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Abstract

In extreme classification settings, embedding-based neural network models are
currently not competitive with sparse linear and tree-based methods in terms of
accuracy. Most prior works attribute this poor performance to the low-dimensional
bottleneck in embedding-based methods. In this paper, we demonstrate that theo-
retically there is no limitation to using low-dimensional embedding-based methods,
and provide experimental evidence that overfitting is the root cause of the poor per-
formance of embedding-based methods. These findings motivate us to investigate
novel data augmentation and regularization techniques to mitigate overfitting. To
this end, we propose GLaS, a new regularizer for embedding-based neural network
approaches. It is a natural generalization from the graph Laplacian and spread-out
regularizers, and empirically it addresses the drawback of each regularizer alone
when applied to the extreme classification setup. With the proposed techniques, we
attain or improve upon the state-of-the-art on most widely tested public extreme
classification datasets with hundreds of thousands of labels.

1 Introduction

We study the problem of multi-label classification with large output space, which has garnered
significant attention in recent years [36, 6, 14, 3, 33, 23]. This problem differs from the traditional
classification setting insofar that the number of labels is potentially in the millions, presenting
significant computational challenges. Many real world applications such as product recommendation
and text retrieval can be formulated under this framework and thus, practical solutions to this problem
can have significant and far-reaching impact.

In this unusual yet practical setting, both the number of input feature dimensions D and the number of
labels K could be upwards of hundreds of thousands or even millions. This renders most traditional
machine learning models, such as logistic regression and SVM, infeasible due to the excessive number
of model parameters — approximately O(DK). Most recent approaches resort to using sparse linear
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models or tree-based methods in order to tackle this challenge [29, 23, 24, 34, 33]. An alternate
approach to address this problem is through low-dimensional embeddings. Here, the model consists
of an embedding function ¢ : RP — R%, where d is the embedding dimension, and a classifier
f:R? — {0,1}E. Thus, for any input x € R”, f(#(x)) is the indicator vector or label vector of
the predicted labels. To handle a large number of labels, the embedding dimension d is chosen to be
small in comparison to D; thereby, significantly reducing the number of model parameters.

Despite their accomplishments in computer vision and natural language processing domains [17, 27],
embedding-based deep neural networks (DNNs) have not achieved the same level of success in
learning with large output spaces. This point is often attributed to low-dimensional bottleneck layers
in neural networks that cannot represent enough information for the downstream learning task when
the number of potential labels is substantially larger than the embedding dimensionality [24, 6, 32].
Attempts to circumvent this limitation have been met with limited success [6, 31]. As a result, sparse
linear models and tree-based methods are favored in comparison to embedding-based methods for
the large-scale multi-label classification problems.

In this paper, we investigate embedding-based methods for the problem of our interest. Our main
observation is that, contrary to the widespread belief of limited representation power, overfitting is
the cause for the inferior performance of embedding-based methods, which suggests that efforts to
either augment the training set or regularize the model may dramatically boost test set performance.
Inspired by this, we show that a number of regularization techniques can shrink the generalization gap
for embedding-based methods and allow them to achieve, or improve upon, state-of-the-art accuracy
on a variety of widely tested public datasets. The most discernible improvement comes from a novel
regularizer that promotes embeddings for frequently co-occurring labels to be close.

Contributions. In light of this background, we state the following key contributions of this paper:

1. We demonstrate experimentally that the main reason for the poor performance of neural network
embedding-based models is overfitting. Our empirical observation is further supported by theoretical
analysis, where we prove that there exists a low-dimensional embedding-based linear classifier with
perfect accuracy in the limit of infinite expressivity of the embedding map. This shows that, contrary
to speculations in existing literature, low-dimensional embeddings are indeed sufficiently expressive
and cannot be a bottleneck.

2. Based on this finding, we propose a suite of principled data augmentation and regularization
techniques, including a novel regularizer called GLaS, to shrink the gap between training and test
performance.

3. Finally, on several widely tested public datasets, with our proposed techniques, we achieve state-
of-the-art results with very simple network architectures and little tuning, achieving high precision
and propensity scores, thus demonstrating the effectiveness of our method even on infrequent tail
labels. We also provide an ablation study to highlight the effectiveness of each individual factor. This
provides a strong baseline and several new venues for future research on applying embedding-based
methods to the large output space setting.

1.1 Related Work

There is a vast amount of literature on text classification; therefore, we only mention those that are the
most relevant to the problem setting of our interest. Existing approaches to our problem setting can
be broadly classified into three categories: (i) Embedding-based methods, (ii) Tree-based methods
and (iii) Sparse and One-vs-all methods. We discuss these approaches briefly here.

Embedding-based methods learn a model of the form f(4(x)) where ¢(x) € R? and d is small.
Embedding methods mainly differ in their choice of their functional form and their approaches to
learn the parameters of the function. A variety of approaches such as compressed sensing [12],
bloom filter [10], and SVD [36] are applied to training these models. While most of these approaches
assume a linear functional form [7, 9, 18, 28], non-linear forms have also been proposed [6]. One
criticism of embedding-based approaches is that label embeddings are compressed to a very small
dimensionality d, which is believed to cause degradation in performance greatly [24, 6] and are thus,
less favored for large-scale settings.

Tree-based methods learn a hierarchical structure over the label space and predict the path from the
root to the target label [1, 15, 29, 24, 14, 22, 35]. While this greatly reduces inference time and the



number of parameters need to be learnt, it typically comes at the cost of low prediction accuracy.
Although traditionally done over the label set [29], more recent methods [24, 14] partition the feature
space instead, relying on the assumption that only a small set of features are relevant for any label.
These methods are heavily affected by so-called cascading effect, where the prediction error at the
top cannot be corrected at a lower level.

Sparse and One-vs-all methods restrict the model capacity and improve efficiency by applying
sparse linear methods to learn only a small fraction of the non-zero parameters. This allows the
sparse model to be kept in main memory while ensuring that matrix-vector products can be carried
out efficiently. Methods such as DISMEC [3], ProXML [4], PD-Sparse [34] and PPD-Sparse [33] are
representative of this strategy and have enjoyed great success recently. DISMEC and PPD-Sparse
are, in particular, highly parallelizable since they are based on the one-vs-all approach for training
extreme multi-label classification models. However, these models are typically simple linear models
and hence, do not capture complex non-linear relationships.

2 Discussion on Embedding-based Methods

In this section, we describe our problem setup more formally and investigate the validity of the
criticism on embedding-based methods. The general learning problem of multi-label classification
can be defined as follows. Given an inputx € X C RP,itslabely € ¥ C {0,1}¥ is a K-
dimensional vector with multiple non-zero entries, where y(*) = 1 if and only if label % is relevant
for input x. Let L, denote the set of indices that are non-zero in y. The elements of set the Ly,
are, hereafter, referred to as relevant labels in y. The number of distinct labels K is assumed to be
large (on the order of hundreds of thousands or even millions). The goal of all embedding-based
methods is to learn a model of the form f(¢(x)) : X — {0, 1}¥ where ¢(x) € R¢ and d < D, K
and f : R? — {0, 1}% is a classifier on top of the embedding.

The most common form of f is a linear classifier. A linear classifier is parameterized by a label
embedding matrix V.€ R?K which is used to predict scores for all labels by computing ¢(x) V.
V is called a label embedding matrix since its columns can be interpreted as embeddings of the K
labels in the same embedding space, R, In the following, for a label y, we will use the notation
v, to denote the embedding of y given by V, i.e the y-th column of V. Depending on the specific
formulation, the set of labels predicted for the input x can then be obtained by thresholding the scores
at some value 7, i.e., {y : ¢(x)"v, > 7} or taking the top m largest scores, i.e., Top(¢(x) 'V, m).

The use of a linear classifier on top of embeddings naturally leads to a low-rank structure for the
score vectors of the labels: the set {¢(x) "V : x € X'} has rank at most d. This restriction on the
score vectors has frequently been cited as a reason for the poor performance of embedding based
approaches for extreme classification problems. Several studies [31, 6] show that the set of label
vectors violates the low-rank structure on large-scale datasets. However, we should note that the label
vectors are generated by either thresholding the scores or taking the top m highest scores, which is a
highly non-linear transformation. Thus, it is not immediately clear if the low-rank structure of the
score vectors directly translates to a low-rank structure on the label vectors.

There have been efforts to tackle this presumed issue of embedding-based methods, primarily by using
a more complex final classifier f than simple linear ones. For instance, Xu et al. [31] decomposed
the label matrix into a low-rank and a sparse part, where the sparse part captures tail labels as outliers.
Bhatia et al. [6] developed an ensemble of local distance preserving embeddings to predict tail labels.
In particular, they cluster data points into sub-regions and use a k-nearest neighbor classifier in the
locally learned embedding space. However, these modern embedding-based approaches have several
drawbacks [3] and cannot outperform other approaches on all large-scale datasets.

While most sparse linear and tree-based methods outperform embedding-based approaches, there has
not been any definitive proof that the inherent problem with embedding-based methods is their use
of low-dimensional representations for the score vectors. To the contrary, we provide experimental
evidence that a low-dimensional embedding produced by training a simple neural network extractor
can attain near-perfect training accuracy but generalize poorly, suggesting that overfitting is the root
cause of the poor performance of embedding-based methods that has been reported in the literature. In
fact, we will show that theoretically there is no limitation to using low-dimensional embedding-based
methods, even with simple linear classifiers.



2.1 Validity of Low-Dimensional Bottleneck Criticism

We first present a different perspective regarding embedding-based models, showing their inferior
performance in large output spaces is due to overfitting to training set rather than their inability to
represent the input-label relationship with low-dimensional label embeddings.

Let ¢ be the embedding function parameterized by some vector w that takes as input x € X and
outputs a feature embedding ¢y (x) € R?. In practice, we may take ¢, to be a linear function
¢w(x) = W x or a neural network with multiple linear layers and ReLU activation. We use a linear
classifier on top of the embedding, parameterized by a matrix V € R%**X whose columns give the
label embeddings v, for all labels y. Define the scoring function i : X — RE as h(x) = ¢w(x) V.
At training time, we sample an input-label pair (x,y) uniformly and compute the margin loss [20]:

Uh(x)y) =D D [h(x)y —h(x), +d, (1)

YELy y'¢Ly
Recall that L, denotes the set of indices that are non-zero rao. 1 Training vs. Test (No Regularization)
in y. Here we slightly abuse the notation in the usage of
loss function ¢. This loss encourages the scores for all 0.95 F-‘v
relevant labels to be higher than the scores for irrelevant >
labels by a margin of ¢ > 0. However, since the set of & oso- M"‘W
labels is large, computing this sum over the entire set is
prohibitively expensive during training. Instead, we use a 0.85
stochastic estimate of the loss by sampling a small subset ) e U
of labels from L, and computing the sum over that subset OB lcoboo 200000 300000 400500 500300
only. This loss function can be efficiently minimized using Epoch

batched stochastic gradient descent. An alternative option
is to use the so-called stochastic negative mining loss [25].
Algorithm 1 summarizes the training procedure.

Figure 1: Training (blue) and test (red)
accuracy of Alg. 1 on the AMAZONCAT-
13K dataset. The non-regularized
We now illustrate the overfitting issue on this embedding- embedding-based method severely over-
based model setup. Figure 1 shows the results of training fits to the training data.

our model on the AMAZONCAT-13K dataset. The statis-

tics of this dataset is summarized in Table 5 in the supplementary material. The blue line shows
that training accuracy continues to improve throughout optimization, culminating in near-perfect
accuracy towards the end of training. We emphasize that this disputes the argument made by previous
works that embedding-based models are ill-suited for this dataset due to the dimensionality constraint.
However, we observe in Figure 1 is that our embedding-based model has severely overfitted to
the training set. This observation highlights the need for regularization techniques to improve the
performance of embedding-based methods.

Algorithm 1 Training the basic embedding model
1: Input: Dataset {(x1,¥1),..-,(Xn,¥n)}

2: Feature embedding model ¢, : X — R?

3: Label embedding matrix V € R¥*K

4: Loss function £ : R¥ x [K] — R

5: Learning rates 7w, v

6: Initialize w,V

7: repeat

8:  Sample a batch x4, ...,xp

9:  Sample indices k1, . . ., kp uniformly from non-zero indices of y1,...,yp
10:  Compute loss L < 4 37 U(dw(x;) TV, k;)

11:  Compute gradients % and % via backpropagation
12: Updatewew—nw%,VeV—nvj—\L,

13: until convergence

2.2 Existence of Perfect Accuracy Low-Dimensional Embedding Classifiers

We further support our argument theoretically and demonstrate the fact that embedding-based models
can attain near-perfect accuracy is not limited to any specific dataset, but is feasible in general. We



make the following mild assumption on the data: for every x there exists a unique label vector
y = y(x), and the number of non-zero entries in y(x) is bounded by s < K, i.e., the number of true
labels associated with any feature vector is at most some small constant s. Under this assumption, the
following result shows that low-dimensional embedding-based models do not suffer from inability to
represent the input-label relationship. Proof can be found in the supplementary material.

Theorem 2.1. Let S C X be a sample set. Under the assumption on the data specified above, there
exists a function ¢ : X — R%, and a label embedding matrix V- € R¥K such that:

1. d = O(min{slog(K|S|)), s log(K)})

2. For every label y, we have ||v,|l2 = 1.

3. Forallx € Sandy € Ly(x), we have ¢(x) v, > 2.

4. Forallx € Sandy ¢ Ly (x), we have (b(x)—rvy < %

5. For every pair of labels y, y' with y # v, we have v;vy/ < M.

1

6. Foranyx € S, we have || ¢(x)||2 = O(s(*265) 1),

This theorem shows that in the limit of infinite model capacity for constructing the embedding map,
there exists a low-dimensional embedding-based linear classifier that thresholds at % and has perfect
training accuracy. Furthermore, the label embeddings v, are normalized to unit length. Since deep
neural networks have been demonstrated to have excellent function approximation capabilities, this
result naturally motivates a model architecture which uses a deep neural network to mimic the optimal
infinitely expressive embedding map ¢, followed by a linear classifier. Another consequence of the
bound on the dimension in terms of |S| is it shows how overfitting is possible with small training
sets: the dependence of the dimension on s improves to linear from quadratic at the price of a (mild)
logarithmic factor in the size of the sample set. On the other hand, applying the theorem with S = X
shows that d = O(s?log(K)) suffices to obtain a classifier with perfect test accuracy.

3 Regularizing Embedding-Based Models

Motivated by our findings, in this section we propose a novel regularization framework and discuss
its effectiveness for the classification problem with large output spaces.

3.1 Embedding Normalization

We first apply weight normalization proposed in [26]. In each layer, weight vectors of all output
neurons share a single trainable length and each weight vector maintains its own trainable direction.
Weight normalization not only helps stabilize training and accelerate convergence, but also improves
generalization. For the ease of exposition, we assume all label embeddings are ¢5-normalized to unit
norm, i.e., v; € S¢~1, where S~ ! denotes the unit sphere in R<. In a similar vein, we can assume all
input embeddings are normalized as well: ¢y (x) € S?~1. Our regularizer can be easily generalized
to cases where the label embeddings are not unit norm.

3.2 GLaS Regularizer

In large-scale multi-label classification, the output space is both large and sparse — most feature
vectors are associated with only very few true labels. Thus it may be desirable for an embedding-based
classifier to have near-orthogonal label embeddings, as suggested by Theorem 2.1. As a result, it is
natural to consider regularizers such as spread-out [37] that explicitly promote such structure.

Spread-out Regularization. Zhang et al. [37] introduced the spread-out regularization technique,
which encourages local feature descriptors of images to be uniformly dispersed over the sphere. We
consider a variant of spread-out regularization that brings the inner product of the embeddings of two
different labels close to zero, i.e., VJ vy ~ 0if y # y'. More formally, the spread-out regularizer
corresponds to the following:

1 K K
espreadout = ﬁ Z Z (V;—Vy’)2' )

y=1ly'=1



Note that due to embedding normalization, diagonal entries v?j v, = 1 and hence these terms will not

play arole in the regularization loss function in (2). Zhang et al. [37] have shown the effectiveness of
this technique in learning good local feature descriptors for images. However, one major drawback of
this regularizer is that it over-penalizes the embeddings of two different labels that co-occur frequently
together (e.g., apple and fruit tend to co-occur for many inputs). In other words, label embeddings of
labels that co-occur frequently are also encouraged to be far away, which is clearly undesirable.

Correcting Over-penalization: GLaS Regularization. The spread-out regularizer suffers from
the lack of modeling the co-occurrences of labels. Thus, to correct for this over-penalization, we need
to estimate the degree of occurrence between labels from training data and explicitly model it with
the regularizer.

Let Y € {0,1}"*¥ be the training set label matrix where each row corresponds to a single training
example. Let A = Y'Y so that 4, ,, = number of times labels y and y’ co-occur, and let Z =
diag(A) € RE*XK be the matrix containing only the diagonal component of A. Observe that AZ 1
represents the conditional frequency of observing one label given the other. Indeed,

Ay number of times y and vy’ co-occur
(AZ71),, = 2% = Yy = F(yly).
Ay number of times y' occurs

Similarly, Z=*A = (AZ~!)T contains the conditional frequencies in reverse, i.e., (Z71A), , =
F(y'|y). These conditional frequencies encode the degree of co-occurrence between labels y and /,
and we would like their embeddings v, and v, to reflect this co-occurrence pattern:

2

1
Vv - §(AZ—1 +Z71A) (3)

1

loLas =

K2 P
In the case where all labels are uncorrelated, this loss recovers the spread-out regularizer. While we
choose to define the degree of label correlation as the average of conditional frequencies between
labels, other measures of similarity such as pointwise mutual information (PMI) and Jaccard distance
can also be used. In Appendix B, we give a theoretical justification for using the geometric mean of
the conditional frequencies (see Theorem B.1). In experiments, however, we found empirically that
using arithmetic mean of the conditional frequencies gives a slight but noticeable boost in accuracy
compared to other measures, motivating the definition (3) of the GLaS regularizer.

One issue that arises when using this regularizer is that calculating /g ,s requires O(K?) operations
and becomes prohibitively expensive when K is large. Instead, we select a batch of rows from V and
compute a stochastic version of the loss on that batch only.

Relationship to Graph Laplacian and Spread-out Regulariza-
tion. While the definition for the GLaS regularizer is intuitive,
it may seem arbitrary and one can arrive at other regularizers by
following a similar intuition. However, we show that the GLaS regu- items
larizer can be recovered as a sum of the well-known graph Laplacian

regularizer and the spread-out regularizer, thus giving our regularizer Figure 2: The item-label bi-

its name (Graph Laplacian and Spreadout). partite graph. The edge be-
. . . tween a label node and an item
Graph Laplacian as a general technique has been successfully applied ), 4e represents an assignment

to representation learning problems such as metric learning [S] and ¢ the Iabel to the item. La-
hashmg [21].. By adding a graph Laplaman based lgss, We Can  pelg j and j have co-occurred
impose the right structure on the off-diagonal values in the Gram
matrix of label embeddings. More specifically, to assign similar
embeddings to labels that co-occur frequently, we can explicitly penalize the {5 distance between two
label embeddings with a weight proportional to their co-occurrence statistics. As a result, the graph
Laplacian regularization makes the label embeddings consistent with the connectivity pattern of label
nodes in the item-label graph (Figure 2). We can write the graph Laplacian regularizer as

1 K K
gLapIacian = ﬁ Z Z ||Vy —Vy ”%uyy” (4)

y=1ly'=1

labels

in two items.

where u,, denotes the amount of “adjacency” between graph nodes of labels y and ¥’ and is only
dependent on the graph structure. However, this loss formulation admits a trivial optimal solution
that assigns all labels the same embedding.



Recall that the spread-out regularizer suffers from a completely opposite weakness of encouraging
all label embeddings to be orthogonal regardless of any correlation. Thus, combining the two
regularizers can have the effect of compensating their respective weaknesses and promoting their
strengths. Summing the graph Laplacian re‘%ulairgzer (4) and the spread-out regularizer (2) we get

1
ELaplacian + gspreadout = F Z Z [HVU - Vy ||§u"ﬂl/ + (VJV:‘//)Q]

y=ly'=1

DIRIRSRS T 2 2
= ﬁ Z Z [(v'l/ Vy/ - Uyyl) - (uyy’ - 2uyy’)}

y=ly'=1

where (a) holds since |[v,||3 = 1. One can see that D (ug, — 2uy,) is a constant that only
depends on the graph structure. The non-constant part of the sum can be written as 7 | V'V —U||%,
which is exactly the form of GLa$S given in (3) with U = $(AZ~' + Z~'A) being the measure
of degree of adjacency in the label graph. Note that the graph Laplacian regularizer {1 aplacian
encourages frequently co-occurring labels to have similar label embeddings. However, labels that do
not co-occur frequently but have similar embeddings are not penalized by graph Laplacian regularizer.
This is achieved through the spread-out regularizer {spreadous. Thus, our regularizer GLaS captures
the essence of label relation.

Algorithm 2 Training with regularization
1: Input: Dataset {(x1,y1),---,(Xn,¥n)}

2: Feature embedding model ¢, : X — RY
3: Label embedding matrix V € R¥*X

4: Loss function ¢ : RX x Y — R

5: GLaS loss lgras : REXE x RBXB 4 R
6: Regularization weight A

7: Dropout probability p € [0, 1]

8: Learning rates 7w, v

9: Initialize w,V
10: repeat
11:  Sample a batch x1,...,Xp
12:  Sample labels y1, . . ., yp uniformly from non-zero indices of y1,...,yp

13:  Apply input dropout x; < x; ® Bernoulli(p, D)

14: Compute loss L < = 37 U(dw(x,) TV, 3:)

150 Y < [y1] - |y5]

16: U <« B x B submatrix of Equation (3) corresponding to indices y1, ..., yn
17 Vi [vy, | |vy,] € REXE

18:  Regularize L + L + MgL,s(VV,U)

19:  Compute gradients % and % via backpropagation

20: Updatew%w—nw%,VeV—nv%

21: until convergence

3.3 Input Dropout

Input dropout [13] is a simple regularization and data augmentation technique for text classification
models with sparse features. For a selected keep probability p € [0, 1] and an input feature x, the
method produces an augmented input x’ = x ® Bernoulli(p, D), where ® denotes element-wise
multiplication. Thus, non-zero feature coordinates are set to zero with probability 1 — p. This can be
interpreted as data augmentation, where features in the input are uniformly removed with probability
1 — p. It discourages the model from fitting spurious patterns in input features when training data is
scarce and it also promotes the model to be robust to corruption of the input features. The complete
learning algorithm that integrates all techniques described in this section is presented as Algorithm 2.

4 Experiments

In this section, we present experimental results of our method on several widely used extreme
multi-label classification datasets: AMAZONCAT-13K, AMAZON-670K, WIKILSHTC-325K,



DELICIOUS-200K, EURLEX-4K, and WIKIPEDIA-500K. The statistics of these datasets is pre-
sented in Table 5 in the supplementary material.

Ablation Study. We begin by studying the Variable Parameters
performance of Algorithm 2 under different set- Regularizer None [ GLsS % Spread-out % Gravity
tings of its hyperparameters. In particular, we —— X=1 | x=10 | Xx=100
. . .. . . . Regularization Weight
investigate variations in the regularization type 93.68 94.21 9375

d ioht. i d b h si d Input Dropout p=1.0 p=0.8 p=0.6
and weight, input dropout, batch size, and em- put Drop 30 W] 9108
bedding type and size. Table 1 shows the effects ; 1024 2043 4096

. Baich Size 9404 93.08 9421

of different parameters on the performance of — T—o56 T a=%ic T a=1071
our method on the AMAZONCAT-13K dataset, | "mbeddinesee 9324 9382 | 94
We first list our base setting that we have de- Embedding Type e % Ronlinear (Rel D)

rived through cross validation. In the base set-

ting, we use GLaS$ regularizer (discussed in Sec. Taple 1: Sensitivity of Algorithm 2 to variations in
3.2) with regularization weight A = 10, input  gifferent parameters for AMAZONCAT-13K. Each
dropout with p = 0.8, batch size B = 4096, row shows the effect of a single parameter. Our
and a non-linear embedding map ¢w with em- G 3 regularizer outperforms spread-out and grav-
bedding dimension d = 1024. In each row of iy A moderate regularization weight and input

Table 1, we alter one parameter from the base  gropout, a large embedding size, and using non-
setting to study its impact. For the regulariza- Jinearity lead to a better result.

tion method, we compare our method with the

spread-out regularizer [37] and Gravity regularizer [16] and show that our method significantly
outperforms these two. We can observe that the regularization weight and input dropout rate should
not be either excessively small or large as these settings hurt the test accuracy.

As one can expect, embeddings of higher dimensionalities outperform those of lower dimensionalities.
Batch sizes in the range of 1000s do not have a significant impact on the performance; however, we
do note that the largest batch size 4096 gives us the highest test accuracy. Finally and as shown in
Table 1, adding the ReLU nonlinearity boosts the performance of ¢, in learning the embedding.

Generalization Gap. As discussed previ- | Datasel | Regularization | Tram Acc. | Test Acc, | Gen. Gap_|
ously, one of the main goals of this paper is ‘ AMAZONCAT 13K } OLaS } ST } ol } 5 }
to propose regularization techniques that miti- oS [ %0 | #3 | 7 ]
gate the overfitting (Figure 1) of neural network None [ 9820 [ #53 [ 5368 |
embedding-based methods for extreme multi-

label classification problems. Table 2 studies
the effect of our regularization techniques on the
generalization gap, i.e., the difference between
training and test accuracies. In particular, we
have studied two datasets AMAZONCAT-13K
and AMAZON-670K in two different settings: with and without the regularization techniques we
discussed in Section 3. The table shows that regularizing embedding based models with our method
significantly reduces the generalization gap over the unregularized setting while improving test
accuracy. As an example, GLaS regularizer reduces the generalization gap of Algorithm 1 by more
than 30% when applied to the AMAZONCAT-13K dataset.

‘ AMAZON-670K }

Table 2: The comparison of generalization gap in
Algorithm 1 and Algorithm 2 when they are ap-
plied to AMAZONCAT-13K and AMAZON-670K
datasets. The GLaS regularizer (Section 3.2) sig-
nificantly improves the generalization gap.

Comparison with Previous Work. We compare our method with several other recent works on
the extreme classification problem denoted in Table 3. As shown in this Table, on all datasets except
Delicious-200K and EURLex-4K our method matches or outperforms all previous work in terms
of precision@k3. Even on the Delicious-200K dataset, our method’s performance is close to that
of the state-of-the-art, which belongs to another embedding-based method SLEEC [6]. One thing
to note about the Delicious-200k dataset is that its average number of labels per training point is
significantly larger than that of other datasets. Due to this phenomenon, we observed that it takes
a long time for training to show steady progress with the fixed margin loss. Hence, we have used
the softmax-cross-entropy loss for the Delicious-200K dataset instead of the loss function in (1).
Softmax-cross-entropy loss relaxes the margin requirement and significantly stabilizes training.

SP@k = % > erankg (3) Y1 where ¥ is the predicted score vector and 'y € {0, 1}L is the ground truth labels.



Embedding Based Other Methods
Dataset P@K Ours SLEEC[6] | LEML[36] | RobustXML [31] | XML-CNN [19] PlastteXML [14] | FastXML [24] | Parabel 23] | DIiSMEC [3] | PD-Sparse [34] | PPD-Sparse [33]
pP@l 94.21 90.53 - 88.4 - 91.75 93.11 93.03 93.40 90.60 -
AMAZONCAT-13K | P@3 | 79.70 76.33 - 74.6 - 7797 782 79.16 79.10 75.14
P@s 64.84 61.52 - 60.6 - 63.68 63.41 64.52 64.10 60.69 -
PGl | 6 5983 1982 535 B 36.05 975 65.04 64.40 6126 6408
WIKILSHTC-325K P@3 45 3342 11.43 318 - 36.79 33.10 4323 42.50 39.48 41.26
P@s | 3 2385 8.39 299 - 27.09 24.45 32.05 31.50 28.79 30.12
PGT | 4638 3505 813 310 3539 3946 3699 1489 70 B 7532
AMAZON-670K P@3 42. 31.25 6.83 280 3193 3581 3328 39.80 39.70 - 4037
P@5 | 3856 28.56 6.03 24.0 29.32 33.05 30.53 36.00 36.10 - 36.92
P@l 46. 47.8 40.73 450 - 41.72 43.07 46.97 45.50 34.37 -
DELICIOUS-200K | P@3 | 4049 22 37.71 400 - 37.83 38.66 4008 38.70 29.48
P@s 38.1 39.4. 35.84 38.0 - 35.58 36.19 36.63 35.50 27.04
Pa@l | 775 79.2 634 B 7638 7545 7136 8173 824 7643 3353
EURLEX-4K P@3 65.01 64.3 50.35 - 62.81 62.7 59.9 68.78 68.5 60.37 70.72.
P@s | 5437 52.33 4128 - 5141 5251 50.39 57.44 517 4972 3921
P@l 69.91 482 413 - 59.85 59.52 54.1 66.73 70.2° - 70.16
WIKIPEDIA-500K P@3 49.08 294 30.1 - 39.28 40.24 355 4748 50.6 - 50.57
P@s | 38.35 212 198 - 2981 3072 262 36.78 397 - 39.66

Table 3: Performance comparison (based on precision@k) with several other methods on large-scale
datasets. Our method attains or improves upon the state-of-the-art results. Results of other methods
are derived from the extreme classification repository. Italic underlined numbers are the best of the
entire row and bold numbers are the best among embedding-based methods.

Embedding-Based Other Methods
Dataset PSP@k Ours SLEEC [6] LEML [36] PfastreXML [14] FastXML [24] Parabel [23] DiSMEC [3] PD-Sparse [34] PPD-Sparse [33]
PSP@1 47.53 46.75 - 69.52 4831 50.93 59.10 49.58 -
AMAZONCAT-13K PSP@3 62.74 58.46 - 73.22 60.26 64.00 67.10 61.63
PSP@5 71.66 65.96 - 75.48 69.30 72.08 71.20 68.23 -
PSP@1 46.22 20.27 348 30.66 16.35 26.76 29.1 28.34 2747
WIKILSHTC-325K PSP@3 46.15 23.18 3.79 31.55 20.99 33.27 356 33.50 33.00
PSP@5 47.28 25.08 4.27 33.12 23.56 37.36 39.5 36.62 36.29
PSP@1 38.94 20.62 2.07 29.30 19.37 2543 278 - 26.64
AMAZON-670K PSP@3 39.72 23.32 2.26 30.80 23.26 29.43 30.6 - 30.65
PSP@5 41.24 25.98 247 3243 26.85 32.85 342 - 34.65
PSP@1 28.68 7.17 6.06 315 6.48 725 6.5 529 -
DELICIOUS-200K PSP@3 24.93 8.16 7.24 3.87 7.52 7.94 7.6 5.80
PSP@5 23.87 8.96 8.10 4.43 8.31 8.52 8.4 6.24
PSP@1 49.77 34.25 24.10 43.86 26.62 36.36 41.20 36.28
EURLEX-4K PSP@3 51.05 38.35 26.37 45.23 32.07 41.95 44.30 40.96
PSP@5 53.82 40.30 27.62 46.03 3523 44.78 46.90 42.84

Table 4: Performance comparison (based on propensity scored precision @k, PSP@k) with several
other methods on large-scale datasets. Propensity weights are higher for rarer labels, hence this metric
better reflects the model’s ability to generalize to tail labels than precision. Italic underlined numbers
are the best of the entire row and bold numbers are the best among embedding-based methods.

One of the biggest challenges for learning in large output spaces comes from tail labels that are only
assigned to a few inputs, but make up the majority of the whole label set. The propensity scored
precision@K (PSP@K) metric corrects for this bias by up-weighting rare labels. To demonstrate the
effectiveness of our method at predicting tail labels, we report results using this evaluation metric
in Table 4. While many previous methods that we compare against have to explicitly change their
training objective or algorithm accordingly to account for the re-weighting, in contrast, our simple
embedding based models learn to predict these tail labels remarkably well without any adjustment of
our training loss or procedure. On the dataset with the largest number of labels Amazon-670K, our
method improves the PSP@1 metric by an absolute margin of 9.6%.

Training and Inference Speed. We train all models up to 10 epochs and apply early stopping
when evaluation accuracy ceases to improve. Though the overall training process takes minutes to
hours, the time complexity is O(d ), . s nnz(x)), where d is the embedding dimensionality, S is the
set of training samples, and nnz(x) is the number of non-zero features of the sparse input x.

At inference time, we apply efficient Maximum Inner Product Search techniques such as [11, 30].
The non-exhaustive search achieves low latency due to highly effective clustering based tree indices
[2] and hardware based acceleration [11, 8]. For all datasets up to a few million labels, the inference
latency is below 10ms and below 1ms for under 100k labels.

5 Conclusions

In this paper, we showed that from both theoretical and empirical perspectives, neural network
models suffer from overfitting instead of low-dimensional embedding bottleneck when applied to
extreme multi-label classification problems. To this end, we introduced the GLaS regularization
framework and demonstrated its effectiveness with new state-of-the-art results on several widely
tested large-scale datasets. We hope future work can build on our theoretical and empirical findings
and more competitive embedding-based methods can be developed along this direction.
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A Existence of Perfect Accuracy Low-Dimensional Embedding Classifiers

Theorem A.1. Let S C X be a sample set. Under the assumption on the data specified above, there
exists a function ¢ : X — R?, and a label embedding matrix V. € R¥™ X such that:

1. d = O(min{slog(K|S|)), s?log(K)})

2. For every label y, we have ||vy|l2 = 1.

3. Forallx € Sandy € Ly), we have ¢(x) v,
4. Forallx € Sandy ¢ Ly(x), we have ¢(x) v,
5
6.

IN IV
Sl

. For every pair of labels y,y' withy # y', we have v;vy/ <4/ %;mz).
log(K) \ 1
Forany x € S, we have ||$(x)]|2 = O(s(%)zl).

Proof. We show the existence of the function ¢ and V using the probabilistic method. First, let V be
chosen by sampling each entry uniformly at random in {— %7 % }, where the exact specification of

d will be revealed in the subsequent analysis. Clearly, for all labels y, we have ||v,||2 = 1, which
establishes item 2. For any x € X, define ¢(x) = v,. For any x € X’ and any label y, we

have

y€Ly(x)

¢(X)Tvy = H[y € Ly(x)] + Zy’ELy(x>,y¢y’ VJVy/.
By an application of Hoeffding’s inequality,

|

T 1 d
Zy’ELy(x)7y¢y/vy Vy” > 5} < ZeXp(fﬁ)'

Now note that |[{¢(x) : x € §}| < min{|S|, K*}. Thus, by a union bound, we conclude that

. T 1
Pr [EIX €S, y: ‘Zy,eLy(x)7y¢y,vy Vi | > g}

< 2min{|S|, K°} exp(—%).
By similar calculations, we also have, for any given ¢ > 0,

Pr[3y # vy : |v;vy/| > t] < 2K exp(—%?).

Set d = [18slog(4min{|S|, K*})] (which establishes item 1) and ¢ = 4/ %ﬁw) so that the

above two probabilities add up to less than 1. Thus, there exists a matrix V s.t. for all x € S and all
Y, |¢(x) vy —I[y € Ly ]| < & (which implies items 3 and 4) and for all pairs of labels y # i/, we

have |vyT Vy | <4/ %‘mg) (which implies items 5). Finally, for item 6, note that for any x, we have

2log(4K?
¢(X)T¢(X> = ZyeLy(x) V;/—Vy + Ey,y’Gwa),y#y’ vva/ <s 4+ s(s — 1) -y / ngj ) 0
B Theoretical Justification of the GLaS Regularizer

In this section we give theoretical justification for the definition of the GLaS regularizer (3). Specif-
ically, we prove a representability theorem analogous to Theorem 2.1. This theorem shows that it
is possible to construct a low-dimensional embedding-based classifier which corrrectly labels all
examples in the training set, and additionally, the inner-products of the embeddings of each pair of
labels are close to the geometric means of their conditional frequencies. The definition of the GLaS
regularizer (3) uses the arithmetic mean of the conditional frequencies instead of the geometric means
due to superior experimental performance (although the geometric-means-based regularizer has very
similar performance).

We first recall some notation from Section 3.2. Suppose S C X be a sample set of size n. Let
Y € {0,1}"*¥ be the training set label matrix where each row corresponds to a single training
example. Let A = Y'Y so that 4, ,, = number of times labels y and 3/’ co-occur, and let Z =

diag(A) € RE*X be the matrix containing only the diagonal component of A. The matrix AZ 1
gives conditional frequencies of observing one label given another: (AZ~1), ,» = F(y|y).
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Feature Label Number of Number of Avg. Points Avg. Labels

Dataset Dimensionality Dimensionality Train Points Test Points Per Label Per Point
AMAZONCAT-13K 203,882 13,330 1,186,239 306,782 448.57 5.04
AMAZON-670K 135,909 670,091 490,449 153,025 3.99 5.45
WIKILSHTC 1,617,899 325,056 1,778,351 587,084 17.46 3.19
DELICIOUS-200K 782,585 205,443 196,606 100,095 72.29 75.54
EURLEX-4K 5,000 3,993 12,920 3,185 25.73 5.31
WIKIPEDIA-500K 2,381,304 501,070 1,813,391 783,743 24.75 471

Table 5: Summary of the dataset statistics discussed in the paper.

Theorem B.1. Suppose that for the sample set S C X, we have A, , < a for some constant a < n.
Let € := ﬁ Then there exists a function ¢ : X — RY, and a label embedding matrix V € R>K
such that:

d = O(alog(Kn))

Forany x € S, we have ||¢(x)]|2 < 1+ e

For every label y, we have ||vy|l2 < 1+

Forallx € S andy € Ly (x), we have ¢ X)Tvy > €
Forallx € S and y € Ly(x), we have ¢(x) v, < e.

For every pair of labels y, y' we have )V;—Vy/ — \/F(y|y’)F(y’|y)‘ <e

S R W~

Proof. Consider the following construction. For every x € S, associate a unique standard basis

vector ey € R™. Then, for every label y, define v/, = \/% D xesyey(x) ©x- It is easy to check,
- Y,y :

by direct calculation, the following properties:

1. For all labels y, we have |[v}[|2 = 1.
2. For all x € S and labels y, we have

1 1
oTv — I a2 va T EIve
x Yy .
0 otherwise.
: T A’yyy’ _
3. For all pairs of labels y, y', we have vy ' v, = Nz F(yly' ) F(yly).

Now, consider the Johnson-Lindenstrauss (JL) transform ) : R" — R? with d = O(logiif")) =

O(alog(Kn)) applied to the vectors ey for x € S and v, for labels y. Since these vectors are all
unit length, by choosing a large enough constant in O(+) notation for d, the JL transform preserves all
pairwise inner products of the vectors up to an additive error less than e. We now define ¢(x) = 1 (ex)
for all x € S and v, = ¢(vy) for all labels y. Now the claims of the theorem follow immediately
from the fact that the properties 1, 2 and 3 above are all preserved up to an error less than e. O

This theorem implies that there exists an embedding-based classifier which has perfect accuracy on
the training set S when a threshold of € is used. Furthermore, the label and input embeddings are
nearly unit length, and the inner products of the label embeddings for each pair of labels are close to
the geometric means of the conditional frequencies of the pair.

C Additional Experimental Results

This section includes the summary of the dataset statistics that we have used in our experiments
(Table 5). In addition, we have included a variant of precision, namely nDCG @k 4 results of different
methods over different datasets (Table 6).

‘nDCG@k = Emm(kﬂgﬁ?k —— where DCG@k = 37, . (5) Toatiay+ ¥ i the predicted score vector

=1 Tog(1+1)

and y € {0, 1}* is the ground truth labels.
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ing-Based Other Methods
Dataset nDCG@k | Ours | SLEEC[6] | LEML[36] | RobustXML[31] | XML-CNN[19] | PfastreXML [14] | FastXML [24] | Parabel [23] | DiSMEC [3] | PD-Sparse [34] | PPD-Sparse [33]
nDCG@1 1 9053 B - B 9 9311 93.03 9340 B
AMAZONCAT-13K aDCG@3 84.96 - - - 86.48 87.07 87.72 87.70 84.00
nDCG@S 82.77 - - - 84.96 85.16 86.00 85.80 82.05
nDCG@1 5483 1982 535 B 56.05 975 65.04 64.40 61.26
WIKILSHTC-325K | nDCG@3 4725 1452 46.0 - 50.59 4523 59.15 58.50 55.08
nDCG@S 46.16 1373 440 - 50.13 4475 3893 58.40 54.67
nDCG@1 3477 813 31.0 3539 39.46 36.99 2489 4470 -
AMAZON-670K nDCG@3 32.74 7.30 280 33.74 3778 35.11 4214 42.10
nDCG@5 31.53 6.85 260 32.64 36.69 33.86 4036 40.50 -
nDCG@1 47.85 2073 50 B a7 307 7697 4550 3437
DELICIOUS-200K aDCG@3 352 38.44 400 - 38.76 39.70 4172 40.90 30.60
nDCG@S 4137 37.01 37.0 - 37.08 37.83 39.07 37.80 28.65
nDCG@1 79.26 634 B 7638 7545 7136 8173 824 76.43
EURLEX-4K nDCG@3 68.13 53.56 - 66.28 65.97 62.87 72.15 72.50 64.31
nDCG@5 61.60 48.47 - 60.32 60.78 58.06 66.40 66.70 58.78
nDCG@1 - - 59.85 - - - - -
WIKIPEDIA-500K aDCG@3 48.67
nDCG@S 46.12

Table 6: Performance comparison (based on normalized Discounted Cumulative Gain, i.e., nDCG@k
— a variant of precision) with several other methods on large-scale datasets. Our method attains or
improves upon the state-of-the-art results. Results of other methods are derived from the extreme
classification repository. Italic underlined numbers are the best of the entire row and bold numbers
are the best among embedding based methods.

D Python Code for PSP@K

This section includes the Tensorflow code of PSP@K computation. Our Tensorflow code is based on
the MATLAB code available in the extreme classification repository>.

| def precision_wt_k(scores, labels, wts, k):

" nun

3 Args:

4 labels: Tensor of 0/1 labels with shape [batch_size, #classes].
5 scores: Tensor of scores with shape [batch_size, #classes].

6 wts: inverse propensity weights

7 K: as in pQk

8

9 Returns:

10 psp_k: PSPQK

nwnn

13 idx = tf.where(tf.not_equal(labels, 0))

14 wts_labels = tf.sparse.to_dense(

15 tf.SparseTensor (indices=idx,

16 values=tf.gather (wts,

17 tf.cast(idx[:,1],tf.int64)),
18 dense_shape=labels.shape))

19 psp_num = psp_precision(labels, scores, k, wts)

20 psp_denum = psp_precision(labels, wts_labels, k, wts)

21 psp_k = tf.divide(psp_num, psp_denum)

23 return psp_k
2

26 def psp_precision(labels, scores, K, wts):

27 nun

28 Args:

29 labels: Tensor of 0/1 labels with shape [batch_size, #classes].
30 scores: Tensor of scores with shape [batch_size, #classes].
31 K: as in pQk

32 wts: inverse propensity weights

34 nmnn

36 _, indices = tf.math.top_k(tf.cast(scores, tf.float32), k=K)
37 first_column = tf.reshape(

38 tf.transpose (

39 tf.tile(

40 tf.expand_dims (

>http://manikvarma.org/downloads/XC/XMLRepository.html
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tf.range (0, tf.shape(indices) [0]) ,0),[K, 11)),[-11)
sparse_indices = tf.stack([first_column,
tf.reshape (indices, [-1])], axis=1)

expanded_weights = tf.gather (wts,

tf.cast(sparse_indices[:, 1],
tf.int64))
topK_mat = tf.SparseTensor (indices=tf.cast(sparse_indices,
tf.int64),

values=tf.cast(expanded_weights,
tf.float32),
dense_shape=tf.shape(labels,
out_type=tf.int64))
topK_mat = tf.sparse.reorder (topK_mat)
prod = tf.multiply(tf.sparse.to_dense(topK_mat),
tf.cast(labels, tf.float32))

return tf.reduce_mean(tf.divide(tf.reduce_sum(prod,1), K))

def psp_wts(labels, A=0.55, B=1.5):
"""Computes propensity weights for the NxK full test label matrix.
Wiki-LSHTC: A = 0.5, B = 0.4
Amazon: A = 0.6, B 2.6
Others (default): A = 0.55, B = 1.5

[

Args:
labels: is the binary matrix of (all) true labels
A: dataset -dependent constant
B: dataset -dependent constant

Returns:

wts: inverse propensity weights
nmnn

N = labels.dense_shape [0]

counts = tf.cast(tf.sparse.reduce_sum(labels, 0), tf.float32)
C = (tf.log(tf.cast(N,tf.float32)) - 1) * math.pow(B + 1, A)
wts = 1 + tf .multiply(C, tf.pow(counts+B,-4))

return wts
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