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Abstract

In this paper, we propose “personal VAD”, a system to detect
the voice activity of a target speaker at the frame level. This
system is useful for gating the inputs to a streaming on-device
speech recognition system, such that it only triggers for the tar-
get user, which helps reduce the computational cost and battery
consumption, especially in scenarios where a keyword detec-
tor is unpreferable. We achieve this by training a VAD-alike
neural network that is conditioned on the target speaker embed-
ding or the speaker verification score. For each frame, personal
VAD outputs the probabilities for three classes: non-speech,
target speaker speech, and non-target speaker speech. Under
our optimal setup, we are able to train a model with only 130K
parameters that outperforms a baseline system where individu-
ally trained standard VAD and speaker recognition networks are
combined to perform the same task.

1. Introduction

In modern speech processing systems, voice activity detection
(VAD) usually lives in the upstream of other speech compo-
nents such as speech recognition and speaker recognition. As
a gating module, VAD not only improves the performance of
downstream components by discarding non-speech signals, but
also significantly reduces the overall computational cost due to
its relatively small size.

A typical VAD system uses a frame-level classifier on
acoustic features to make speech/non-speech decisions for each
audio frame (e.g. with 25ms width and 10ms step). Poor VAD
systems could either mistakenly accept background noise as
speech or falsely reject speech. False accepting non-speech as
speech largely slows down the downstream automatic speech
recognition (ASR) processing. It is also computationally ex-
pensive as ASR models are normally much larger than VAD
models. On the other hand, false rejecting speech leads to
deletion errors in ASR transcriptions (a few milliseconds of
missed audio could remove an entire word). A good VAD
model needs to work accurately in challenging environments,
including noisy conditions, reverberant environments and en-
vironments with competing speech. Significant research has
been devoted to finding the optimal VAD features and models
[1,2,3,4,5,6,7,8,9]. In the literature, LSTM-based VAD is
a popular architecture for sequential modeling of the VAD task,
showing state-of-the-art performance [7, &, 9].

In many scenarios, especially on-device speech recogni-
tion [10], the computational resources such as CPU, memory,
and battery are typically limited. In such cases, we wish to
run the computationally intensive components such as speech
recognition only when the target user is talking to the device.
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False triggering such components in the background while only
speech signals from other talkers or TV noises are present
would cause battery drain and bad user experience. Although
such concerns usually can be easily addressed by introducing
a keyword detection [11] (a.k.a. wake word detection [12])
model, in many applications, the users would largely prefer a
more seamless and natural interaction with the voice assistant
without having to speak a predefined keyword. Thus, having

a tiny model that only passes through speech signals from the
target user is very necessary, which is our motivation of devel-
oping the personal VAD system.

Although standard speaker recognition and speaker diariza-
tion techniques [13, 14, 15, 16, 17, 18] can be directly used for
the same task, we argue that the personal VAD system is largely
preferred here for a couple of reasons:

1. To minimize the latency of the whole system, an ac-
cept/reject decision is needed upon the arrival of each
frame immediately, which prefers frame-level infer-
ence of the model. However, many state-of-the-art
speaker recognition and diarization systems usually re-
quire window-based or segment-based inference, or even
offline full-sequence inference.

2. To minimize battery consumption on the device, the
model must be very small, while most speaker recogni-
tion and diarization models are pretty big (typically mil-
lions of parameters).

3. Unlike speaker recognition or diarization, in personal
VAD, it is unnecessary to distinguish between different
non-target speakers, as we only trigger downstream com-
ponents for the target speaker.

In fact, we implemented a baseline system by directly combin-
ing a standard speaker verification model and a standard VAD
model for the personal VAD task, as described in Section 2.2.1,
and found that its performance is worse than a dedicated per-
sonal VAD model. To the best of our knowledge, this work is
the first lightweight solution that aims at directly detecting the
voice activity of a target speaker in real time.

The proposed personal VAD is a VAD-alike neural network,
conditioned on the target speaker embedding or the speaker
verification score. Instead of determining whether a frame is
speech or non-speech in standard VAD, personal VAD extends
the determination to three classes: non-speech, target speaker
speech, and non-target speaker speech.

The rest of the paper is organized as following. In Sec-
tion 2.1, we first briefly describe our speaker verification sys-
tem, which will be used during the training of personal VAD.
Then in Section 2.2, we propose four different architectures to
achieve personal VAD. In the training of personal VAD, we first
treat it as a three-class classification problem and use cross en-
tropy loss to optimize the model. In addition, we noticed that
the discriminitivity between non-speech and non-target speaker
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Figure 1: The speaker verification system [13] produces an
utterance-level d-vector by aggregating window-level embed-
dings.

speech is relatively less important than between target speaker
speech and the other two classes in personal VAD. Therefore,
we further propose a weighted pairwise loss to enforce the
model to learn these differences, as introduced in Section 2.3.
We evaluate the model on an augmented version of the Lib-
riSpeech dataset [ 19], with experimental setup described in Sec-
tion 3.2, model configuration described in Section 3.3, metrics
explained in Section 3.4, and results presented in Section 3.5.
Conclusions are drawn in Section 4.

2. Approach

2.1. Recap of speaker verification system

Personal VAD relies on a pre-trained text-independent speaker
recognition/verification model to encode the speaker identity
into embedding vectors. In this work, we use the “d-vector”
model introduced in [13], which has been successfully applied

to various applications including speaker diarization [16, 17],
speech synthesis [20, 21], source separation [22], speech trans-
lation [23], and audio voice preservation tests [24, 25]. We

retrained the 3-layer LSTM speaker verification model using
data from 8 languages for language robustness and better per-
formance. During inference, the model produces embeddings
on sliding windows, and a final aggregated embedding named
“d-vector” is used to represent the voice characteristics of this
utterance, as illustrated in Fig. 1. The cosine similarity between
two d-vector embeddings can be used to measure the similarity
of two voices.

In a real application, users are required to follow an enroll-
ment process before enabling speaker verification or personal
VAD. During enrollment, d-vector embeddings are computed
from the target user’s recordings, and stored on the device.
Since the enrollment is a one-off experience and can happen
on server-side, we can assume that the embeddings of the target
speakers are available at runtime with no cost.

2.2. System architecture

A personal VAD system should produce frame-level class labels
for three categories: non-speech (ns), target speaker speech
(tss), and non-target speaker speech (ntss). We imple-
mented four different architectures to achieve personal VAD, as
illustrated by Fig. 2. All four architectures rely on the embed-
ding of the target speaker, which is acquired via the enrollment
process.

2.2.1. Score combination (SC)

Our first approach to implement personal VAD is to simply
combine a standard pre-trained speaker verification system and
a standard VAD system, as shown in Fig. 2(a). We use this im-
plementation as a baseline for other approaches, since it does
not require training any new model.

‘We denote the frame of the input acoustic features at time ¢
as x; € RP, where D is the dimensionality of the acoustic fea-
tures. For example, we use 40-dimensional log Mel-filterbank
energies as the features. We use subscript [t] to denote the
subsequence ending at time ¢, i.e. Xy = (X1,---,X¢). A
standard VAD model fvap(-) and a speaker verification model
fsv () run independently on the acoustic features. The stan-
dard VAD produces unnormalized probabilities of speech (s)
and non-speech (ns) for each frame:

z: = fvap(xpy), 9]

where z; = [2{, 21°]. The speaker verification model produces
an embedding e; at each frame:

er = fsv(xp), 2

then the embedding is verified against the target speaker embed-
ding e**"8°*| which was acquired during enrollment process:

s¢ = cos (e, "8, 3)

To transform the standard VAD probability z§ to personal VAD
probabilities 2{°* and 27**°, we combined it with the resulting

speaker verification cosine similarity score s¢, such that:

st - 2° if k =tss;
zf =< (1—s:)-2° ifk=ntss; %)
Forad if k = ns.

There are two major disadvantages of this architecture.
First, it is running a window-based speaker verification model
at a frame level without any adaptation, and such inconsis-
tency could cause significant performance degradation. How-
ever, training frame-level speaker verification models is often
unscalable due to the difficulties to batch utterances of differ-
ent length. Second, this architecture requires running a speaker
verification system at runtime, which can be expensive since
speaker verification models are usually much bigger than VAD
models.

2.2.2. Score conditioned training (ST)

As shown in Fig. 2(b), our second approach uses the speaker
verification model to produce a cosine similarity score s; for
each frame, as explained in Eq. (3), then concatenates this co-
sine similarity score to the acoustic features:

X¢ = [Xu 5t]7 ©)

The concatenated feature vector X; is 41-dimensional, as x
represents the 40-dimensional log Mel-filterbank energies. We
train a new personal VAD network that takes the concatenated
features as input, and outputs the probabilities of the three class
labels for each frame:

zt = fpvap (X)), (6)

where z; = [2§°%, 23%%°, 27°].

This approach still requires running the speaker verification
model at runtime. However, since it retrains the personal VAD
model based on the speaker verification scores, it is expected to
perform better than simply combining the scores of two indi-
vidually trained systems.
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Figure 2: Four different architectures to implement personal VAD: (a) SC: Run standard VAD and frame-level speaker verification
independently, and combine their results. This is used as a baseline for other aproaches. (b) ST: Concatenate frame-level speaker
verification score with acoustic features to train a personal VAD model. (c) ET: Concatenate speaker embedding with acoustic features
to train a personal VAD model. (d) SET: Concatenate both speaker verification score and speaker embedding with acoustic features to

train a personal VAD model.

2.2.3. Embedding conditioned training (ET)

As shown in Fig. 2(c), the third approach directly concatenates
the target speaker embedding (acquired in the enrollment pro-
cess) with the acoustic features:

[Xt , etargct] .

X @)
Since our embedding is 256-dimensional, the concatenated fea-
ture vector here is 296-dimensional. Then we train a new per-
sonal VAD network, which outputs the probabilities of three
class at the frame level similar to Eq. (6).

This approach is similar to a knowledge distillation [26]
process. The large speaker verification model was pre-trained
on a large-scale dataset individually. Following this, when we
train the personal VAD model, we use the speaker embeddings
of the target speaker to “distill the knowledge” from the large
speaker verification model to the small personal VAD model.
As a result, it does not require running the large speaker verifi-
cation model at runtime, which becomes the most lightweight
solution among all architectures.

2.2.4. Score and embedding conditioned training (SET)

As shown in Fig. 2(d), this approach concatenates both the
frame-level speaker verification score and the target speaker
embedding to the acoustic features to train a new personal VAD
model:

}A(t = [xh etargEtv St}'

®

The concatenated feature vector in this approach is 297-
dimensional. This approach makes use of the most information
from the speaker verification system. However, it still requires
running the speaker verification model at runtime, so it’s not a
lightweight solution.

2.3. Weighted pairwise loss

With an input frame x and the corresponding ground truth la-
bel y € {ns,tss,ntss}, personal VAD can be thought of as

a ternary classification problem.! The network outputs the un-
normalized distribution of x over the three classes, denoted as
z = fpvap(x). We use 2" to denote the unnormalized prob-
ability of the k-th class. To train the model, we minimize the
cross entropy loss as:

&)

where k € {ns, tss,ntss}.

However, in personal VAD, our goal is to detect the voice
activity from only the target speaker. Audio frames that are
classified into class ns and ntss will be discarded similarly
by downstream components. As a result, confusion errors be-
tween <ns, nt ss> have less impact to the system performance
than errors between <tss,ntss> and <tss, ns>. Inspired
by Tuplemax loss [27], here we propose a weighted pairwise
loss to model the different tolerance to each class pair. Given z
and y, we define weighted pairwise loss as:

exp(2")
exp(z¥) + exp(z*) ] '

(10
where w«y > is the weight between class k£ and class y. By
setting lower weight to <ns, nt ss> errors than <t ss, ntss>
and <tss, ns> errors, we can enforce the model to be more
tolerant to the confusion between <ns, nt ss> and to focus on
distinguishing t ss from ns and ntss.

Lwrir(y,2z) = —Egxy [w<k,y> -log

3. Experiments
3.1. Datasets

An ideal dataset to train and evaluate personal VAD would be
a dataset such that: (1) each utterance in it contains natural
speaker turns; and (2) it contains enrollment utterances for each
individual speaker. Unfortunately, to the best of our knowledge,

'Without loss of generality, we ignore the subscript for the time di-
mension, and use x to represent both original and concatenated input
features in our notations here.



no public dataset in the community really satisfies both require-
ments. Although some datasets for speaker diarization [16]
have natural speaker turns, they do not provide enrollment ut-
terances for individual speakers. Alternatively, datasets contain-
ing enrollment utterances for individual speakers usually do not
have natural speaker turns.

To address this limitation, we conducted experiments on an
augmented version of the LibriSpeech dataset [19]. To sim-
ulate speaker turns, we concatenate single-speaker utterances
from different speakers into multi-speaker utterances (see Sec-
tion 3.2.1). We also noisify the concatenated utterances with
reverberant room simulators to mitigate the concatenation arti-
facts (see Section 3.2.2).

In the LibriSpeech dataset, the training set contains 960
hours of speech, where 460 hours of them are “clean” speech
and the other 500 hours are “noisy” speech. The testing set
also consists of both “clean” and “noisy” speech. In all the ex-
periments, we use the concatenated LibriSpeech training set to
train the models. We use both the original LibriSpeech testing
set and the concatenated LibriSpeech testing set for evaluation,
as described in the following sections. For all the datasets, to
produce the frame-level ground truth personal VAD labels used
in training and evaluation, we run forced alignment with a pre-
trained speech recognition model.

3.2. Experimental settings
3.2.1. Utterance concatenation

In the training corpora of standard VAD, each utterance usually
only contains the speech from one single speaker. However,
personal VAD aims to find the voice activity of a target speaker
in a conversation where multiple speakers could be engaged.
Therefore, we cannot directly use the standard VAD training
corpora to train personal VAD. To simulate the conversational
speech, we concatenate utterances from multiple speakers into a
longer utterance, and then we randomly select one of the speak-
ers as the target speaker in the concatenated utterance.

To generate a concatenated utterance, we draw a random
number n indicating the number of utterances used for concate-
nation from a uniform distribution:

n ~ Uniform(a, b), 11

where a and b are the minimal and maximal numbers of ut-
terances used for concatenation. The waveforms from the n
randomly selected utterances are concatenated, and one of the
speakers is assumed as the target speaker of the concatenated ut-
terance. At the same time, we modify the VAD ground truth la-
bel of each frame according to the target speaker: “non-speech”
frames remain the same, while “speech” frames are modifed to
either “target speaker speech” or “non-target speaker speech”
according to whether the source utterance is from the target
speaker.

In our experiments, we generated 300, 000 concatenated ut-
terances for training set and 5, 000 concatenated utterances for
testing sets. We use a = 1 and b = 3 for both sets, to cover
both single-speaker and multi-speaker scenarios.

3.2.2. Multistyle training

For both training and evaluations, we apply a data augmenta-
tion technique named “multistyle training” (MTR) [28, 29, 30]
on our datasets to avoid domain overfitting and mitigate con-
catenation artifacts. During MTR, the original (concatenated)
source utterance is noisified with multiple randomly selected
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Figure 3: Histogram of SNR (dB) of our multistyle training.

noise sources, using a randomly selected room configuration.
Our noise sources include:

e 827 audios of ambient noises recorded in cafes;
e 786 audios recoreded in silent environments;

e 6433 YouTube segments containing background music
or noise.

We generated 3 million room configurations using a room sim-
ulator to cover different reverberation conditions. The distribu-
tion of the signal-to-noise ratio (SNR) of our MTR is shown in
Fig. 3.

3.3. Model configuration

The acoustic features are 40-dimensional log Mel-filterbank en-
ergies, extracted on frames with 25ms width and 10ms step.
For both standard VAD model and personal VAD model, we
used a 2-layer LSTM network with 64 cells, followed by a
fully-connected layer with 64 neurons. We also tried larger
networks but did not see performance improvements, possi-
bly due to the limited variety in training data. We used
TensorFlow [31] for training and inference. During train-
ing, we used Adam optimizer [32] with a learning rate of
5 x 107°. For the models with weighted pairwise loss, we set
W<issns> = Wetss,ntss> = 1 and explored different values for
Wnsntss> € {0.01,0.05,0.1,0.5,1.0}.

To reduce the model size and accelerate the runtime infer-
ence, we quantized the parameters of the model to 8-bit integer
values following [33]. With this quantization, our model us-
ing the ET architecture, which has only around 130 thousand
parameters and is the smallest among all architectures (see Ta-
ble 1), will be only 130 KB in size.

3.4. Metrics

To evaluate the performance of the proposed method, we com-
puted the Average Precision (AP) [34] for each class and the
mean Average Precision (mAP) over all the classes. AP and
mAP are most common metrics for multi-class classification
problems. AP summarizes a precision-recall curve as the
weighted mean of precisions achieved at each threshold, with
the increase in recall from the previous threshold used as the
weight. AP can be computed as:

AP =Y (Rn—Rn-1) - Pa, 12)

n
where R,, and P, are the recall and precision at the n-th thresh-
old, respectively. We adopted the micro-mean’ over all the

Zh:tps://scikit—lcarn.org/stablc/modulcs/qonoratod/
sklearn.metrics.average_precision_score.html
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Table 1: Architecture and loss function comparison results. SC: Score combination, the baseline system. ST: Score conditioned
training. ET: Embedding conditioned training. SET: Score and embedding conditioned training. CE: Cross entropy loss. WPL:
Weighted pairwise 10ss (W<ns,ntss> = 0.1). We report the Average Precision (AP) for each class, and the mean Average Precision
(mAP) over all the classes. Network parameters include 4.88 million parameters from the speaker verification (SV) model, if it is used
during inference.

Without MTR With MTR Network parameters
Method Loss L
tss ns ntss mean | tss ns ntss mean (million)
SC (baseline) | N/A*| 0.886 0.970 0.872 0.900 | 0.777 0.908 0.768 0.801 | 4.88 (SV)+0.06 (VAD)
ST 0.956 0968 0.956 0957 | 0.905 0.885 0.905 0.901 | 4.88 (SV)+ 0.06 (PVAD)
ET CE | 0932 0962 0946 0946 | 0.878 0.873 0.890 0.883 0.13 (PVAD)
SET 0.970 0969 0972 0969 | 0.938 0.888 0.938 0.928 | 4.88 (SV) +0.13 (PVAD)
ET WPL | 0.955 0965 0961 0959 | 0916 0.883 0.920 00912 0.13 (PVAD)

* The baseline system does not require training any new model.

classes when computing mAP to take class imbalance into ac-
count, which averages APs over all the samples.

3.5. Results

We conducted three groups of experiments to evaluate the pro-
posed method. First, we compared the four architectures for
personal VAD. Following this, we examined the effectiveness
of weighted pairwise loss and compared it against conventional
cross entropy loss. Finally, we evaluated personal VAD on a
standard VAD task, to see if personal VAD can replace standard
VAD without performance degradation.

3.5.1. Architecture comparisons

In the first group of experiments, we compared the performance
of four personal VAD architectures described in Fig. 2. We
evaluated these systems on the concatenated LibriSpeech test-
ing set. Additionally, to explore the performance of personal
VAD on noisy speech, we also applied data augmentation tech-
nique (MTR) on the testing set. In personal VAD tasks, the most
important metric is the AP for class tss, as downstream pro-
cesses will only be applied to the speech produced by the target
speaker.

We reported the evaluation results on the testing set with
and without MTR, as shown in Table 1. Results show that ST,
ET, and SET significantly outperform the baseline SC system
in all cases. When applying MTR to the testing set, we ob-
served an even larger performance gain between the proposed
methods and the baseline. Among the proposed systems, SET
achieved the highest AP for tss, and ST slightly outperforms
ET. However, both ST and SET require to run speaker verifi-
cation model (4.88 million parameters) to compute the cosine
similarity score during inference time, which would largely in-
crease both the number of parameters in the system and infer-
ence computational cost. By contrast, ET obtained 0.932 (with-
out MTR) / 0.878 (with MTR) AP for class t ss on the testing
set with a model of only 0.13 million parameters (~ 40 times
smaller), which is more appropriate for on-device applications.

3.5.2. Loss function comparisons

In the second group of experiments, we compared the pro-
posed weighted pairwise loss against the conventional cross en-
tropy loss. Here we only consider the ET architecture, as it is
much more lightweight while achieving reasonably good per-
formance. Similarly, we evaluated the systems on the concate-
nated LibriSpeech testing set with and without MTR.

In Fig. 4, we plot the AP for tss against different val-
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Figure 4: Mean Average Precision (mAP) of personal VAD
(ET) with different values of w<ns ntss> in weighted pairwise
loss. The weight between ns and ntss is displayed in log
scale.

ues of W«nsntss> In weighted pairwise loss. From the re-
sults, we observed that using a smaller value of W<ng ntss>
than W<tssns> and Wcissntss> Will improve the perfor-
mance, which demonstrates that confusion errors between
<ns, ntss> have less impact to the system performance than
errors between <t ss, ntss> and <tss, ns>.

However, when w s ntss> becomes too small (e.g. 0.05 or
0.01), we found performance degradations from the curve. This
result shows that completely ignoring the difference between
ntss and ns is harmful to the system performance as well.
In another word, it is insufficient to simply treat personal VAD
task as a binary classification problem (target speaker speech

v.s. other). The best performance is reached when setting
W<ns,ntss> = 0.1, with detailed results listed in Table 1.

3.5.3. Personal VAD on standard VAD tasks

If we want to replace a standard VAD component with personal
VAD, we also need to guarantee that the performance degra-
dation on a standard speech/non-speech task is minimal. Fi-
nally, we conducted an experiment for personal VAD on stan-
dard VAD tasks. We evaluated two personal VAD models (ET
architecture with cross entropy loss, and ET architecture with
weighted pairwise loss) on the non-concatenated LibriSpeech
testing data (so each utterance only has the target speaker).
For comparison purpose, we also implemented a standard VAD
model with the same network structure (2-layer LSTM network



with 64 cells, followed by a fully-connected layer with 64 neu-
rons).

The results are shown in Table 2. We can see that the AP
for class speech (s) is very close between personal VAD models
and the standard VAD model, which justifies replacing standard
VAD by personal VAD. Additionally, the architectures of per-
sonal VAD models and the standard VAD model are the same
in this experiment, so replacing standard VAD by personal VAD
will not increase the model size or computational cost at infer-
ence time.

Table 2: Evaluation on a standard VAD task. We report the
Average Precision (AP) for speech (s) and non-speech (ns).

Method Loss Without MTR With MTR

s ns s ns
Standard VAD CE | 0992 0975 | 0975 0918
Personal VAD (ET) | CE | 0.991 0.965 | 0.979 0.893
Personal VAD (ET) | WPL | 0.991 0.967 | 0.979 0.901

4. Conclusions

In this paper, we proposed four different architectures to imple-
ment personal VAD, a system that detects the voice activity of a
target user in real time. Among the different architectures, using
a single small network that takes acoustic features and enrolled
target speaker embedding as inputs achieves near-optimal per-
formance with smallest runtime computational cost. To model
the tolerance to different types of errors, we proposed a new
loss function, the weighted pairwise loss, which proves to have
better performance than a conventional cross entropy loss. Our
experiments also show that personal VAD and standard VAD
perform equally well on a standard VAD task. In summary,
our findings suggest that, by focusing only on the desired target
speaker, a personal VAD can reduce the overall computational
cost of speech recognition systems operating in noisy environ-
ments.
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