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Abstract

Recently we proposed a dual-microphone adaptive noise can-

cellation (ANC) algorithm with deferred filter coefficients for

robust hotword detection in [1]. It exploits two unique hotword-

related features: hotwords are the leading phrase of valid voice

queries and they are short. These features allow us not to

compute a speech-noise mask that is a common prerequisite

for many multichannel speech enhancement approaches. This

novel idea was found effective against strong and ambiguous

speech-like TV noise. In this paper, we show that it can be

generalized to support more than two microphones. The devel-

opment is validated using re-recorded data with background TV

noise from a 3-mic array. By adding one more microphone, the

false reject (FR) rate can be further reduced relatively by 33.5%.

Index Terms: Hotword/wake-word detection, keyword spot-

ting, multi-microphone noise cancellation, microphone array

processing for machine learning

1. Introduction

Hotword (or wake word) detection is the first step to start a con-

versation with today’s increasingly popular voice assistants like

Google’s Assistant and Amazon’s Alexa. It is a special case

of keyword spotting that listens continuously to one or multiple

open microphones and recognizes a predefined hotword. Once

the hotword is detected, other parts of the system will be woken

up from idle to process the user’s voice inputs.

While the vocabulary is extremely small, hotword detection

still needs to deal with the challenges that more sophisticated

automatic speech recognition (ASR) systems commonly have

to overcome, including but not limited to speaker/accent vari-

ability, channel distortion, level mismatching, and noise robust-

ness. Moreover, since this is an always-on program running on

client devices, practical solutions must have low latency, small

memory footprint, and light CPU load.

The research on keyword spotting can be traced back to

more than four decades ago [2]. Early approaches were based

on template matching via dynamic time warping [3] and prob-

abilistic inference using hidden Markov models [4, 5, 6]. They

produced promising results, but the most remarkable perfor-

mance improvement in this field was driven by the advent of

deep learning with artificial neural networks (NNs) [7]. Re-

cently a variety of NN structures have been explored for hot-

word detection: e.g., deep neural network (DNN) [8], con-

volutional neural network (CNN) [9], deep residual network

(ResNet) [10], recurrent neural network (RNN) [11, 12], long

short-time memory (LSTM) [13, 14], and end-to-end (E2E)

model [15]. These efforts have successfully brought hotword

detection accuracy in clean to moderately noisy environments

to a level that is acceptable for commercial deployment at scale.

By the end of 2018, according to a Voicebot study [16], over

one billion devices (being either smart speakers, smartphones,

or car infotainment systems) have had access to voice assistant

services. This level of ubiquity and penetration implies that hot-

word detection may work in various acoustic environments on a

daily basis, and hence demands decent robustness against strong

and ambiguous multi-talker noise.

Our research at Google has investigated multi-style train-

ing (MTR) [17] which was found useful to mitigate far-field

distortions (room reverberation) and non-speech noise. To ad-

dress speech-like interference like TV noise, we believe that we

will need to leverage multichannel speech enhancement algo-

rithms. They may be integrated as hidden layers and jointly

trained with the NN, or work as stand-alone preprocessors. Re-

cently we proposed an ANC algorithm called hotword cleaner

for dual-microphone systems [1]. It is tailored for hotword de-

tection by exploiting two unique hotword-related features: hot-

words are always the leading phrase of valid voice queries and

they are short in duration. Particularly we update the cross-

channel noise cancellation filter constantly like in traditional

ANC systems, but the cleaner’s outputs are computed using

deferred filter coefficients. This simple logic is very effective

on TV noise, significantly outperforming both the two-channel

Wiener filter and many types of beamformers [18]. In this pa-

per, we would like to generalize the idea to support more than 2

microphones and refer to this new algorithm as Multi-Channel

Cleaner or McCleaner in short. Using re-recorded data from a

3-mic array, we will present a side-by-side comparison of the

McCleaner algorithm between using 2 and 3 microphones. By

adding one more microphone, the FR rate can be reduced rela-

tively by 33.5%.

2. Signal and Array Models

In this work we use a microphone array of M elements to cap-

ture a speech source s(t) in a noisy and reverberant acoustic

environment. The output of the mth microphone in the time

domain is expressed as

ym(t) = xm(t) + vm(t) (1)

= am ∗ s(t) + vm(t), m = 1, 2, · · · ,M,

where xm(t) and vm(t) are the speech and additive noise com-

ponents, respectively, am denotes the impulse response from

the speech source to the mth microphone, and ∗ stands for linear

convolution. The additive noise is the summation of the contri-

butions from a number of Q different sound sources. Then we

have

vm(t) =

Q
∑

q=1

bq,m ∗ uq(t), (2)

where bq,m is the impulse response from the qth noise source

uq(t) to the mth microphone. Alternatively (1) can be written

with respect to the signal components of each sound source at

the first microphone

ym(t) = hm ∗ x1(t) +

Q
∑

q=1

gq,m ∗ uq,1(t), (3)
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where hm represents the relative impulse response from the first

to the mth microphone with respect to the speech source lo-

cation, which satisfies hm ∗ a1 = am, and gq,m is similarly

defined between bq,1 and bq,m.

Using a K-point STFT analysis, a linear convolution is rig-

orously converted into a sum of K cross-band filter convolu-

tions in the STFT domain, which are necessary to cancel the

aliasing caused by downsampling in each frequency subband

[19]. As a result, (3) is transformed into

Ym(k, n) =

K−1
∑

k′=0

[

Hm(k′

, k) ⋆ X1(k
′

, n) +

Q
∑

q=1

Gq,m(k′

, k) ⋆ Uq,1(k
′

, n)

]

, (4)

where Ym(k, n), X1(k, n), and Uq,1(k, n) are the STFTs of

ym(t), x1(t), and uq,1(t), respectively, at discrete-frequency

k and time frame n, Hm(k′, k) and Gq,m(k′, k) represent the

cross-band (from the k′th to kth subbands) convolution filter,

and ⋆ denotes linear convolution in the STFT domain along n.

When K is large, the so-called multiplicative transfer func-

tion (MTF) approximation [20] can be applied such that

Ym(k, n) = Hm(k)X1(k, n) +

Q
∑

q=1

Gq,m(k)Uq,1(k, n). (5)

But if we want to represent the long relative impulse responses

with short analysis windows (smaller K), the convolutive trans-

fer function (CTF) approximation [21] is more accurate and less

restrictive, under which (4) becomes

Ym(k, n) =

L−1
∑

l=0

[

Hm(k, l)X1(k, n− l) +

Q
∑

q=1

Gq,m(k, l)Uq,1(k, n− l)

]

. (6)

Putting (6) in the vector/matrix form yields

Ym(k, n) = h
T
m(k)x1(k, n) +

Q
∑

q=1

g
T
q,m(k)uq,1(k), (7)

where

hm(k) ,
[

Hm(k, 0) · · · Hm(k, L− 1)
]T

,

x1(k, n) ,
[

X1(k, n) · · · X1(k, n− L+ 1)
]T

,

gq,m(k) ,
[

Gq,m(k, 0) · · · Gq,m(k, L− 1)
]T

,

uq,1(k) ,
[

Uq,1(k, n) · · · Uq,1(k, n− L+ 1)
]T

,

and (·)T denotes the transpose of a vector or matrix.

3. Multi-Microphone Hotword McCleaner

Microphone array beamforming is probably the best-known

multichannel speech enhancement method [22, 23, 18]. One

of the appealing features of beamformers is that distortion-

less speech is theoretically deliverable: see the MVDR (min-

imum variance distortionless response) beamformers based on

the MTF approximation [24, 18, 25] and those using the CTF

approximation [21, 26]. But the emphasis on producing no to

little speech distortion also limits the amount of noise that it

can eliminate, particularly when the number of microphones is

small. This unfortunately impairs its effectiveness for suppress-

ing strong background noise.

While applications for voice communications care about

speech quality directly, hotword detection applications are only

concerned with whether audio containing the hotword, after be-

ing enhanced, triggers the detector. So we proposed in [1] a dif-

ferent approach called hotword cleaner, which relaxes the con-

straint of distortionless target speech and focuses primarily on

noise cancellation. In that work only two microphones were

considered (M = 2). Here we would like to generalize the idea

to the cases of M ≥ 2.

In order to have low latency (i.e., using a small K), the

McCleaner is based on the CTF approximation and its output is

given by

Z(k, n) = Y1(k, n)− Ŷ1(k, n)

= Y1(k, n)− w
H(k)y2:M (k, n), (8)

where

w(k) ,
[

wT
2 (k) · · · wT

M (k)
]T

,

wm(k) ,
[

Wm(k, 0) · · · Wm(k, L− 1)
]T

,

y2:M (k, n) ,
[

yT
2 (k, n) · · · yT

M (k, n)
]T

,

ym(k, n) ,
[

Ym(k, n) · · · Ym(k, n− L+ 1)
]T

,

and (·)H denotes the Hermitian transpose of a vector or matrix.

We intend to find the filter coefficients w(k) that can can-

cel the noise component in the first microphone signal Y1(k, n)
using the noise components in the other microphone signals

y2:M (k, n). This is accomplished by minimizing the mean

squared error (MSE) of the McCleaner’s output. But it is note-

worthy that this minimization has to be carried out during the

absence of speech, i.e., when s(t) = 0 or y(t) = v(t). So we

deduce

wc(k) = argmin
w(k)

E
{

|Z(k, n)|2 s.t. y(t) = v(t)
}

= R
−1
vv,2:M (k)rv1v2:M (k), (9)

where the subscript (·)c stands for cleaner,

Rvv,2:M (k) , E
{

v2:M (k, n)vH
2:M (k, n)

}

, (10)

rv1v2:M (k) , E {V1(k, n)v
∗

2:M (k, n)} , (11)

E{·} denotes the mathematical expectation and (·)∗ denotes the

conjugate of a complex variable. The estimates of (10) and (11)

are recursively updated by

R̂vv,2:M (k, n) = λR̂vv,2:M (k, n− 1) +

(1− λ)v2:M (k, n)vH
2:M (k, n), (12)

r̂v1v2:M (k, n) = λr̂v1v2:M (k, n− 1) +

(1− λ)V1(k, n)v
∗

2:M (k, n) (13)

where 0 < λ < 1 is a forgetting factor.

Typically detecting the presence of speech relies on a voice

activity detector (VAD). But when the additive noise v(t) con-

tains speech, VAD can be problematically noisy.

For the McCleaner, we can develop a smart scheme to su-

pervise its adaptation. The scheme exploits two unique proper-

ties of hotwords: they are leading phrases of valid voice queries



and have short durations. So it is designed to continuously up-

date R̂vv,2:M (k, n) and r̂v1v2:M (k, n) according to (12) and

(13) regardless of the presence of speech. It continues to up-

date wc(k, n) at each frame

wc(k, n) = R̂
−1

vv,2:M (k, n)r̂v1v2:M (k, n). (14)

But the McCleaner’s output is computed using the deferred filter

coefficients instead of the filter coefficients that are just updated

as follows

Z(k, n) = Y1(k, n)− w
H
c (k, n− d)y2:M (k, n), (15)

where d is a lag time in number of frames. In our research

for detection of ”Ok/Hey Google”, d is set to a value with an

equivalent delay of 768ms.
Thanks to the aforementioned two unique properties of hot-

words we proposed to exploit, hotwords are located in the tran-

sition periods between two acoustic scenes. So the McCleaner

algorithm as formulated by (12)–(15) can be understood as an

edge filter (like those in image processing) for speech: it can

automatically construct a multichannel noise cancellation filter

that can timely trace the ambient noise condition while the filter

remains effective in the leading edge of an utterance. As a re-

sult, this tailored algorithm is simple (in the sense of easy logic)

and works effectively for hotword detection.

In (14), we need to compute the inverse of R̂vv,2:M (k, n).
When M = 2 and L is moderate, this covariance matrix is pre-

sumably non-singular. So in [1] the fast recursive least square

(Fast-RLS) method was used. But when M > 2, R̂vv,2:M (k, n)
could be singular due to inter-channel correlation. We choose

to use the RLS method and compute R̂
−1

vv,2:M (k, n) via the sin-

gular value decomposition (SVD) based pseudoinverse method.

Before we leave this section, it is important to briefly ex-

plain what we understand about the benefits of using more mi-

crophones in the McCleaner algorithm:

1) Even when there may be only one point noise source, its

recordings at two microphones cannot be perfectly coher-

ent. By adding more microphones, more reference signals

are available in the signal prediction problem given by (8).

While these reference signals inevitably contain redundant

information, the residual error can be further minimized.

2) In many practical use cases, there can be multiple noise

sources, i.e, Q > 1. If only two microphones are used, it

is clear from (7) that the compound noise component in the

first microphone cannot be possibly predicted by the noise

component in the second microphone with one finite im-

pulse response (FIR) filter. But if more microphones are

employed and M − 1 ≥ Q, perfect noise cancellation is

possible according to the MINT (multichannel inverse) the-

ory [27].

4. System Integration Strategies

When we generalize the hotword cleaner algorithm to sup-

port multiple microphones, the system integration strategies dis-

cussed in [1] are still relevant and need only minor modification.

For self-containedness, Fig. 1 updates the three strategies for 3

microphones. But for brevity of presentation, we will make no

further discussion on this. It is simply worth reiterating that

the cleaner-only strategy can reduce false alarms and is more

computationally efficient while the hybrid strategy minimizes

latency and can save some of McCleaner’s corner cases in quiet

conditions.
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Figure 1: Three strategies for integrating 3-mic hotword cleaner

and detector: (a) baseline, (b) cleaner-only, and (c) hybrid.
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Figure 2: The right isosceles triangular microphone array used

for data collection: (a) array topology and (b) circuit board.

5. Experiments

5.1. Microphone Array and Data Collection

In our research, we collected re-recorded audio data to prove

the concept that hotword McCleaner can work better by using

more microphones. A triangular array was developed as shown

in Fig. 2. It consists of three microphones on a circle of di-

ameter 66mm. Recordings took place in a 4.6m × 4.7m ×
2.7m living-room lab with no sound treatment. We considered

only two acoustic conditions: far-field clean and TV noise in the

background. The TV was placed against a wall. Clean speech

utterances were played back from a mouth simulator (Brüel &

Kjær TYPE 4227), which was positioned about 2.7m in front

of the TV. The microphone array was mounted at two different

locations: horizontally on a table beneath the TV and vertically

on the wall behind the TV. At each position at least 2,000 utter-

ances were recorded, all with long preambles (longer than 10 s).
Table 1 presents a summary of the data. The negative dataset is

composed of TV audio recorded on a far-field Google Home

in previous studies. All utterances are sampled at 16 kHz with

16 bits.

5.2. Experimental Setup

For the results presented below, we have chosen the following

parameters for the hotword McCleaner regardless of how many

microphones it uses: 128ms STFT windows with 50% overlap,

d = 12, L = 3, λ = 0.99. The covariance matrix in (12) is

initialized by R̂vv,2:M (k, 0) = δI, where δ = 10−4. Matrix

pseudoinverse is computed via the JacobiSVD method from the

Eigen library in C++ [28]: the method’s default value is used

for the threshold below which singular values are considered as

zeros.

The end-to-end (E2E) model for hotword detection [15]

was implemented using Google’s TensorFlow™ library [29]



Table 1: Summary of collected data for performance evaluation.

Dataset Num. Utterances Length (hours)

Far-Field Clean 4,507 22.69

TV Noise 4,307 22.29

Negative 55,469 1,175.09
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Figure 3: Sample multichannel utterance collected from the

isosceles triangular microphone array mounted on a wall with

TV noise and the processed signals by using the hotword Mc-

Cleaner: (a) the three microphone signals, (b) the cleaned sig-

nal using the first two microphones, and (c) the cleaned signal

using all three microphones.

and trained with deep learning algorithms on both logs and col-

lected data from gender-balanced pool of volunteers with a va-

riety of accents [30].

5.3. Cleaned Sample Utterance

Before we present an objective validation of hotword Mc-

Cleaner’s performance, it is helpful to examine some sample

utterances processed by the McCleaner using both 2 and 3 mi-

crophones. This subjective comparison can shed some insight

on how much improvement performance-wise we can expect

by adding one more microphone. Figure 3 visualizes one of

such samples. The utterance has 3 audio channels and lasts for

17.5 s. The hotword followed by a query appears around 13 s
and is heavily contaminated by TV noise. The SNR is about

0 dB. The cleaned signals using the first 2 and all 3 input chan-

nels are plotted in Fig. 3(b) and (c), respectively. While the 2-

mic cleaner already does a good job in noise suppression, the 3-

mic algorithm makes the residual noise perceivably much lower

and smoother. This helps recognize the last consonant /l/ in

”Ok/Hey Google”, which is often pronounced weakly by na-

ture. In both cases the cleaned hotword gets attenuated too. But

the SNR and speech quality have significantly been improved.

5.4. Receiver Operating Curves (ROCs)

We choose ROC, the most informative performance measure,

to evaluate and compare hotword detection systems. A ROC

plots the FR rate (likelihood of an FR per hotword-containing
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Figure 4: ROCs comparing performance of the hotword Mc-

Cleaner using 2 and 3 microphones against the baseline system

on (a) far-field clean and (b) TV-noise datasets. Note that the

marker positions correspond to the same threshold of the E2E

hotword detection model.

instance) as a function of the FA rate (in number of FAs per hour

of negative audio). Figure 4 presents the ROCs of 5 systems un-

der test. The baseline follows what was illustrated by Fig. 1(a)

and uses all the 3 input audio channels. The other cleaner-only

and hybrid systems follow the strategies of Fig. 1(b) and (c),

respectively, but using different number of microphones.

On the far-field clean dataset, the performance of these sys-

tems are on a similar level: the 2mic-cleaner-only is slightly bet-

ter than the others. On the TV-noise dataset, the McCleaner sys-

tems decisively outperform the baseline. The FR rate at the op-

erating point where the detector’s threshold is fixed is reduced

from about 75% to lower than 17%. Among the McCleaner sys-

tems, using 3 microphones is more advantageous than using 2

microphones with a clear margin. At the operating point, the hy-

brid systems’ FR rates by using 2 and 3 microphones are 16.4%

and 10.9%, respectively. By adding one more microphone, we

achieved a 33.5% relative reduction in FR rate.

6. Conclusions

In this paper we have generalized the speech enhancement

algorithm by adaptive noise cancellation with deferred filter

coefficients for robust hotword detection from dual to multi-

microphone systems. To justify the development, we collected

re-recorded data with strong TV noise in the background from

a 3-mic array. We have presented a comparison of the proposed

algorithm between using 2 and 3 microphones. It was shown

that by adding one more microphone, the FR rate can be further

reduced relatively by 33.5%.
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