
Constructing a Comprehensive Events Database from the Web
Qifan Wang, Bhargav Kanagal, Vijay Garg, D. Sivakumar

Google Research, Mountain View, USA
{wqfcr,bhargav,vijaygarg,siva}@google.com

ABSTRACT
In this paper, we consider the problem of constructing a compre-
hensive database of events taking place around the world. Events
include small hyper-local events like farmer’s markets, neighbor-
hood garage sales, as well as larger concerts and festivals. Designing
a high-precision and high-recall event extractor from unstructured
pages across the whole web is a challenging problem. We cannot
resort overly to domain-specific strategies since it needs to work on
all web pages, including on new domains; we need to account for
variations in page layouts and structure across websites. Further,
we need to deal with low-quality pages on the web with limited
structure.

We have built an ML-powered extraction system to solve this
problem, using schema.org annotations as training data. Our extrac-
tion system operates in two phases. In the first phase, we generate
raw event information from individual web pages. To do this, an
event page classifier predicts if a web page contains any event in-
formation; this is then followed by a single/multiple classifier that
decides if the page contains a single event or multiple events; the
first phase concludes by applying event extractors that extract the
key fields of a public event (the title, the date/time information, and
the location information). In the second phase, we further improve
the extraction quality via three novel algorithms, repeated patterns,
event consolidation and wrapper induction, which are designed to
use the raw event extractions as input and generate events whose
quality is significantly higher. We evaluate our extraction models on
two large scale publicly available web corpus, Common Crawl and
ClueWeb12. Experimental analysis shows that our methodology
achieves over 95% extraction precision and recall on both datasets.

CCS CONCEPTS
• Information systems → Data management systems;

KEYWORDS
structure data, event data extraction, consolidation, wrapper

ACM Reference Format:
Qifan Wang, Bhargav Kanagal, Vijay Garg, D. Sivakumar. 2019. Construct-
ing a Comprehensive Events Database from the Web. In The 28th ACM
International Conference on Information and Knowledge Management (CIKM
’19), November 3–7, 2019, Beijing, China. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3357384.3357986

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CIKM ’19, November 3–7, 2019, Beijing, China
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6976-3/19/11.
https://doi.org/10.1145/3357384.3357986

1 INTRODUCTION
Large-scale structured data repositories are becoming increasingly
important to empower new experiences in applications like web
search as well as enable smart assistants (e.g., Amazon Alexa,
Google Assistant) to do complex tasks (e.g., “Show me kid-friendly
events in San Francisco this weekend”). The web contains billions of
websites that contain rich event information, although it is mostly
unstructured. In this paper, we consider the problem of constructing
a comprehensive database of events taking place around the world,
by automatically extracting from the web. We define an event as a
public assembly which contains three crucial pieces of information
— the title of the event, the date/time of the event and the location
where the event will take place. We are interested in events that
users may want to add to their calendars and potentially attend.
This is in contrast to many other types of events, such as natural
disasters, pandemics, political elections or social media news.

There are several major challenges in event extraction from an
arbitrary web page. First, event pages identification. Before extrac-
tion, we need to know if a given page actually contains any event
information. Due to the huge volume of web pages, a small page
classification error would lead to a large number of mistakes (“false
positives,” or spurious events). Therefore, it is crucial to develop
an event page classifier that achieves very high precision. Second,
event page type classification. Knowing whether a page contains
a single event or multiple events is important, since events have
different presentations on these two types of pages. In the case of
a single-event page, the different pieces of information about the
event can appear anywhere on the page, whereas the information
within multiple-event pages could appear in “factored form,” that
is, the common parts (e.g., the artist or the venue) could appear
once but individual listings could appear in a table. Third, event
information extraction. To scale to the entire web, our techniques
cannot have domain-specific parsing such as template based ex-
traction, and need to be fully general as new pages and domains
are continuously being added. We need to handle a variety of web
pages with differing structures. Moreover, information about an
event can be distributed on different pages, or duplicated across
sites, and we need the ability to handle both situations.

The general problem of information extraction from web pages
has been studied extensively in recent years. Of these, template
induction (or wrapper induction) [7, 24, 30] has proven to be suc-
cessful for extracting relations from web pages. However, these
techniques do not scale to the whole web as obtaining accurate
ground truth for all the event domains is expensive. Moreover, the
wrappers go out-of-date quickly because page structure changes
frequently, and require periodic updating. Furthermore, as new
(large) events occur, there is a steady stream of new domains that
carry valuable event information. Recently, Foley et al. [9] proposed
using machine-learned extractors with schema.org markup [39]
to construct training data. We follow their lead but overcome two

Session: Long - Database and System CIKM ’19, November 3–7, 2019, Beijing, China

229

https://doi.org/10.1145/3357384.3357986
https://doi.org/10.1145/3357384.3357986

significant problems in their work that makes it unusable for the
Web: first, their method applies only to web pages with exactly one
event, and second, the 76% precision they reported is unsuitable for
real world applications.

In this paper, we develop a fully automated methodology to
extract event information from arbitrary web pages. Our method
proceeds in two phases: a raw event extraction phase that culmi-
nates in 84–85% precision, and a precision enhancement phase that
improves the extraction quality to very high (and acceptable for
wide usage) levels. We train an event page classifier to recognize
event pages with high precision. To understand the layout of the
page, we train another single/multiple classifier to predict if the page
contains just one or several events. Based on the page layout, we
design two event extractors to extract event information. All models
are deep neural networks, trained using schema.org markup data
as labeled examples. To further improve extraction quality, we pro-
pose three novel algorithms, repeated patterns, event consolidation
and wrapper induction to post-process the raw event extractions
from the model.

Our technical contributions are as follows:
(1) We develop an ML-powered system to do end-to-end event

extractions from any page on the web. Our system detects if
the page contains an event, predicts the page structure, and
extracts events from the page.

(2) We utilize repeated sub-structures on web pages to improve
extraction precision and recall. We develop a consolidation
method to cluster event extractions from the model, remove
duplicates, and identify high-precision events.

(3) We develop algorithms to automatically construct domain-
level wrappers for extraction. We design fully automated
algorithms to identify high precision templates without hu-
man raters, using statistical analysis of the template rules.

2 RELATEDWORK
2.1 Information Extraction
There is a large body of work on information extraction from the
web, whether directly, through template extraction [6, 7, 16, 30,
41], or through the more general idea of region extraction and
classification [3, 5, 9–11]. Template extraction techniques have
received a lot of attention recently to improve the performance of
search engines, clustering, and classification of web pages. These
methods learn desired patterns from the unstructured web data and
construct templates for information extraction. Region extraction
methods try to classify portions of a web page according to their
specific purposes, i.e. navigation links, anchors and main content
are studied in part to index only the content present on web pages.
Part of our task could fit into this context: an attempt to classify
regions as either containing an event or not. A detailed survey of
region extractors in web pages, including those that leverage visual
features can be found in [34]. As mentioned earlier, the work of
Foley et al. [9] shares similar goals to this work. However, it uses
simple naive-Bayes to classify the event page and SVM methods to
get the score for each event field, and does not achieve the level of
precision needed for real-world applications.

Additionally, there are a number of works that focus on repeated
structure for extraction, using HTML tables [1, 12, 23], repetitive

command tags or terms in general [40]. These techniques do not
require supervision, but require repetitive structure and make the
assumption that there will always be a multitude of records to
extract. Finally, there are several recent works about extracting
data from web pages that were generated from the same templates
[14, 35]. In contrast to these works, we are aiming at extracting
events at all scales (large events to hyper-local ones), which are
usually not generated from a small number of pre-defined templates.

2.2 Relation Learning
The task of event extraction is essentially learning to extract event
title, date and location which are correlated to each other. There-
fore, relation extraction/learning research [28, 31, 37, 47] is also
related to our work. Petrovski et al. use schema.org annotations
in products to learn regular expressions that help identify vari-
ous product attributes [29]. Lockard et al. [24] propose to gener-
ate training labels by aligning an existing knowledge base with a
web page and leveraging the unique structural characteristics of
semi-structured websites. A classifier is trained based on the labels
to predict new relation instances. Recently, Li et al. [22] discuss
the problem of discovering related events from web pages with
a graph-based framework. Most recently, Wu et al. [44] design a
machine-learning-based knowledge base construction system to
extract relations conveyed jointly via textual, structural, tabular,
and visual expressions.

2.3 Natural Language Processing
Related work within the natural language processing area [33, 42,
50] has focused on extracting information from a single sentence or
a paragraph by formulating it as a sequence labeling task, relying
on distant supervision with conditional random fields. Zheng et al.
[50] propose an attention model to extract attributes from product
pages. Seo et al. [33] develop a machine comprehension framework
for answering a query from given context. However, these methods
cannot be directly applied for event extraction since they do not
work for extracting information from entire web pages, or when
the information is not contained in well-formed sentences.

2.4 Event Detection in other Domains
There is also work on detecting events within microblogs or real-
time social media updates [17, 18, 26, 36, 43, 49]. Yuan et al. [46]
focus on recommending relevant merchandise for seasonal retail
events, based on item retrieval from marketplace inventory. Zhang
et al. [48] propose an event detection method that enables real-
time local event extraction from geo-tagged tweet streams. Becker
describes identification of unknown events and their content [2],
but focuses on trending events on social media sites. Our work, in
contrast, is aimed at finding events in an offline manner in order to
present them in a search or recommendation system to users. There
has been work on another topic in extraction of named events from
news [21, 45]. Again, the definition of these news events is different
from our event definition.

3 OVERVIEW
Our event extraction pipeline, as shown in Figure 1, consists of
six key components: event page classifier, single/multiple classifier,

Session: Long - Database and System CIKM ’19, November 3–7, 2019, Beijing, China

230

Figure 1: An overview of event extraction pipeline.

single event extractor,multiple event extractorwith repeated patterns,
event consolidation and wrapper induction.

The first component, the event page classifier, determineswhether
a given web page contains event information. If so, we have an-
other classifier, single/multiple classifier, to determine whether the
page talks about a single event or multiple events. The two types
of pages are structurally different and thus two separate extrac-
tion models are developed, i.e., single event extractor and multiple
event extractor. The extracted raw events are then fed into our event
consolidation model in order to remove duplication and improve
extraction quality. The last component, wrapper induction, learns
automatic templates to produce near-perfect events.

Event page classifier, single/multiple classifier, single event extrac-
tor and multiple event extractor are all deep neural network models
learned using training data from schema.org annotations, while
event consolidation is a graph-based clustering model.Wrapper in-
duction contains a clustering model and an aggregation framework.
We will present the detail of each component in the next two sec-
tions.

4 EVENT EXTRACTION
4.1 Event Page Classifier
In order to extract events from web pages, a major problem is to
determine whether a web page talks about an event. At the moment,
there is not even a good estimate of what percentage of web pages
are about events. On the other hand, event extraction requires
extremely high precision classifiers, especially for the event page
classifier. Therefore, it is important to develop an accurate event
page classifier to select all event pages from the web corpus.

The event page classifier is built in a supervised learning frame-
work. We use the part of the web that has semantic web annotations
to learn about the rest of the web. The schema.org dataset contains,
from our calculation, 1.5 billion annotated web pages. Around 16
millions of those annotations are event related. Our training set
contains all web pages with schema.org event annotations as posi-
tive examples, with a 10% random sample of the remaining pages
as negative training examples.

There exist several issues within the training data. It makes the
assumption that schema.org annotations are used correctly, which

Figure 2: The architecture of the event page classifier.

is not totally true in practice. We have seen some examples where
the annotations were used in unexpected ways. For example, a
recipe website was marking recipes as schema.org/FoodEvent and
event websites such as sf.funcheap.com that mark their events pages
as schema.org/WebSite but not as schema.org/Event. Our way to
deal with this problem is to identify large websites that do not use
the annotations correctly and to remove them from our training
set by adding them to a blacklist. We also remove pages with more
than 10,000 words as these are unlikely to be event pages, and even
if we could correctly identify them as event page, they would not
be useful in later stages as it would be hard to extract events from
them.

We build the event page classifier model, as shown in Figure
2, using a deep neural network under the TensorFlow framework.
In particular, we adopt a two layer feed forward neural network
(FFNN) [38] to construct our model. An embedding layer is attached
to the input features (we will discuss the features later), while a
rectified linear unit (ReLU) is applied as the output layer to produce
the final classification result:

C = ReLUReLUReLU (FFNNFFNNFFNN (embeddinд(f))) (1)

We extract a set of features from the web page for the event page
classifier, including term frequency, web entity [27], anchors, URL
segments and page title. For the term frequency feature, terms are
stemmed and normalized after removing all stopwords. Moreover,

Session: Long - Database and System CIKM ’19, November 3–7, 2019, Beijing, China

231

Figure 3: The architecture of the single/multiple classifier.

we remove features that occur on less than 100 different domains
to make sure the features are general enough and not specific to
our training set. We also remove features that occur on more than
30% of domains, because they are not specific enough to distinguish
event from non-event pages. Due to the sparsity of the features, an
embedding layer is added to the model.

4.2 Single/Multiple Classifier
Web pages may contain single or multiple events and we observe
that these pages have largely differing HTML structures. Also, their
content is geared towards different aspects of the event. In a single-
event page1, the primary focus is devoted to the event itself and its
description. By contrast, a multiple-event page2 is usually about
details of a venue or it could be a list of disparate events hosted in
an event aggregator domain. Motivated by this, we design separate
extractors for single-event and multiple-event pages.

The single/multiple classifier takes an event page as input and
classifies it into single-event page or multiple-event page. Knowing
a page contains a single event or multiple events is important as
events have different presentations on these two types of pages
and thus different event extractors would be applied based on the
page structure. Event information can appear anywhere on a single-
event page, while events are often presented in a table with repeated
structure on a multiple-event page.

The pages with schema.org event annotations are used as the
training data to build our single/multiple classifier. These event
pages are labeled as single-event pages or multiple-event pages,
depending on the number of event annotations on the page. If there
is more than one event annotation on the page, we label the page
as a multiple-event page, otherwise it is labeled as a single-event
page. However, in some single-event pages, the event is mentioned
multiple times in different regions across the page with multiple
event annotations. We solve this issue by grouping the markup
events based on event title, date and location, and identify unique
events on the page to remove duplicated annotations.

The featureswe extracted from the page to construct single/multiple
classifier are: number of dates, number of locations (as multiple-
event page usually contains multiple dates and locations), URL
segments, number of HTML tables and lists, unigram and bigram
1Example: http://csinewsnow.com/?p=111711
2Example: https://www.eventbrite.com/d/ca--mountain-view/events/

Type Features
sparse unigram, bigram, trigram, x_path,

entity, html_tag
boolean is_bold, is_italic, is_underline,

is_in_table, has_date, has_location
bucketized url_match_rank, horizontal_pos,

vertical_pos, anchor_match_rank,
font_ratio

Table 1: Features used for title extraction.

texts. Note that for those numeric features (e.g., number of date), we
bucketize them into several buckets using the logarithm function to
remove noise. For the text-based features, we use the original text
on the page instead of a stemmed representation, since the plural or
singular form of the word is important. For example, “events”, “con-
certs” and “shows” usually indicate multiple events, while “event”,
“festival” and “show” might talk about one single event.

We build the single/multiple classifier model using FFNN as
shown in Figure 3. The model is similar to the one we employed
for the event page classifier. The difference is that no embedding is
applied for bucketized features:

C = ReLUReLUReLU (FFNNFFNNFFNN (concat{embeddinд(fs), fb })) (2)
here concat is the concatenation operation. fs and fb represent the
sparse features and bucketized features respectively.

4.3 Single Event Extractor
An event is composed of three main parts: title, date and location.
For a single-event page, we first extract the event title, then event
date and event location are jointly associated to the event title.

Title Extraction. We approach the task of extracting the event
title as a supervised learning problem. All single-event pages in the
training set are used for learning the event title extractor. All the
text nodes on the page that contain less than 20 words are consid-
ered as candidates. In a single-event page, the event title usually
appears multiple times on different regions of the page. Therefore,
we calculate the Jaccard similarity between each text node and the
event title, and label those candidates with high similarity values
as positive examples. All other text nodes on the page are marked
as negative examples.

The features we extracted from each candidate for building the
title extractor are listed in Table 1. For example, is_bold means
whether the candidate text node is in bold or not. f ont_ratio is the
normalized font size. url_match_rank is the rank of the candidate
among all candidates, based on the similarity with the URL. A feed
forward neural network, similar to the architecture in Figure 3, is
used to train the title extractor3. During inference, we select the
text node with the highest prediction score as the event title.

Joint Date and Location Extraction. Extracting the event date and
location from a single-event page is a very challenging task, as
both event date and location can be mentioned once or multiple
times on any region of the page depending on the information
3Boolean features are a special type of bucketized features with two buckets, i.e., {0, 1}.

Session: Long - Database and System CIKM ’19, November 3–7, 2019, Beijing, China

232

http://csinewsnow.com/?p=111711
https://www.eventbrite.com/d/ca--mountain-view/events/

Category Features
date is_in_title, is_in_url, group_size,

nearby_texts, closeness_to_title, html_tag
location is_in_title, is_in_url, group_size,

nearby_texts, closeness_to_title, html_tag,
anchor_rank, has_geo_info

pair geo_distance, byte_distance
Table 2: Features used for joint date and location extraction.

distribution. Many non-event dates and locations, considered as
noisy data, usually co-exist with the desired event information,
imposing additional difficulty for the extraction. Moreover, event
date and location are highly correlated, and typically appear close
to each other on the page. Traditional methods (e.g., [9]) that extract
them independently might not be accurate. Therefore, we propose
a joint date and location extraction model, which extracts the event
date and location simultaneously for a given event title.

Pattern-based approaches to tagging of dates and addresses
in text achieve reasonably good results, as evidenced by the ap-
proaches in [4, 25], as well as some prior work on address detection
[8, 32]. Therefore, we use pattern-based baselines to obtain all dates
and addresses on the page as the event date and location candidates
for our extraction. We first cluster the same date together to form a
date group, and represent the date groups asDDD1,DDD2, ...DDDn . Similarly,
location groups are defined as LLL1,LLL2, ...LLLm . In our joint extraction
model, each pair of date group and location group (DDDi ,LLLj) is a can-
didate example. From the schema.org annotation, we can easily
label the date and location pair corresponding to the event date and
location as positive. All other pairs are marked as negative training
examples. A bunch of features are designed to represent the can-
didate pair as listed in Table 2, including date and location related
features as well as features representing the correlation between
date group and location group. For example, is_in_title is a boolean
feature indicating whether the date or location is in the event ti-
tle. closeness_to_title means the closeness of the candidate to the
event title. дeo_distance represents the spatial distance (in terms of
pixels) between the date group and location group rendered on the
page. Note that all distance related features are normalized. A two
layer FFNN is used to train the model. In the inference process, the
date and location pair with the highest prediction score is selected:

(D, LD, LD, L) = argmax(Di ,LjDi ,LjDi ,Lj) P(DDDi ,LLLj) (3)

5 ACHIEVING NEAR-PERFECT
EXTRACTIONS

5.1 Multiple Event Extractor with Repeated
Patterns

As aforementioned, a multiple-event page is usually about details
of a venue or an artist, or it could be a list of events hosted in an
event aggregator domain. Events on a multiple-event page naturally
form a table, a list or more generally a repeated pattern. There is a
number of works on repeated structure extraction [1, 40], which

Figure 4: Multiple event extraction with repeated pattern.

yields impressive results. Therefore, we develop our multiple event
extractor on top of these repeated patterns.

We apply a similar strategy as shown above for single-event
pages to extract titles of multiple events. We start with a corpus of
multiple-event pages and use the same labeling process, i.e., mark
all text nodes with event title annotation on the page as positive
example, with others negative. In addition to the features used for
the single event extractor, we add a feature, is_in_repeated_table ,
indicating whether the text node candidate is inside a repeated
pattern. However, different from the single event extractor, during
the inference process, directly picking the text nodewith the highest
score is not suitable since there are multiple events. Instead, we
select all text nodes whose prediction scores are larger than a pre-
defined threshold, as the titles of multiple events.

Repeated patterns are then used to align the event titles, as well
as to associate date and location for each of the events. In particular,
we first search over all repeated patterns on the page, and find the
one containing all the events by matching the extracted/predicted
event titles. Then we identify the date and location columns in the
matched repeated pattern to extract event date and location. Con-
sider the example in Figure 4: Suppose that the model extracts titles
for events 1, 3, 4, 6 (green check marks) but that it was unable to
predict titles for the other events (title scores lower than threshold).
In this case, we can search for the predicted titles in the repeated
pattern – we can now establish that 4 out of 6 cells in column 1
correspond to event titles. From this we can infer that column 1 is
really an event title column. Similarly, we can find the predicted
dates and locations in the repeated pattern to establish that columns
2 and 3 correspond to dates and locations respectively. We can now
simply extract information for all events directly from the repeated
pattern. This approach increases the accuracy of multiple event
extractor to 100% precision with 100% recall. Note that we can use
this approach only if we can find a repeated pattern on the web
page. If we do not find any repeated pattern, then we do not emit
any extractions for the web page.

5.2 Event Consolidation
Event information might have different representations on different
web pages, even for the same event. For example, Figure 5 shows
a set of extracted events from the web corpus, where the first
column is event title, the second column is event date, the third
column is event location, the fourth column indicates whether it

Session: Long - Database and System CIKM ’19, November 3–7, 2019, Beijing, China

233

Figure 5: An example of one event extracted from different
web pages.

is extracted from a single or multiple event page or directly from
the schema event annotation (“MICRODATA” is one of the markup
sources), and the last column is the URL of the web page. As we
can see in Figure 5, all rows actually talk about the same event but
have slight variations in event details. In this case, it is clear that
“Peninsula Symphony” would be a better event title than “Conrad
Tao”. On the other hand, we don’t present all these duplicated
events to users, but just one best extraction. Therefore, we design
an event consolidation framework for removing duplication as well
as improving the event extraction.

A straightforward solution is to perform a fuzzy match between
every two events. However, this would require a quadratic number
of matches which is non-trivial for hundreds millions of events.
In this work, we propose a graph-based clustering algorithm for
event consolidation. In particular, as shown in Figure 6, a graph
G = {V ,E} is constructed over all extracted events V = {Events},
and the edges of the graph are assigned weightsW = {Wi j } rep-
resenting the similarity between two events. Event title, date and
location are fields extracted for any event and are used for comput-
ing similarity. Two nodes (events) in the graph are connected if and
only if both their event date and location are same, resulting in a
very sparse graph. Note that the event location can be venue name
like “Google Headquarter”, or street level address like “1600 Am-
phitheatre Parkway” or city name like “Mountain View, California”.
We use the Google Maps API for event location to disambiguate
them. The Jaccard similarity of the event titles is used as the edge
weight between two nodes. Then we apply the graph-based cluster-
ing algorithm [15] on the sparse graph G to obtain event clusters
(more details are provided in the supplementary material due to
space limitation). An event cluster with more than one event is
marked as a high confidence event, while an event cluster with size
one is considered as a low confidence event. This way, identical
events are clustered together and we select the event title that ap-
pears most times in the cluster as the event title, e.g., it would be
“Peninsula Symphony” in the above example.

5.3 Wrapper Induction
We make the observation that there are several event pages that
have the same page structure, e.g., typically most event pages from
the same domain have similar structure (generated by a computer
program). We also observe that the event fields (e.g., event title)
should be present in the same XPath on all pages. In this section,
we present the details of a novel approach that allows us to exploit
the combination of page structure along with the machine-learned
extractions to achieve perfect event extractions for a large number

Figure 6: Event consolidation via graph based clustering.

Figure 7: The event location appears in multiple nodes.

of web pages. Note that the machine learned extractions may not be
correct on all pages. But as long as at least a majority of the pages
have the right extractions, we can aggregate the ML extractions
based on their XPaths, and for each field, compute the XPath with
the largest count. This will then enable us to turn a weak model
(that is at least 50% accurate) into one which is 100% precise. Note
that the recall also improves to 100% for pages in this domain. This
approach has been called by various names in the literature includ-
ing “Wrapper Induction” and was first proposed by Kushmerick
[20].

Wrapper induction as described above requires two main steps,
clustering and aggregation. The purpose of clustering is to detect
event pages that have similar HTML structure. It is a challenging
task to identify pages with the same HTML structure since no two
pages are typically identical. Aggregation is aiming at aggregating
relevant XPaths across pages within a cluster to generate an ex-
traction template. In this work, the web pages are clustered based
on their DOM4 structure as well as by their URLs using a deci-
sion tree based model [13, 19]. The web pages in the same cluster
share similar DOM structure. The aggregation component is mostly
straightforward. For each event field, i.e., title, date and location,
we count the number of occurrences of each of the XPaths corre-
sponding to all pages in the domain. Since we expect the ML model
to be correct in the majority, the XPath which is most frequent
should be the right rule for extraction, for each of the fields. In
many event pages, the same event information can be repeated in
multiple nodes. For instance, on the page in Figure 7, the event
location is repeated using venue name, a Google map link as well
4https://en.wikipedia.org/wiki/Document_Object_Model

Session: Long - Database and System CIKM ’19, November 3–7, 2019, Beijing, China

234

https://en.wikipedia.org/wiki/Document_Object_Model

Figure 8: Illustration of learned wrapper. The red box corre-
sponds to the DOMnode for event title. Similarly, the purple
and the green boxes correspond to the location and date re-
spectively.

as a street address. In this case, we aggregate all occurrences of
the correct locations and select the best XPath based on empirical
evaluation (e.g., top most mention or closest mention to event title).
In our implementation, we require the best XPath to appear in at
least 50% of the extractions. Figure 8 illustrates a wrapper learned
for a specific page cluster, with all three field nodes.

The previously discussed wrapper induction algorithm primarily
works for single-event pages. For multiple-event pages, it is difficult
to directly generalize the position for each individual event. Since
they generally occur in different positions. Instead, we generalize
the start position of the repeated pattern from which the events are
extracted. In addition to the start position, we also make note of
the specific column indices from which we extract the event fields.
For example, in Figure 4, the title is from column 1, the date is from
column 2 and the location is from column 3.

6 EXPERIMENTS
In this section we describe the experimental setup, data sources and
insights we have obtained. We build and test our event extraction
models using the schema.org dataset, which contains roughly 16
million event pages. A random split of 90% data is used for training,
and 10% holdout set is used for model validation. We use 2 hidden
layers for all deep neural network models, with 1024 and 32 hid-
den units respectively. The embedding dimension for each sparse
feature is set to log(V), where V is the feature vocabulary size. L1
and L2 regularization are used in model training, with both 0.001
weights.

As aforementioned, we train our models on the schema.org
dataset, which contains 16 million event related pages with 2.5
million complete events. We evaluate the extraction models on
two widely used benchmarks: the Common Crawl5 corpus and the
ClueWeb126 dataset. Both datasets are designed to support research
on information retrieval and related tasks. Common Crawl contains
more than 250 TiB of content from more than 3 billion web pages
while ClueWeb12 consists of 0.7 billion web pages.

For the schema.org holdout set, it is easy to obtain the evaluation
metrics since there are ground-truth labels/annotations. For the
Common Crawl and ClueWeb12 datasets, we randomly sample 3000
5http://commoncrawl.org/connect/blog/
6https://lemurproject.org/clueweb12/

Paдe Classi f ier Sinдle Multiple

Dataset Precision Recall Accuracy
Schema.org 97.86 88.52 98.69
golden set 99.10 98.50 97.30

Common Crawl 99.23 90.48 98.36
ClueWeb12 99.06 89.75 98.19

Table 3: Evaluation results of event page classifier and sin-
gle/multiple classifier on different test data.

Figure 9: Precision-Recall curve of the event page classifier.

results of each task and obtain judgments from human raters. We
only ask binary questions for all tasks, including “Is this an event
page?”, “Is this a single event page or multiple event page?”, “Is
the extracted event title correct?”, etc. We pay raters $0.01 for each
judgment. Each item is sent to three raters for judgments, and we
mark it correct if at least two raters mark it correct.

6.1 Evaluation of Page Classification
The event page classifier and the single/multiple classifier are two
key components in our event extraction pipeline. To achieve good
model quality, we also manually create another golden test set
containing 1000 event pages and 1000 non-event pages. For the
event pages, there are 700 single event pages and 300 multiple
event pages. There is no event annotation on any page of this
golden set. The purpose of this set is for fast iteration on model
tuning, as the holdout set might not be representative of pages
without schema.org annotations. We want to train robust models
that not only perform well on schema.org pages, but also behave
well on non-schema.org pages.

Standard precision and recall metrics are used to evaluate the
event page classifier. For single/multiple classifier, we use accuracy
to measure the performance. The results are reported in Table 3. It
can be seen that both classifiers achieve good performance, above
97% precision/accuracy, consistently across all datasets. The recall
value of the page classifier is not very high, yet still reasonable,
around 90%. We can always increase the recall by lowering the
score threshold of the classifier, with some sacrifice in terms of
precision. However, the event consolidation and wrappers handle
most of the mistakes, which will be described in detail below. We
also report the precision-recall curve on the holdout set in Figure 9.

Session: Long - Database and System CIKM ’19, November 3–7, 2019, Beijing, China

235

http://commoncrawl.org/connect/blog/
https://lemurproject.org/clueweb12/

Figure 10: Feature importance chart of event page classifier.

Title Date Location Event
Schema.org 92.34 97.04 95.24 86.31

Common Crawl 88.27 96.33 91.47 83.84
ClueWeb12 87.83 95.96 92.61 84.07

ClueWeb12 [9] 36.00 32.00 66.00 76.00
Table 4: Precision results of event fields extraction on differ-
ent datasets.

As shown in the figure, the model is able to achieve 90% precision
with 95% recall.

In order to understand which features are important for con-
structing these classifiers, we conduct a set of feature importance
experiments on the holdout set using leave-one-out cross valida-
tion. Specifically, we build and evaluate the model performance by
removing one feature from the feature set. The precision and recall
results of the event page classifier are shown in Figure 10. It is clear
that web entity [27] is the most important feature for the event
page classifier. Without it, both precision and recall decrease 3%
to 4% in terms of absolute values. We conduct similar experiments
on the feature importance for single/multiple classifier. The results
indicate that number of dates/locations and number of HTML tables
are the most useful features, which is intuitive as events on multi-
ple event page usually form repeated patterns/tables. The feature
performance chart is presented in the supplementary material.

There are several points that are worth mentioning here. First of
all, by applying the event page classifier on the Common Crawl and
ClueWeb12 datasets, we found that the event page ratios for both
datasets are less than 1%, which is consistent with the event page
ratio, around 1.1%, in the schema.org dataset. Secondly, the number
of single event pages is significantly larger than the number of
multiple event pages. The ratios are around 9.8 and 9.2 for Common
Crawl and ClueWeb12 datasets respectively.

6.2 Evaluation of Event Extraction
We evaluate our event title, date and location extraction on all
datasets. The event is marked as correct if all its extracted fields
are correct. In order to get a full comparison, we also import the
reported results from a recent work by Foley et al. [9] as a base-
line. The precision results are shown in Table 4. We can observe

Figure 11: Feature importance chart of event title extractor.

that the proposed extraction models behave consistently over the
schema.org holdout set, the Common Crawl and the ClueWeb12
datasets, where event date has about 96% precision, with title and lo-
cation around 90% precision. Recall that we sent out each extraction
to three raters for evaluation, and only count the extraction correct
if at least two raters said so. We also observe from the raters’ results
that there are inconsistent judgments for certain pages. There are
cases, for instance in event title evaluation, where only one rater
marked the extracted title correct while the other two raters noted
“title is close to the actual event title”. One example is “Lady Gaga
concert in SAP center” versus “concert in SAP center”. Raters tend
to mark the latter one as “close title”. If we relax the criteria to:
extraction is correct if at least one rater marks it as correct, the pre-
cision of event title would increase from 88% to 94%. It can be seen
from Table 4 that our extractors perform much better than the ones
in [9] on the ClueWeb12 dataset. This can be attributed to the deep
neural network models developed in our method, compared to the
linear extractors used in [9]. Moreover, their approach didn’t pay
attention to the page type. Different from their work, we employ
separate extraction strategies for single and multiple event pages.

We conduct feature importance experiments on different event
field extractors, similar to the one described above. The precision
result of the event title extractor is reported in Figure 11. From the
figurewe can observe thatx_path,nдrams andanchor_match_rank
are the most important features for event title extraction. For in-
stance, without x_path feature, the precision value drops about 2%.
Similar patterns can be observed fornдrams andanchor_match_rank
features. We also found that the most useful features for event date
and location extraction are дroup_size (how many mentions of
this date or location are there on the page), closeness_to_title and
nearby_texts . These findings are consistent with our expectation.
For example, if one date is mentioned in a number of places on
the page, it is likely that this date is the event date. Similarly, if a
particular date is very close to the event title, it also tends to be the
event date.

We conduct error analysis over the extraction mistakes on event
date and location (title mistakes are mostly due to “title close” or
not exact event title as discussed above). We identify several main
categories of mistakes. The largest group of mistakes is that event
date/location is not mentioned or is in an image without HTML
text. In other words, the event date/location is not even a candidate

Session: Long - Database and System CIKM ’19, November 3–7, 2019, Beijing, China

236

Figure 12: Error analysis of date and location extractions.

Figure 13: Event extraction comparison of raw extraction,
markup extraction, consolidation and wrapper on Common
Crawl dataset.

for our model to pick. The other type of error is that we extract
date/location for a sub-event or other-event on the page. For ex-
ample, our model extracts a sub-event location for a huge festival
or a date of a presentation within a conference but not the main
date of the conference. There are few other extraction errors made
by the models. The complete analysis result is shown in Figure 12.
However, most of these errors are handled by event consolidation
and wrapper induction which will be described in the next section.

6.3 Evaluation of Event Consolidation and
Wrapper Induction

Event consolidation clusters the same event together and selects
the best event title, date and location from each cluster. We sample
events from the event clusters with more than one event (high
confidence) for evaluation. For wrapper induction, we randomly
sample 3000 learned templates, and select one event from each
template. We compare our raw extraction (pre-consolidation) with
post-consolidation extraction and wrapper extraction. Note that no
events that are sent out for evaluation contain any markup (event
annotations). In addition, we also compare the extraction precision
with markup precision from the schema.org event annotation. The

Figure 14: Event category distribution.

comparison results on Common Crawl dataset are shown in Figure
13. It can be seen that wrapper extraction achieves the best per-
formance among all extractions with near perfect precision. The
consolidation improves the extraction quality by 10%, from 84% to
94%, compared to the raw extraction, while wrappers further boost
the performance to 99%. Moreover, we also found that wrappers is
able to extract 28.6% additional events, which improves the recall of
the extraction significantly. However, there are two limitations of
the wrapper induction approach. First, the learned wrapper would
fail to work if the page structure for the domain changes, and thus
templates need to be updated periodically. Second, templates are
learned for a set of domains but not all, as many event pages do not
have fixed HTML structure and no rule could be extracted. We can
also observe from the figure that the consolidated events achieve
a similar precision value to markup events. It indicates that post-
consolidation events reach a reasonable quality as those schema.org
events that have annotations. We observe similar patterns on the
ClueWeb12 dataset, the result is presented in the supplementary
material due to space limitation.

Extraction Failures. There are two types of pages that our extrac-
tion pipeline would fail for. In the first group, the event information
is not presented in the HTML text. For example, the event page is
just an image containing event details. Our event extractors will
not work on this type of pages, as they rely on the HTML texts
on the page. The second group contains all multiple event pages
with no repeated patterns/tables. Both our multiple event extractor
and wrapper will remain silent since no event table is found. Al-
though these failures would result in some recall losses, the overall
precision of the event extraction remains the same.

6.4 Event Database Summarization
Our extraction system extracts about 5.4 million unique events
through merging and deduplicating the events extracted from Com-
mon Crawl and ClueWeb12 datasets, with over 95% precision as
shown above. In this database, 4.2 million events are obtained from
the high confidence consolidated events while 1.2 million events
are extracted with the wrappers. We build another multi-class event
classifier to classify an event to one of the pre-selected categories.

Session: Long - Database and System CIKM ’19, November 3–7, 2019, Beijing, China

237

The classifier is built using the schema.org event category annota-
tion. The same feature sets and deep model structure from event
page classifier are used to construct this classifier. The pre-selected
categories are music event, education event, social event, exhibition
event, sports event, business event, food event, theater event, com-
edy event and dance event. We then apply this category classifier
over all events. The event category distribution is shown in Figure
14. As we can see from the figure, music event is the top-most
category containing roughly 1.4 million events. Other categories
such as sports event, education event and social event also contain
a large number of events.

7 CONCLUSION
In this work, we develop a fully automated methodology to ex-
tract event information from arbitrary web pages. In order to build
an end-to-end event extraction pipeline, we design several deep
models leveraging schema.org event annotations as training exam-
ples. We further improve extraction quality by introducing three
novel algorithms, repeated patterns, event consolidation and wrap-
per induction, to post-process the raw event extractions. Our large
scale experiments demonstrate the effectiveness of the proposed
method. In the future, we plan to develop algorithms to extract
event meta-data such as event price, ticket link etc. We also plan
to explore ranking models with extracted event features for better
event recommendation.

REFERENCES
[1] M. D. Adelfio and H. Samet. Schema extraction for tabular data on the web.

PVLDB, 6(6):421–432, 2013.
[2] H. Becker. Identification and characteriaztion of events in social media. PhD thesis,

Czech Technical University, 2011.
[3] L. Bing, W. Lam, and Y. Gu. Towards a unified solution: data record region

detection and segmentation. In CIKM, pages 1265–1274, 2011.
[4] R. Campos, G. Dias, A. M. Jorge, and A. Jatowt. Survey of temporal information

retrieval and related applications. ACM Comput. Surv., 47(2):15:1–15:41, 2014.
[5] S. Chakrabarti. Integrating the document object model with hyperlinks for

enhanced topic distillation and information extraction. InWWW, pages 211–220,
2001.

[6] W. W. Cohen, M. Hurst, and L. S. Jensen. A flexible learning system for wrapping
tables and lists in HTML documents. InWWW, pages 232–241, 2002.

[7] N. N. Dalvi, R. Kumar, and M. A. Soliman. Automatic wrappers for large scale
web extraction. PVLDB, 4(4):219–230, 2011.

[8] J. Efremova, I. Endres, I. Vidas, and O. Melnik. A geo-tagging framework for
address extraction from web pages. In ICDM, pages 288–295, 2018.

[9] J. Foley, M. Bendersky, and V. Josifovski. Learning to extract local events from
the web. In SIGIR, pages 423–432, 2015.

[10] A. Galina. Sociopath: automatic local events extractor, 2017.
[11] S. Gottschalk and E. Demidova. Eventkg: A multilingual event-centric temporal

knowledge graph. In ESWC, pages 272–287, 2018.
[12] R. Gupta and S. Sarawagi. Answering table augmentation queries from unstruc-

tured lists on the web. PVLDB, 2(1):289–300, 2009.
[13] I. Hernández, C. R. Rivero, D. Ruiz, and R. Corchuelo. A statistical approach to

url-based web page clustering. InWWW, pages 525–526, 2012.
[14] J. L. Hong, E. Siew, and S. Egerton. Information extraction for search engines

using fast heuristic techniques. Data Knowl. Eng., 69(2):169–196, 2010.
[15] A. K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition Letters,

31(8):651–666, 2010.
[16] C. Kim and K. Shim. TEXT: automatic template extraction from heterogeneous

web pages. IEEE Trans. Knowl. Data Eng., 23(4):612–626, 2011.
[17] D. Kim, J. Lee, D. Choi, J. Choi, and J. Kang. Learning user preferences and

understanding calendar contexts for event scheduling. In CIKM, pages 337–346,
2018.

[18] A. Konovalov, B. Strauss, A. Ritter, and B. O’Connor. Learning to extract events
from knowledge base revisions. InWWW, pages 1007–1014, 2017.

[19] H. S. Koppula, K. P. Leela, A. Agarwal, K. P. Chitrapura, S. Garg, and A. Sasturkar.
Learning URL patterns for webpage de-duplication. InWSDM, pages 381–390,
2010.

[20] N. Kushmerick. Wrapper Induction for Information Extraction. PhD thesis, Seattle,
WA, USA, 1997.

[21] E. Kuzey, J. Vreeken, and G. Weikum. A fresh look on knowledge bases: Distilling
named events from news. In CIKM, pages 1689–1698, 2014.

[22] C. Li, M. Bendersky, V. Garg, and S. Ravi. Related event discovery. In WSDM,
pages 355–364, 2017.

[23] G. Limaye, S. Sarawagi, and S. Chakrabarti. Annotating and searching web tables
using entities, types and relationships. PVLDB, 3(1):1338–1347, 2010.

[24] C. Lockard, X. L. Dong, P. Shiralkar, and A. Einolghozati. CERES: distantly
supervised relation extraction from the semi-structured web. PVLDB, 11(10):1084–
1096, 2018.

[25] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D. McClosky.
The stanford corenlp natural language processing toolkit. In ACL, pages 55–60,
2014.

[26] A. Mishra and K. Berberich. Event digest: A holistic view on past events. In
SIGIR, pages 493–502, 2016.

[27] P. Pasupat and P. Liang. Zero-shot entity extraction from web pages. In ACL,
pages 391–401, 2014.

[28] N. Peng, H. Poon, C. Quirk, K. Toutanova, and W. Yih. Cross-sentence n-ary
relation extraction with graph lstms. TACL, 5:101–115, 2017.

[29] P. Petrovski, V. Bryl, and C. Bizer. Learning regular expressions for the extraction
of product attributes from e-commerce microdata. In Proceedings of the Second
International Workshop on Linked Data for Information Extraction (LD4IE 2014),
Riva del Garda, Italy, October 20, 2014., pages 43–54, 2014.

[30] J. Proskurnia, M. Cartright, L. G. Pueyo, I. Krka, J. B. Wendt, T. Kaufmann, and
B. Miklos. Template induction over unstructured email corpora. InWWW, pages
1521–1530, 2017.

[31] S. Riedel, L. Yao, and A. McCallum. Modeling relations and their mentions
without labeled text. In PKDD, pages 148–163, 2010.

[32] S. Schmidt, S. Manschitz, C. Rensing, and R. Steinmetz. Extraction of address
data from unstructured text using free knowledge resources. In 13th International
Conference on Knowledge Management and Knowledge Technologies, I-KNOW ’13,
pages 7:1–7:8, 2013.

[33] M. J. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi. Bidirectional attention
flow for machine comprehension. CoRR, abs/1611.01603, 2016.

[34] H. A. Sleiman and R. Corchuelo. A survey on region extractors from web docu-
ments. IEEE Trans. Knowl. Data Eng., 25(9):1960–1981, 2013.

[35] H. A. Sleiman and R. Corchuelo. TEX: an efficient and effective unsupervised
web information extractor. Knowl.-Based Syst., 39:109–123, 2013.

[36] A. Spitz and M. Gertz. Terms over LOAD: leveraging named entities for cross-
document extraction and summarization of events. In SIGIR, pages 503–512,
2016.

[37] F. M. Suchanek, G. Ifrim, and G. Weikum. Combining linguistic and statistical
analysis to extract relations from web documents. In SIGKDD, pages 712–717,
2006.

[38] D. Svozil, V. Kvasnicka, and J. Pospichal. Introduction to multi-layer feed-forward
neural networks. Chemometrics and Intelligent Laboratory Systems, 39:43–62,
1997.

[39] N. Tempelmeier, E. Demidova, and S. Dietze. Inferring missing categorical infor-
mation in noisy and sparse web markup. InWWW, pages 1297–1306, 2018.

[40] W. Thamviset and S. Wongthanavasu. Information extraction for deep web using
repetitive subject pattern. WWW, 17(5):1109–1139, 2014.

[41] K. Vieira, A. S. da Silva, N. Pinto, E. S. de Moura, J. M. B. Cavalcanti, and J. Freire.
A fast and robust method for web page template detection and removal. In CIKM,
pages 258–267, 2006.

[42] W. Wang, Y. Ning, H. Rangwala, and N. Ramakrishnan. A multiple instance
learning framework for identifying key sentences and detecting events. In CIKM,
pages 509–518, 2016.

[43] F. Wu, P. Anchuri, and Z. Li. Structural event detection from log messages. In
SIGKDD, pages 1175–1184, 2017.

[44] S. Wu, L. Hsiao, X. Cheng, B. Hancock, T. Rekatsinas, P. Levis, and C. Ré. Fonduer:
Knowledge base construction from richly formatted data. In SIGMOD, 2018.

[45] Q. Yuan, X. Ren, W. He, C. Zhang, X. Geng, L. Huang, H. Ji, C. Lin, and J. Han.
Open-schema event profiling for massive news corpora. In CIKM, pages 587–596,
2018.

[46] T. T. Yuan and Z. Zhang. Merchandise recommendation for retail events with
word embedding weighted tf-idf and dynamic query expansion. In SIGIR, pages
1347–1348, 2018.

[47] D. Zeng, K. Liu, S. Lai, G. Zhou, and J. Zhao. Relation classification via convolu-
tional deep neural network. In COLING, pages 2335–2344, 2014.

[48] C. Zhang, D. Lei, Q. Yuan, H. Zhuang, L. M. Kaplan, S. Wang, and J. Han.
Geoburst+: Effective and real-time local event detection in geo-tagged tweet
streams. ACM TIST, 9(3):34:1–34:24, 2018.

[49] C. Zhang, L. Liu, D. Lei, Q. Yuan, H. Zhuang, T. Hanratty, and J. Han. Triovecevent:
Embedding-based online local event detection in geo-tagged tweet streams. In
SIGKDD, pages 595–604, 2017.

[50] G. Zheng, S. Mukherjee, X. L. Dong, and F. Li. Opentag: Open attribute value
extraction from product profiles. In SIGKDD, pages 1049–1058, 2018.

Session: Long - Database and System CIKM ’19, November 3–7, 2019, Beijing, China

238

	Abstract
	1 Introduction
	2 Related Work
	2.1 Information Extraction
	2.2 Relation Learning
	2.3 Natural Language Processing
	2.4 Event Detection in other Domains

	3 Overview
	4 Event Extraction
	4.1 Event Page Classifier
	4.2 Single/Multiple Classifier
	4.3 Single Event Extractor

	5 Achieving near-perfect extractions
	5.1 Multiple Event Extractor with Repeated Patterns
	5.2 Event Consolidation
	5.3 Wrapper Induction

	6 Experiments
	6.1 Evaluation of Page Classification
	6.2 Evaluation of Event Extraction
	6.3 Evaluation of Event Consolidation and Wrapper Induction
	6.4 Event Database Summarization

	7 Conclusion
	References

