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TAE and the Plasma Debugger

Please interrupt me and ask 
questions!



Google -- TAE 
Partnership

TAE

● Commercial fusion energy company
● Southern California
● TAE personnel on project

○ M. Binderbauer, D. Ewing, A. Smirnov
○ E. Trask, H. Gota, R. Mendoza, J. Romero, S. 

Dettrick

Google (Applied Sciences)

● Commercial web-search company
● Northern California
● Google personale on project (order of joining)

○ R. Koningstein, J. Platt
○ T. Baltz, M. Dikovsky, I. Langmore, T. Madams, P. 

Norgaard, Y. Carmon, N. Neibauer, R. von Behren, S. 
Geraedts

Goal:

Accelerate development of 
viable fusion energy



Norman: Experimental FRC Plasma Generator

Plasma formed on each end, 
then fired into center vessel

Plasma confined by magnetic 
fields, heated/stabilized by 
neutral beams

Goal:  Learn to confine plasma 
long enough, at high enough 
temperatures, en route to net 
positive energy (in later 
machine)

Ports provide access for 
measurement devices



Measurements in → Reconstructed plasma out

Mode N=3 vs time

Interferometer traces

Cross section

Mode profiles

Ne profile



Reconstructions are Samples of Plasmas

Samples of random variables

Map to samples of plasmas



Resolving Plasma Properties: The Center

Location parallel to lasers is not well resolved by 
Interferometer alone

Coupled SEE helps to resolve this

Blue dots are samples from posterior over plasma 
center

https://docs.google.com/file/d/1vFH-HWi2nceHlvFFh-sQmjvYY_sYjdVN/preview


Resolving Plasma Properties: Mode Rotation

Rotation direction is not resolved by Interferometer 
alone

Coupled magnetic probes help to resolve this

Traces from 
Markov Chain

Bimodal: ± 28 kHz

Unimodal:  -28 kHz

https://docs.google.com/file/d/1PLyEuZVmAvm3munhweKlPYsy_lA2AvkU/preview


On each GPU

Computation is highly parallelized

Plasma density etc… represented by many 4-D 
Tensors, each of shape

[n_samples, n_chains, n_times, n_events]

1000+ 
experiments

Number of 
Markov 
chains run in 
parallel

5000+ GPUs

Number of 
samples 
from each 
chain

Number of 
times 
handled by 
each GPU

Dimension of 
each random 
variable

Example shape:  [450, 30, 40, 16]



Some Bayesian Modeling Details



Modeling the 
Interferometer

14 Lasers
pass through 
plasma

Phase shift 
translated to 
integrated density

Measure phase shift



Interferometer Forward Model

Phase shift 
translated to 
integrated density



Model for Electron Density  (Ne)

Now turn every random variable into a random process in time...

Our Prior is over these

...plus a whole lot more...probably should have modeled some 
of the nuisance variables as noise instead.



Graphical Representation

Latent
Prior = iid
Normal(0, 1)

Transformations Forward Model
Plasma

Measurements

Could have been lumped together with a more 
complex prior



Inverse Problems != {Generative Models, Stats, ML}

Latent
Prior = iid
Normal(0, 1)

Transformations Forward Model
Plasma

Measurements

Unlike typical Generative Modeling

We care only about the latent 
(equivalently Plasma).

⇒ The Forward Model must be near 
perfect!

Unlike typical Statistical Modeling

For each latent, we have exactly one 
(multidimensional) measurement

⇒ Posterior predictive evaluation is 
impossible

Unlike typical Machine Learning

We have no golden data

⇒ Opportunities to learn are limited

See also go/ip-not-gm

http://go/ip-not-gm


Inference



MAP Estimates

MAP estimates:

Attempt at a “best guess”

Warning:

Often finds “bad random modes”

⇒ Compute 30 estimates in parallel

(good use of TFP batch dimension 
capabilities)



Variational Inference : Could not make it work

VI is “scared” of putting mass outside the extent of p(z)

Every time a compromise must be made, q(z) will error in 
this manner.

Random mode 
found ;)



Sampling:  Random-Walk Metropolis Hastings

Random Walk behavior  ⇒ slowly mixing chains in higher dimensions
                                                O(N) steps per “uncorrelated” sample

5 chains sampling a 50-dimensional Gaussian:
Pictured is the first component



HMC: A proposal that scales well

Neal. 2012

Physics explanation

1. Let U(z) := -Log[p(z)] define a surface in RN

2. Start a ball at z0

3. Give the ball a Gaussian “kick”
4. Let the ball roll for time T, giving you the 

proposal

If well tuned, the “rolling” allows the proposal to 
travel a long distance.

O(N1/4) steps per “uncorrelated” sample



HMC: A proposal that scales well

If numerical integration 
were perfect, you would 
accept every time

Neal. 2012



HMC Efficiency Tradeoff

Smaller numerical integration step size ⇒

● Lower integration error
● Higher Prob[Accept]

But also…

● number of steps needed

 ~ O(1 / step_size)

Rough best practice:

1. Adjust step_size until P[Accept] ≈ 0.68
2. Adjust num_leapfrog_steps

Integration error due to finite step size

Beskos. 2010



What are the optimal parameters?

L. 2019

Suggested efficiency 
measure

Level sets of p(z) in 2-D



Kappa : Approximation valid for most spectra



Fun Facts about Kappa



Preconditioning

Change the random variable you are sampling

This alters the shape of the PDF

...and minimizes κ



Preconditioning

Practicalities

● You don’t know the covariance, so you must estimate it 
using...
○ samples
○ variational inference
○ tf.hessians

● Have to hope nonlinearities don’t mess things up!
● Nonlinear preconditioning methods exist, but are very 

very tricky
Hoffman. 2019

Parno. 2017



Connection to Random Matrix Theory

Since the spectrum of 
large Wishart matrices 
follow the 
Marcenko-Pastur Law,

we have:



Sampling Strategy : Iterative improvement

1. Find preconditioner L via Variational Inference
2. Use tfp.mcmc.SimpleStepSizeAdaptation 

to adapt h until P[Accept] ≈ 0.9
3. Draw ~ 25 samples from 30 parallel chains
4. Update L → Diag(Stddev(Zsample))

a. adapt step size again
5. Draw ~ 25 more samples
6. Update L → ?? Depending on estimated 

change in Kappa
a. adapt step size again

7. Continue, until Rhat is small enough

Set L → Diag(Stddev)



Evaluation of Bayesian 
Reconstructions



First: Let’s be 
realistic

Do we really sample from the 
“posterior”?

● Our prior is “reasonable”, but is it really the 
marginal distribution over all possible 
plasmas?
○ hahahahhahahaha

● We model many effects, but plasmas are 
complex beasts and we do not model all

● We only have one measurement, of much 
smaller dimension than our unknowns.

● We never sample from the tails
○ takes too long to get samples
○ by definition you can’t really validate them

● Will we ever know we’re right about anything?
○ we have zero golden data



Responsible 
hypothesis 
generation

Debugger Commandments:

1. If a human physicist can infer interesting 
event X is likely from the raw data, so too 
shall the debugger

2. If two events, X and Y are both somewhat 
likely, the debugger shall indicate thus

3. The debugger shalt not send TAE on too 
many wild goose chases for effects it has 
hallucinated

4. The degree to which we achieve 1-3 shalt be 
exhaustively tested using synthetic data



Synthetic Plasma

No "ground truth" solution exists for plasma dynamics (can't solve for 1020 particles + Maxwell's equations).

Approximate solutions from fluid/particle simulation can still be used to test the inference algorithm.
A physicist combines and modifies certain features from simulation data to make a "synthetic plasma".

Examples:
  - Check for false positive / false negative of feature identification
  - Evaluate impact of 3d effects on 2d reconstruction
  - Investigate cases with statistical ambiguity

"What is the smallest density fluctuation that can be reconstructed?"

"Can the model identify both fast and slow feature dynamics?

"How does aliasing present with high-frequency behaviors?"



MCMC Diagnostic : Rhat

Running parallel Markov Chains...

● makes efficient use of GPUs
● allows for the convergence diagnostic R-hat

○ tfp.mcmc.potential_scale_reduction



Thank You!
Contact:  langmore@google.com
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