1

Pi,c;

end

let V =
n⋃
i=1

⋃
c∈C

Pi,c;

assert V is a set of integers {1 · · ·
∑

cmc};
// Assigning virtual people to log events.

for e ∈ E do
let c = C(e);
let ` = L(c);
sample c randomly, according to distribution P (c) = rc,`;
let τ = T (c);
let κτ,c =

∑
k αk · xτk,c;

with probability 1− κτ,c assign no virtual person to e and continue to next iteration
of the for loop;

sample i randomly, according to distribution P (i) =
αi,c·xτi,c
κτ,c

;

sample p uniformly at random from Pi;
let V (e) = p

end

Algorithm 2: Assignment of Virtual People Per Category
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5 EXAMPLES OF MODELING WITH VIRTUAL PEOPLE

Consider the situation of estimating of reach across 30 interest categories (e.g. “Sports Enthusiasts”,
“Movie Lovers” etc), where each interest category contains around half of the population. If we
assume independence of categories we end up with 230 individual combinatorial categories (for
example one such category could be people interested in cars and movies, but nothing else), which
means that we have to split the population into around one billion pools. Even in this example
with only a few categories this approach becomes impractical, as small pools reduce the accuracy
of the model and poses a risk to the privacy of users.

Instead of dividing the population into a set of discrete categories we can introduce a random
distribution over categories for subsets of the population. Moreover, instead of having two partitions
of the population – one for categories and one for Dirac Deltas – we can re-use the Dirac Deltas
for category classification and fold-in the categorical features into user identifier types.

Formally, we assume that we have a Dirac Mixture D, whose deltas are indexed by elements of
some set Θ. We also have a mapping from this set to the set Ω of probability distributions over C,
i.e. ω : Θ→ Ω such that for a given dirac delta θ we have ω : θ 7→ {P (c|θ)}c∈C. Thus we arrive at
Algorithm 3.

Assignment of category to a virtual person must be consistent across events, so sampling of c should
be done deterministically, using hash of virtual person id as a source of randomness.

5 Examples of Modeling with Virtual People

Virtual people assignment (Algorithm 3 presented in the previous section) is generic and allows
implementation of a variety of modeling approaches. We illustrate this flexibility in this section via
examples of modeling techniques and how they fit the paradigm of Algorithm 3.

5.1 Cookie-level Demographic Correction

If we can infer the true demo distribution of users from their input demographic signals, e.g.
combinations of declared age and gender, then such demographic correction technique can be
encoded directly into matrix rc,` of Algorithm 2 or function T of Algorithm 3. But to implement the
models in [1] and [2] we need to extrapolate the distribution from cookies with PPD demographics
to unlabelled cookies via Equation (2).

In this case Algorithm 3 can be used by placing an arbitrary demo inference outside of the reach
modeling framework and then taking output of this demo inference as an input signal for the reach
model.

Let L : C → L be a correspondence of the set of all user identifiers to an arbitrary set of labels,
containing information that we want to use for training a demographic model. For instance exposure
to an ad campaign can be part of the label. First we build a model M : L×D→ R that maps each
user identifier label to a probability distribution over demographic categories M : (`, d) 7→ P (d|`).

Note that there are no limits on the techniques for this model, artificial neural networks can be
used for it. In particular the set of labels may be infinite, e.g. labels could be real valued vectors.

We finally convert the model into a form L̃ : C → D that can be digested by Algorithms 2 and 3.
We set
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input : total population per census data m, set of events E ,
correspondence of events to user identifiers C : E → C,
correspondence of user identifiers to types of identifiers T : E → T ,
Dirac Mixture Activity Distribution D(x) =

∑n
θ∈Θ αθδ(x− xθ),

correspondence of Dirac Deltas to distributions over people categories:
ω : Θ→ Ω

output : a set of virtual people identifiers V:
a mapping of events to virtual people V : E → V,
a mapping of virtual people to people categories: σ : V → C

// Allocating pools of virtual people per Dirac Delta.

let r = 1 for θ ∈ Θ do
let Pθ be the set of m · αθ integers {r, . . . , r +m · αθ − 1};
let r = r +m · αi;

end
let V =

⋃
θ∈Θ

Pi;

assert V is a set of integers {1 . . .m};
// Assigning virtual people to log events.

for e ∈ E do
let c = C(e);
let τ = T (e);
let κτ =

∑
θ∈Θ αθ · xτk;

with probability 1− κτ assign no virtual person to e and continue to next iteration of
the for loop;

sample θ randomly, according to distribution P (θ) =
αθ·xτθ
κτ

;

sample p uniformly at random from Pθ;
let V (e) = p;
sample c uniformly at random from distribution P (c) = ω(θ);
let σ(p) = c;

end

Algorithm 3: Assignment of Virtual People following a Dirac Mixture of People Categories

11



5 EXAMPLES OF MODELING WITH VIRTUAL PEOPLE

L̃ : c 7→ d, with probability M(L(c), d),

where the random assignment is deterministically made, e.g. applying an appropriate hash function
to the value of c.

The range of function L̃ is equal to D and it can be used as a finite set of labels in Algorithm 2
along with an identity matrix r.

Note that matricies A and B from Equation (2) can be used as a method to infer the demographics of
cookies. Specifically matrix A can be used to determine the distributions of cookies with PPD labels
and matrix B to determine distributions of cookies without labels for each advertising campaign.
Thus we can implement models described by [1] and [2] via virtual people.

5.2 Independence assumption

An independence assumption is often used in modeling the interaction of different features if panel
data is too sparse to measure interaction coefficients. Possibly because independence is the simplest
version of maximal entropy it often matches observation once enough data is collected to actually
perform the measurement.

In this section we consider modeling

• geo location with known Lg : C → Lg and rg stochastically mapping Lg to G (see Algorithm
2),

• demographics with a known Ld : C → Ld and rd : Ld → D,

• cross-device reach surface

via the independence assumption.

We assume that cross device reach Rx-device can be computed from reach on desktop Rdesktop
and reach on mobile Rmobile via the formula

Rx-device = Rdesktop +Rmobile −Rdesktop ·Rmobile.

We use the following activity distributions to define reach within each device

Ddesktop =

n∑
θ∈Θd

αθδ(x− xθ) and Dmobile =

n∑
θ∈Θm

αθδ(x− xθ).

We build T , D and ω to implement this model with Algorithm 3.

First we build an auxiliary set of categories of events as a simple Cartesian product:

L = Lg × Ld.

The set of cookie types is then defined by taking a product of the set of event categories onto the
set of devices:

T = L × {desktop,mobile}.
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Thus each cookie type corresponds to a triple (g, d, b), where g is geo signal, d is demo signal and
b is a device.

The set of Dirac Deltas is a similar Cartesian product

Θ = G× D×Θd ×Θm.

Let |c| be the fraction of the population belonging to category c.

Reach surface parameters α are computed from independence assumption as

αg,d,θd,θm = |g| · |d| · αd · αm.

Reach surface activities xg,d,θd,θm can also be computed from the independence assumption. Coor-
dinate of xg,d,θd,θm corresponding to cookie type (g, d, b) is equal to

rg,gg · r
d,d
d · xθb .

5.3 Interest reach modeling

It is common to target users via their inferred or declared interests. For example a climbing gear
retailer may be interested in reaching people who are classified as “Outdoor Enthusiasts”, while an
organizer of a music band tour may want to target “Music Lovers”.

Even a small number of interest groups gives rise to large number of combinations, therefore
modeling interests with categories of all interest combinations requires an impractically high number
of Dirac deltas.

To deal with this dimensionality explosion we can find a collection of people categories corresponding
to certain fixed distributions over interests. The sizes of categories and corresponding distributions
over interests are to be fit to match measured marginal precision of the interest labels and total
populations of each interest.

Similarly to the previous subsection we search for a direct assignment of cookies to people categories.
But this time each category will have a distribution over measurable features (interests) assigned
to it.

If A is the set of all interests then each people category a ∈ A would correspond to some distribution
over interests ω : a 7→ {P (a|a)}a∈A that people in this category follow.

Recall that 2A denotes the set of all subsets of A. Let L : C → 2A be the correspondence between
user identifiers and inferred interests.

Let εa be measured precision of the labels of interest a and |a| be the fraction of population known to
have this interest. For a given set of people categories A and an assignment of cookies to categories
L̃ : C → A we can observe the modeled precision as

ε̂(a) =

∑
c∈C,a∈L(c) P (a|ω(L̃(c)))

|{c ∈ C|a ∈ L(c)}|

and total audience as

13
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|̂a| =
∑

a∈A,a∈a

|a| · P (a|ω(a))

In practice the modeling can be simplified by also assuming that cookie generation patterns are the
same across categories of people. This is, for instance, required to model the interaction of interests
with demo and geo via the independence assumption. We can express this constraint as

∀a ∈ A |a| ≈ |{c ∈ C|a = L̃(c)|
|C|

(8)

Of course, the set of categories has to be of bounded size, otherwise we may end up with each
category having a single person and will have no room to model any other feature. We can determine
some threshold K and search for the set of categories that does not exceed K.

We can use a neural network to find a set of people categories A, assignment L̃ and distribution
map ω that minimizes errors

∑
a∈A

∥∥∥|̂a| − |a|∥∥∥
2

and
∑
a∈A
‖ε̂a − εa‖2

under the constraints (8) and |A| ≤ K.

Relative weights of the errors and strictness of the constraints is part of the art of model training
and may highly depend on specifics of the training data.

6 Simulations

In this section we present results of simulations verifying that the virtual person assignment matches
aggregate level models. In the first subsection we look at a simple Exponential Bow reach curve,
in the second subsection we look at model that calculates reach into two abstract categories.

6.1 Reach curve approximation

We ran an optimization algorithm that searched for an optimal Dirac Mixture consisting of 4 deltas
that approximates the Exponential Bow model. The resulting mixture is presented in the Table 1.

α x

0.164086 0.0650141
0.388211 0.427442
0.312285 1.27499229
0.135418 3.14015914

Table 1: 4-delta Dirac Mixture parameters approximating Exponential Bow reach curve.

This dirac mixture defines a curve that approximates Exponential Bow with maximal relative error
of 0.14%.

14
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Figure 1: Left: Exponential Bow and 4-point Dirac Mixture approximation. Right: Exponential
Bow estimates and counts of virtual people for simulated campaigns.

In Simulation 1 we generate random campaign cookies/people reach data that follows a Exponential
Bow of κ = 1 and limit 100000. We sample cookie counts from Pareto type II distribution with
expectation of 40000 and shape parameter equal to 3.0.

Recall that PDF of Pareto type II distribution has the form

α

λ

(
1 +

x

λ

)−(α+1)

and in general many classes of online audiences follow a similar distribution.

for i ∈ {1 . . . 10000} do
sample number of cookies visiting i-th campaign si from Pareto type II distribution
with scale 3 and expectation 40000 ;

let ri = 100000·si
100000+si

;

end

Simulation 1: Synthesising per campaign cookie reach si and aggregate estimates of people
reach ri.

The results of applying Algorithm 1 to the data are given at Figure 1. The absolute relative error
for measurement r̂ of quantity r is defined as ε = | r̂r − 1|. Average absolute relative error of virtual
people estimates in this simulation is 0.3%.

6.2 Per category reach

We implemented an aggregate model that estimates reach into two abstract categories of people A
and B. The estimate is done based on labels. Each event has a label a, b, the label distribution is

15
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mapped to people category distribution via a stochastic matrix r =

[
0.9 0.2
0.1 0.8

]
.

Similarily to the previous section we assume that campaign cookie reach is following a Pareto Type
II distribution. We assume that logarithms of fractions of labels in campaigns for each category is
normally distributed with µ = 0, σ = 1.

Each of the categories A and B is assumed to have 50 thousand people and the cookie to people
curve in each of the categories is assumed to be Exponential Bow .

for i ∈ {1 . . . 10000} do
sample number of cookies visiting i-th campaign si from Pareto type II distribution
with scale 3 and expectation 40000 ;

sample zi from Normal distribution with mean 0 and variance 1;

let fi =
ezi

1+ezi ;

let sai = bfi · sic;
let sbi = si − sai ;

let

[
sAi
sBi

]
=

[
0.9 0.2
0.1 0.8

]
·
[
sai
sbi

]
;

let rAi =
50000·sAi
50000+sAi

;

let rBi =
50000·sBi
50000+sBi

;

end

Simulation 2: Synthesising per campaign per label cookie reach sai , s
b
i and aggregate esti-

mates of per category people reach rAi .

The code for generating data for this simulation is given in Simulation 2. Algorithm 2 is used for
the virtual people assignment.

Figure 2 shows the comparison between aggregate estimates and estimates based on virtual people
counts. The estimates for reach into category A, reach into category B and fraction of reach
belonging to category A are compared. In pratice A and B could be men and women, or “Movie
Lovers” and “not Movie Lovers”, etc. Only campaigns with reach of more than 1000 people total
are used for evaluating fraction of reach into category A.

Average absolute errors for compared quantities are given at Table 2.

quantity error

reach into A 0.0061
reach into B 0.0091
fraction of A 0.0061

Table 2: Average relative absolute errors for the simulation of per-category reach modeling with
virtual people.
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Figure 2: Exponential Bow estimates and counts of virtual people for simulated campaigns.
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7 APPENDIX

7.1 Proof of consistency theorem

Theorem 1. Let E be a set of events and a function F : E → Z from the sets of events to integers
satisfy the following properties for any sets of events A,B,C:

1. Monotonicity: F (A ∪B) ≥ F (A).

2. Convexity: F (A ∪B) ≤ F (A) + F (B).

3. Attribution of incremental reach: If F (A ∪ B ∪ C) > F (A) then F (A ∪ B) > F (A) or
F (A ∪ C) > F (A).

17



7 APPENDIX

4. Disjoint sets property: If F (A ∪ B) = F (A) + F (B) and F (A ∪ C) = F (A) + F (C) and
F (B ∪ C) = F (B) + F (C) then F (A ∪B ∪ C) = F (A) + F (B) + F (C).

Let also for any individual impression i we have F ({i}) ≤ 1.

Then there exists a set V (which we call a set of virtual people) and a mapping V : E → V, such
that for any set of events A we have F (A) = |V (A)|. Recall that by definition V (A) = {V (i)|i ∈ A}.
In other words F (A) is equal to the count of virtual people corresponding to elements of A.

Proof. First note that any impression with reach 0 can not impact reach of any set due to convexity.
So we drop all such events from consideration and assume without loss of generality that for any
impression i we have F ({i}) = 1.

We introduce the relation over events i ∼ j <=> F ({i, j}) = 1. This relationship is equivalence,
i.e. it is reflexive, symmetric and transitive. Reflexivity and symmetry are trivial.

To show transitivity consider events i, j, k and assume that i ∼ j and j ∼ k. Setting A = {j}, B =
{i}, C = {k}, then F (A ∪ B) = 1 and F (A ∪ C) = 1, and by contraposition of attribution of
incremental reach property we arrive to F (A ∪ B ∪ C) = 1. Which by monotonicity leads to
F (B ∪ C) = 1 and i ∼ k.

Thus we have proven that ∼ is equivalence. Let [i] be the class of equivalence of i with respect to
relation ∼.

We define V to be the set of classes of equivalence of ∼ and define V (i) = [i].

Now we prove by induction on the size of A that F (A) = |{V (i)|i ∈ A}|.

If |A| = 1 then F (A) = 1 by the condition of the theorem and |{V (i)|i ∈ A}| = 1 because it
contains the only class of equivalence of the single element of A.

To show the step of induction we consider set M and assume that any set of events of size strictly less
than |M | satisfies the inductive assumption. Let i be an arbitrary element of M and M = N ∪{i},
where |N | = |M | − 1.

Consider two cases: 1. [i] ∈ |{V (j)|j ∈ N}| and 2. [i] 6∈ |{V (j)|j ∈ N}|.

Case 1: If [i] ∈ |{V (j)|j ∈ N}| then |V (M)| = |V (N)| and we need to prove that F(M) = F(N).

By convexity and monotonicity properties we have F (N) ≤ F (M) ≤ F (N) + 1.

There exists j ∈ N such that i ∼ j because [i] ∈ |{V (j)|j ∈ N}|.

By inductive assumption F (N) = F (N \ [j]) + 1. From convexity we get that F (N ∪ [j]) ≤ F (N \
[j]) + 1. Also by definition we have M ⊆ N ∪ [j] and thus F (M) ≤ F (N ∪ [j]). Therefore we have
F (M) ≤ F (N ∪ [j]) ≤ F (N \ [j]) + 1 = F (N).

But due to monotonicity F (N) ≤ F (M) and therefore we conclude that F (N) = F (M).

Case 2: If [i] 6∈ {V (j)|j ∈ N} then |V (M)| = |V (N)| + 1 and we need to prove that F (M) =
F (N) + 1.

Pick an arbitrary j ∈ N . To apply disjoint sets property consider A = [j]∩N,B = N \ [j], C = {i}.
By inductive assumption we have F (A) = 1, F (B) = F (N)− 1 and F (C) = 1.

Thus we have F (A∪B) = F (A)+F (B) and F (B∪C) = F (B)+F (C). Since i 6∼ j, then by definition
of ∼, monotonicity and then convexity we have 2 ≤ F ({i, j}) ≤ F (A ∪ C) ≤ F (A) + F (C) = 2,
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therefore F (A ∪ C) = F (A) + F (C).

Finally by disjoint sets property we conclude that

F (M) = F (A ∪B ∪ C) = F (A) + F (B) + F (C) = 1 + F (N)− 1 + 1 = F (N) + 1,

which finishes the proof.
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Notation Glossary

Notation Glossary

C a function mapping an event to the user identifier (e.g. a cookie) corresponding to this event. 7

L a function mapping a user identifier to its label (e.g. stating that a cookie has declared age range
of 25 to 34). 8

R a reach function. 4

T a function mapping a user identifier to its type, (e.g. desktop cookie to ”Desktop”). 7

V a function mapping each event to a virtual person identifier. 6

Ω the set of all random distributions over the set of people categories. 10

α a coefficient of Dirac Delta in Dirac Mixture. 4

t a cookie reach vector. 4

x an activity vector. 4

δ a Dirac Delta function. 4

` a class of cookies. 8

κ a partial derivative of a reach function at 0. 5

C the set of all categories of people. 8

c a category of people. 8

A Activity Density Function. 4

C the set of all user identifiers. 7

D Dirac Mixture. 4

E the set of all events. 7

L the set of user identifier labels. 8

T the set of types of user identifiers. 7

V a set of virtual people identifiers. 6

ω a function mapping a Dirac Delta to a distribution over people categories. 10

σ a function mapping a virtual person to a people category. 11
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