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Abstract

The concept of a phoneme arose historically as a theoretical ab-
straction that applies language-internally. Using phonemes and
phonological features in cross-linguistic settings raises an im-
portant question of conceptual validity: Are contrasts that are
meaningful within a language also empirically robust across lan-
guages? This paper develops a method for assessing the cross-
linguistic consistency of phonological features in phoneme in-
ventories. The method involves training separate binary neural
classifiers for several phonological contrast in audio spans cen-
tered on particular segments within continuous speech. To as-
sess cross-linguistic consistency, these classifiers are evaluated
on held-out languages and classification quality is reported. We
apply this method to several common phonological contrasts, in-
cluding vowel height, vowel frontness, and retroflex consonants,
in the context of multi-speaker corpora for ten languages from
three language families (Indo-Aryan, Dravidian, and Malayo-
Polynesian). We empirically evaluate and discuss the consis-
tency of phonological contrasts derived from features found in
phonological ontologies such as PANPHON and PHOIBLE.
Index Terms: computational phonology, cross-lingual, low-
resource languages, neural networks

1. Introduction

Multilingual speech processing tasks often benefit from featural
representations of basic sound segments. For example, acoustic
models for speech recognition or synthesis can be trained on
multilingual data and share parameters across languages. In the
simplest case the basic sounds of two or more languages can
be pooled and represented with indicator variables (‘“one hot”
encoding). Depending on the amount of overlap among sound
inventories, this does not generally lead to optimal parameter
sharing and data efficiency. It is therefore standard practice to
represent sound units using denser feature encodings which po-
tentially allow for more sharing. This raises the question of the
practical utility and empirical validity of the chosen features,
which we attempt to address in this paper.

In a monolingual setting, one would typically use the
phonemes of a language as the basic sound units and derive
their feature encodings from distinctive phonological features.
Phonological features can be grounded in acoustic properties
(e.g. periodic glottal source), articulatory properties (e.g. nasal),
which may overlap (e.g. short/long); or they can be necessi-
tated by phonological processes (e.g. Turkish /a/ as a back
vowel for purposes of harmony). Often phonological descrip-
tions are based on articulatory features as recurrent elemen-
tary components that form the sound systems of world’s lan-
guages [1]. Many feature systems, ranging from binary distinc-
tive features [2] to elaborate acoustic landmark-based phonetic-
phonological representations [3], have been proposed over the
years. Due to their compact combinatorial description, they
have been a popular discrete representation pervasive in many
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Table 1: The ten languages used in the experiments.

Language family Language (Code)

Indo-Aryan (I-A) Bengali (bn), Gujarati (gu), Marathi (mr), Sinhala (si)
Dravidian (DRAV) Kannada (kn), Malayalam (m1), Tamil (ta), Telugu (te)
Malayo-Polynesian (M-P) Javanese (5v), Sundanese (su)

areas of pronunciation modeling in speech technology research,
such as text-to-speech [4, 5, 6, 7] and automatic speech recogni-
tion [8, 9, 10, 11].

Some have argued that since phonemes are conceptual con-
structs [12], articulatory features constitute a significantly more
viable representation [13]. In addition to being effective in de-
scribing the correlations and contrasts between phonemes of an
individual language, articulatory features have been shown to
be useful in multilingual scenarios [14, 15], where the need to
model the phonological sharing succinctly is more acute due to
the diversity between languages. It is not clear a priori whether
all phonological features will be useful or valid in a multilin-
gual setting. If feature descriptions were phonetic rather than
phonemic, and acoustic rather than articulatory, we would ex-
pect a close correspondence between phonetic features and the
acoustic signal. In practice, we typically start from monolin-
gual phonemic pronunciation dictionaries and phoneme inven-
tories. The dictionaries are combined with word-level utterance
transcriptions, resulting in phoneme-level transcriptions that of-
ten cannot resolve alternative pronunciations. The phoneme in-
ventories are turned into feature encodings derived from cross-
linguistic typology resources, such as PHOIBLE [16] and PAN-
PHON [17]. While the recourse to such resources has been
shown to be advantageous [18, 19], there remains a question of
how accurate a phonological description of a certain language
within such resource really is. PHOIBLE, for example, is de-
signed as a repository of multiple phoneme inventories found
in the literature for any given language. The sources may not
agree with each other and may contain mistakes that lead to un-
expected inventories or featurizations.!

We propose a method for evaluating the cross-lingual con-
sistency of phonological features in a multilingual setting. We
treat cross-linguistic consistency in terms of classification qual-
ity on phoneme-size spans of connected speech, evaluated on
held-out languages. Section 2 defines the problem and describes
our method and data. In Section 3 we apply this method to sev-
eral phonological features and discuss our empirical findings.

2. Problem, method, and data

To consider a phonemic contrast to be consistent or robust
across languages, we require it to be easily predicted on held-
out languages. We operationalize this as follows: a particular
phonemic contrast is presented as a binary classification prob-

!For example, PHOIBLE contains 3 different phoneme inventories
for Javanese, consisting of either 29, 30, or 33 segments. The largest of
these, inventory GM 1675, contains a spurious vowel /y/ that presum-
ably resulted from the use of non-IPA notation in the underlying article.
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Table 2: Phoneme inventories grouped by language families.

Phonemes (in IPA notation)

Shared abdzefghiklmnoprstfu

§ oo brdshdgrikintrrraesddigifttiueo
2 qu brdgddrikptiresddigtrolne
_g mr bhdzhddhjkhntfhtthaesddhgh[tthonadzdz" " mhnhts oh
£ si djntdpftombogrdrdees

g ta dintdlpnstodrn

B ml djntd{pnstu4rndtfs

z te djntdlpnstubhgrkntfrthdrghhfee

A xn djintdlpnstobrdrkhghehdhghth[dsn
[ jv djntwxzaravanf[?odt

= su djntwxzaravap[?ory

lem. An instance of this problem consists of a span of a speech
signal (e.g. a vowel in surrounding context) and a positive or
negative label (e.g. front vowel vs. back vowel). We train a
classifier on a multi-speaker, multi-language dataset and hold
out one or more languages. We then evaluate the trained classi-
fier on the held-out data and report its quality in terms of Area
Under (resp. Over) the receiver operating characteristic Curve
(AUC, resp. AOC). If the binary contrast in question is cross-
linguistically consistent, we expect it to be readily predictable
on held-out languages.

This paradigm directly addresses one potential confound-
ing factor: Suppose a purported contrast is actually not cross-
linguistically valid. Then we might be able to spuriously pre-
dict it on test data that are very similar to the training data (e.g.
a disjoint subset of utterances from the same corpus used for
training). One real way in which a contrast might be spurious
is due to mislabeling: suppose we label /i/ as a front vowel in
one language, but accidentally mislabel it as a back vowel in an-
other language. If our training data and classification model are
sufficiently rich, the classifier might in effect learn to perform
language identification and correctly reproduce the inconsistent
labeling by identifying the language of a test item, despite the
fact that the labels are not meaningful. The risk of this is sub-
stantially reduced because we always ensure that the set of lan-
guages (as well as the set of talkers) is disjoint between training
and cross-lingual testing.

This setup cannot control for all potential confounding fac-
tors though. It is certainly possible, even likely, that our data re-
sources are suboptimal, that language-specific processing such
as automatic time-alignment introduces confounding artifacts,
or that the choice of model or training procedure is deficient.
The question we are trying to answer is situated within cur-
rent practice: given existing transcribed corpora and existing
phoneme databases, which phonemic contrasts can be predicted
consistently across languages? We hold the data resources con-
stant, use standard optimizations to train classifiers, and focus
on the choice and nature of the phonological features.

A known, subtle confounding factor is due to well-known
mismatches in how different languages group allophones under
different phonemes. For example, aspiration is contrastive in
Bengali, but not in Spanish. In Bengali the phoneme /p/ (unaspi-
rated) contrasts with an aspirated phoneme, which has [p"] and
[f] as allophones (our Bengali corpus uses /f/ as the phoneme
label). In Spanish, the phoneme /p/ is unmarked for aspiration
and could be realized as [p"], which contrasts with the phoneme
/f/. That means in a given multilingual dataset we may find [f]
and [p"] sounds labeled differently depending on language, be-
cause we are working with phonemic rather than phonetic tran-
scriptions. We will return to this example later.
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Table 3: Phonological contrasts and corresponding phonemes.

Contrast Corresponding Phonemes
Close vowel iizuu:

Non-close vowel ee:r@ea®:o00:d¥aaiaa:
Front vowel eereaeIii

Back vowel 00Id¥UU:

Retroflex dd[n4stt"d

Non-retroflex
High specified
High unspec.
Delayed release
Non-delayed rel.
Anterior
Non-anterior

dddrilPnpnref'tgthng
aaeereooigaeadaayiirijkkhuuruwxngghn
bbrddzdd fhilhmmhnnnhprsttfthtthzddt..
dz3fstftfhxzs]
IPmmhnnnhrn|lpnirbbhrdddrkkhpttthddh...
bbrddzdz"dd" flmnnpphrsttsthtthzro
d3dshhjkkntetentfthwxnddrgghpnds/e?

While accurate feature detectors have been built in the
past [20, 14, 21], there has been relatively little focus in ap-
plying such detectors to evaluation of phonological representa-
tion itself. Such an approach not only can be used to improve
the quality of the existing cross-lingual linguistic resources but
ultimately also for deriving segment inventories for languages
where no such resources exist [22].

Corpus details We selected ten languages from three distinct
language families for our experiments. The languages and their
families are shown in Table 1 along with their corresponding
BCP-47 codes [23]. The majority of languages in the mix cor-
respond to South Asia and span two very different language
families, namely Indo-Aryan and Dravidian. These languages
are interesting to investigate because, on the one hand, they
exhibit considerable phonological variation within each group,
and on the other, share several cross-group similarities [24].
The third, Malayo-Polynesian, group is useful for contrasting
the performance of its languages (Javanese and Sundanese) with
the languages of South Asia. These multi-speaker multi-gender
datasets were collected in the past as part of an ongoing ef-
fort to build multi-speaker corpora for low-resource languages
in an affordable way and were used for extensive experimenta-
tion [15, 25, 26]. The datasets consist of 48 kHz audio and the
corresponding hand-curated transcriptions.

Our phoneme inventories have been designed with multilin-
gual speech applications in mind. The South Asian languages
use a unified underlying phonological representation. We lever-
age this unification to make the most of the data we have and
eliminate scarcity of data for certain phonemes by conflating
similar phonemes into a single representative phoneme [15].
The inventories for Malayo-Polynesian languages also aim for
maximum degree of overlap to reflect the close similarity be-
tween Javanese, Sundanese and their larger relative Indone-
sian [26]. The phoneme inventories for all languages use Inter-
national Phonetic Alphabet (IPA) notation [27] and are shown
in Table 2 grouped by their language families. A subset of
phonemes that is common to all the inventories is shown as
“Shared” in the first row of the table. While our inventories do
not necessarily map to the available typological resources (e.g.,
PHOIBLE) one-to-one, we made sure that there is a significant
correlation between them.

Phonological features Each phoneme segment shown in Ta-
ble 2 can be represented as a bundle of phonological features.
Once the phoneme inventory has been specified in IPA, cross-
lingual typological resources can be used to decompose it into
a particular feature system. PHOIBLE contains 2160 distinctly
notated sounds from 1672 languages, and its feature system con-
sists of 37 ternary features [16]. PANPHON relates over 5,000
distinct sound notations to representations in terms of about 23
binary articulatory features [17]. Decompositions like these can



Table 4: Spanish—Bengali phoneme asymmetry.

P-F VOICED
bn es bn es
bn 0.4 2.9 1.1 9.2
es 1.6 01 113 03

be accessed using automated tools [28]. A ternary feature (such
as LABIODENTAL) in PHOIBLE can either be present (+), ab-
sent (—), or not applicable ().

3. Experiments, results, and discussion

Each of the phonological feature contrasts can be represented by
two sets of phonemes, one for which the feature is present, and
one where it is absent. Table 3 shows a list of phoneme groups,
together with the corresponding phonemes selected from our
corpus, to study such contrasts. For the binary classification
task, the former set of phonemes, provides the positive ex-
amples, while the later one provides the negative examples.
PHOIBLE and PANPHON assign compatible feature values for
the phonemes and contrasts shown.

Experiment setup The speech data was downsampled to
16 kHz and then parameterized into HTK-style Mel Frequency
Cepstral Coefficients (MFCC) [29] using a 10 msec frame shift.
The dimension of the MFCC parameters is 39 (13 static + A +
AA coefficients).2 To determine the phoneme time boundaries,
the acoustic parameter sequences were force-aligned with the
transcriptions [31]. A single training example consists of 40
frames. It is constructed by stacking the frames correspond-
ing to the particular phoneme plus its right and left context
frames, possibly padding with zeros if the context is too short.
Phonemes longer than 40 frames are ignored.

The training and evaluation sets in our experiments always
consist of disjoint sets of languages and speakers. While the
recordings for each language are multi-speaker and often multi-
gender, our experiments mostly used female multi-speaker data.
For each dataset we also limit the number of training examples
to 50,000 and evaluation examples to 10,000. In order to keep
the overall set of training labels balanced, with equal number
of positive and negative examples, we employ a simple under-
sampling approach [32, 33]. If enough examples are available,
we sample equal number of them from every language in the
training set. Conversely, an imbalance in a language is preferred
over the lack of training examples. It is important to note that
we do not guarantee that the number of training examples is the
same across speakers of a language.

We use mean and standard deviation computed over the
training set input features to scale the training as well as evalu-
ation sets. We employ vanilla feed-forward Deep Neural Net-
work (DNN) binary classifier from TensorFlow [34], further
tuning the model hyper-parameters for maximizing the AUC us-
ing Vizier [35]. A simple two-layer architecture with 200 Soft-
plus [36] units in each layer, dropout probability of 0.2 [37],
Adadelta optimizer [38] and the learning rate of 0.6 with a large
batch size of 6000 [39] were found to perform well across our
experiments.

Evaluation results and discussion For each classification,
we measure the area under the ROC curve (AUC) numbers for
every pair of training and evaluation languages, including a lan-
guage against itself. We have also trained models for each lan-

2 Admittedly, the use of MECCs is too restrictive: Other representa-
tions (e.g., FO) or combinations thereof may be better suited to model
the acoustic cues that signal the contrasts [30] in each scenario.
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Table 5: Close vs. non-close vowels.

INDO-ARYAN DRAVIDIAN M-P

bn qgu mr si kn ml ta te v su
bn 31 9.8 9.7 13.0 109 156 124 96 13.6 49
gu 6.4 23 6.0 104 82 156 124 7.8 11.1 2.3
mr 6.9 6.9 14 113 8.7 155 13.1 8.5 104 2.7
si 9.3 112 11.8 31 124 149 152 102 163 33
kn 6.8 8.5 6.4 8.9 19 10.6 7.2 5.0 9.9 1.8
ml 73 110 8.5 9.4 54 49 7.9 49 120 2.6
ta 72 115 84 128 5.5 10.1 30 45 108 3.0
te 7.1 9.5 8.0 9.6 53 10.6 7.9 2.0 104 3.0
v 8.3 9.2 8.0 114 7.7 159 13.1 7.5 4.2 1.9
su 10.0 8.9 8.5 10.8 79 17.0 125 82 103 0.3

Table 6: Front vs. back vowels.
INDO-ARYAN DRAVIDIAN M-P

bn gu mr si kn ml ta te jv su
bn 0.6 0.5 0.8 2.2 0.8 6.4 8.7 22 09 2.2
gu 1.9 0.3 1.5 1.7 0.7 4.7 5.5 2.3 1.0 1.7
mr 2.9 14 03 5.5 2.6 9.7 115 4.8 1.9 438
si 4.0 1.1 2.1 0.4 1.8 6.7 8.4 32 2.9 2.2
kn 1.6 0.4 1.0 1.6 0.5 4.6 5.0 1.7 0.7 2.7
ml 1.9 0.4 1.2 1.9 0.7 19 49 1.9 0.9 2.4
ta 2.5 0.6 1.8 1.6 1.0 3.8 1.6 2.6 1.0 1.3
te 1.7 0.5 1.0 1.5 0.6 44 6.1 09 038 2.6
v 1.1 0.5 0.8 1.3 0.6 44 5.6 2.1 04 1.7
su 2.7 0.7 1.7 1.4 1.4 6.0 7.0 3.0 1.0 0.2

guage family and then evaluated that model on languages out-
side that family. We also have measured every feature defined
in PANPHON and PHOIBLE with positive and negative classes
indicating the presence and absence of that feature. All these
configurations make up around 900+ experiments. Each ex-
periment is repeated multiple times to ensure reliability of the
results and median values are reported.

The results for classification experiments for female speak-
ers are shown in tables from Table 4 to Table 10. In most
of these classifications, a single language is used for training
and a separate language used for evaluation. Each row repre-
sents one training language and columns are for evaluation lan-
guages. The languages are grouped by language families. Since
AUC values are generally high, we instead report Area Over the
Curve (AOC) values for better readability.

For a brief illustration we return to the contrasts among
labial consonants in Bengali and Spanish. Both languages have
phonemes that are labeled /f/ and /p/, but as discussed earlier
[p"] is an allophone of /f/ in Bengali and an allophone of /p/
in Spanish. Table 4 shows the cross-linguistic consistency of
two contrasts: the ‘p—f’ contrast only distinguishes between the
phonemic labels /p/ and /f/. We can see that this contrast is ro-
bust between Bengali and Spanish, despite the conflicting status
of the allophone [ph]. On the other hand, voicing is contrastive
in both languages, but cannot be predicted as reliably across
these two languages.

For the height contrast among vowels, we place vowels
marked +HIGH in both PANPHON and PHOIBLE into the class

‘close vowel’, and those with —HIGH into ‘non-close vowel’. As

vowel height is strongly associated with F} frequency it should
be easily predictable within one language. Boundaries in vowel
space are known to differ across languages, on top of natural
variation. This is borne out by the results in Table 5.

The ‘front-back’ contrast is defined as a combination of
features: ‘front vowel’ is taken to mean [+FRONT, —BACK] in
both PHOIBLE and PANPHON, and ‘back vowel’ is based on
[—FRONT, +BACK]. The results in Table 6 show a much better
cross-language consistency compared with vowel height, pre-



Table 7: Retroflex vs. non-retroflex consonants.

INDO-ARYAN DRAVIDIAN M-P
bn gu mr si n 1 ta te su
I-A 207 143 8.3 84 226 281 256 212 209 0.0
Drav 344 139 92 115 7.8 94 132 93 272 00
M-P 22,6 495 513 252 51.7 50.0 459 40.1 0.0
Table 8: High specified (+) vs. unspecified (D).
INDO-ARYAN DRAVIDIAN M-P
bn gu mr si kn ml ta te jv su
bn 1.5 6.1 5.5 6.1 4.3 6.8 4.8 3.5 9.2 6.6
qu 38 28 38 40 42 57 5.1 24 10.1 7.3
mr 3.7 46 21 43 44 58 54 26 103 7.8
si 72 60 5.6 1.7 49 6.3 64 35 11.7 8.8
kn 34 53 44 35 17 47 42 22 85 6.4
ml 3.5 54 47 42 32 27 36 23 9.1 7.3
ta 3.5 5.5 50 43 34 45 1.8 22 97 7.1
te 34 52 42 40 36 45 3.8 1.2 98 7.8
jv 4.3 6.9 6.7 6.5 5.1 6.8 62 43 40 4.1
su 43 83 79 65 5.9 84 6.6 55 6.2 1.6

sumably because central vowels are excluded here.

The concept of retroflex consonants is expressed indirectly
via the PHOIBLE features [ —ANTERIOR, —DISTRIBUTED]. The
union of thus defined retroflex phonemes from all ten languages
under study forms the positive class, along with a manually
added Sinhala prenasalized stop /nd/ [40]. The negative class
consists of all the dental and alveolar phonemes corresponding
to their retroflex counterparts in the positive class. For exam-
ple, alveolar /d/ is a non-retroflex phoneme contrasting with
retroflex /d/. Due to data sparsity, we trained on groups of
languages from the same family. Results appear in Table 7.
Among the Malayo-Polynesian languages considered, only Ja-
vanese has retroflex consonants, which it acquired through loan-
words from Indo-Aryan or Dravidian languages. When training
on these languages we get mostly random results (50% AOC).
Even within the other two language groups, this contrast is gen-
erally not very consistent. The absence of retroflex stops in Sun-
danese is however predicted perfectly.

The class ‘high-specified’ is comprised of phonemes with
PHOIBLE feature +HIGH (either positive or negative). The cor-
responding ‘high-unspecified’ negative class consists of all the
phonemes with PHOIBLE feature @HIGH (not applicable). This
contrast, unlike the others, partitions the union of the phoneme
inventories for all languages in this study. We chose this con-
trast specifically with the expectation that it would not be very
meaningful: the positive class is heterogeneous, consisting of
vowels and velar consonants. Contrary to expectations, Table 8
shows that this contrast is very robust across languages.

The ‘delayed release’ contrast only applies to the conso-
nants. Those with the PHOIBLE feature +DELAYED RELEASE
are assigned to the positive class, the remaining consonants
to the negative class. This contrast is naturally heterogeneous,
since it puts fricatives and non-lateral fricatives in the positive
class, and all other consonants, including lateral fricatives, in
the negative class. Table 9 shows it to be robust.

The ‘anterior’ contrast is defined by the opposition of
PHOIBLE features +ANT vs. —ANT. This is based on the place
of articulation of consonants: labials to alveolars are in the posi-
tive class, consonants further back than alveolars are in the neg-
ative class. This contrast is clear and homogenous, but difficult
to predict, even within the same language, per Table 10.

The AUC% within a language can be interpreted as a mea-
sure of consistency of our data for a given language. We are not
surprised to find that the less consistent a contrast is within a
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Table 9: Delayed release vs. non-delayed release consonants.

INDO-ARYAN DRAVIDIAN M-P

bn qgu mr si kn ml ta te v su
bn 0.8 1.1 1.6 0.7 1.3 1.5 0.3 0.9 1.1 2.2
gu 2.2 0.6 1.3 0.5 1.2 1.1 0.2 0.6 1.0 1.1
mr 2.3 1.0 0.2 0.8 1.4 1.2 0.5 0.8 1.1 1.4
si 3.0 1.7 2.6 0.7 14 1.5 0.7 0.9 1.3 2.1
kn 2.8 1.2 2.2 0.5 0.7 1.2 0.3 0.6 1.1 2.0
ml 2.6 1.3 1.9 0.5 1.2 0.5 0.5 0.8 1.5 1.9
ta 3.1 1.7 2.4 0.7 1.3 1.3 04 0.8 1.2 1.7
te 2.9 1.6 2.1 0.6 1.3 1.4 0.5 0.7 1.2 2.2
jv 4.1 1.9 2.5 0.7 1.6 2.2 0.8 0.8 0.7 2.2
su 34 1.5 2.0 0.7 1.3 1.3 0.5 0.9 1.0 0.3

Table 10: Anterior vs. non-anterior.
INDO-ARYAN DRAVIDIAN M-P

bn gu mr si kn ml ta te jv su
bn 46 225 251 230 319 360 337 232 302 236
qu 145 73 134 108 185 20.7 223 135 292 270
mr 18.0 13.8 44 131 169 206 244 137 28.1 263
si 166 162 173 28 214 245 280 17.1 259 21.7
kn 18.6 11.7 12.6 115 54 152 189 124 277 248
ml 247 167 164 159 149 86 176 132 348 315
ta 186 159 182 159 15.6 155 95 13.1 352 319
te 167 125 135 11.3 132 137 154 47 302 279
jv 257 234 232 157 293 335 367 263 98 117
su 244 246 252 177 327 372 376 293 155 25

langugage, the less consistent it generally is across languages.
While these contrasts vary significantly in terms of average
cross-linguistic consistency, many of them are equally robust
between languages within the same family and across fami-
lies. Some contrasts, for example the front—back distinction
in vowels and the delayed release distinction are nearly univer-
sal. Even some heterogeneous feature contrast, such as ‘high-
specified’, hold up well cross-linguistically. Some contrasts are
inherently more difficult to predict. For example, distinguish-
ing close vowels from non-close (including close-mid) vowels
is naturally difficult. The ‘anterior’ feature from PANPHON is ar-
guably homogenous, but divides the consonants along a bound-
ary that runs between alveolars and post-alveolars, which turns
out to be difficult to predict reliably. This justifies further re-
search into the design of feature inventories that are highly con-
sistent in multilingual settings.

4. Conclusion

In this study we have investigated an empirical approach to
recognizing phonological contrasts both within a language and
across the language family boundaries. We proposed a classifier
that detects the presence (or lack) of a particular linguistic con-
trast given the sequence of acoustic frames. We demonstrated
the effectiveness of the proposed approach on detecting several
typical yet interesting phonological contrasts in languages from
three distinct language families. In addition, the proposed ap-
proach serves as a tool for critically assessing the usefulness of
individual articulatory features in a multilingual setting. Our
approach can potentially form a building block of a system for
inducing the phonological representations from the speech data.
This, in turn, will facilitate the development of speech technolo-
gies in low-resource settings, where no such reliable representa-
tions are readily available.
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