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ABSTRACT 

We worked with over 100 participants in industry on developing 
machine learning (ML) pipelines. Working alongside ML 
platform owners, software engineers, DevOps engineers, and data 
scientists across industries, we migrated existing ML projects into 
ones with ML pipelines software systems, Kubeflow Pipelines 
(KFP) and TensorFlow Extended (TFX). In this workshop paper, 
we share common problems we observed when migrating existing 
ML code to an ML pipeline system. 
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• Software and its engineering~Software creation and 
management • Computing methodologies~Machine learning 

KEYWORDS 
Machine learning, workflow orchestration 

ACM Reference format: 

Katie O’Leary, Makoto Uchida. 2020. Common Problems with Creating 
Machine Learning Pipelines from Existing Code. In Workshop on MLOps 
Systems, Third Conference on Machine Learning and Systems (MLSys).  

1 Introduction 
Machine learning pipelines are becoming essential for enterprise-
grade ML systems because they accomplish: 1) automated 
orchestration of workflow steps for model training and predictions, 
2) reproducibility and tracking of executions and produced outputs 
of an ML workflow, and, 3) reusability of common workflow steps 
across multiple ML application systems. Enterprises are adopting 
pipelines products such as Apache Airflow1, TensorFlow Extended 
(TFX)2, and Kubeflow Pipelines (KFP)3, to productionize their ML 

                                                
1 https://airflow.apache.org/   

2 https://www.tensorflow.org/tfx 

models. However, we are still in the early days of production ML 
and the challenges of implementing ML pipeline systems can be as 
high as the rewards, as evidenced by Spotify’s recent blog post [1]. 
We contribute insights from observing ML teams migrate ML 
coding projects to pipelines systems, specifically TFX and KFP 
(both open-source projects), and some implications for design and 
research.  

2 Method 

We engaged over 100 participants across several industries 
transforming their business through machine learning. Our team of 
software engineers and UX researchers met with enterprise ML 
teams in a coding workshop setting, with the goal to implement ML 
pipelines for their own business applications. We involved their 
cross-functional ML teams of CEOs, DevOps, data scientists, VPs, 
and engineers. To preserve confidentiality, this paper synthesizes 
learnings without focusing on any single industry or team. 

3 Common problems 

3.1 The ML code ‘dead end’ 
Data scientists often develop ML models in an iterative manner, 
typically in a local environment (such as notebook) with a snapshot 
of an offline dataset. The goal is to define and achieve an optimal 
model that satisfies business requirements. Due to the highly 
iterative nature of model development, the code is typically not 
authored in a robust software engineering program, nor does it have 
to be at this point [2]. However, this model-centric workflow of 
data scientists becomes problematic for software and DevOps 
engineers who operate the model in production, but must uphold 
the quality of the software being deployed. To deploy ML models 
into production, it must be integrated with the data infrastructure 
that would produce live training data, as well as with the serving 

3 https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/ 



 

 

infrastructure for the end-user application, along with monitoring, 
validation, data streams, etc., as described in [3]. In particular, 
online serving (scoring) systems with ML models often pose their 
own requirements that may not be obvious at modeling time, such 
as latency and model freshness constraints. As a result, engineers 
often need to re-implement the model from scratch into a 
deployable software. During the re-implementation, many of the 
implicit assumptions and nuances made by data scientists for 
modeling can be lost, resulting in unexpected inconsistencies and 
issues in production. 

Such ‘dead end’ happens because data scientists compose models, 
or at best a piece of code to produce models, but not pipelines. 
Shifting to a pipeline-centric workflow is challenging for data 
scientists, because it requires them to formalize the programs 
before and after model training in ways that can be properly unit 
tested and deployed. Even if they do, model development with a 
formal pipeline program is slower than with an iterative 
environment such as notebook, due to the overhead of added 
software abstractions. We found that for enterprise ML teams, the 
conceptual leap from an ML model—which in fact is a collection 
of weights and variables rather than a piece of code—to a pipeline 
system was difficult, and posed a major hurdle to adoption. 

3.2 Monolithic program 
Data scientists tend to develop models with a monolithic program, 
i.e., it may not be factored into functions and constructs of logical 
units as is a best practice in software engineering. A major value 
proposition of ML orchestration systems is to provide a framework 
to define individual workflow steps as components so that the data 
produced by each step can be formalized, and steps can be reused 
across different pipelines to reduce inefficiency. The concept of 
components is therefore essential to successfully adopting ML 
pipelines systems, and yet components are not necessarily intuitive 
to design. To design components, teams must decide on how to 
break down monolithic program code into canonical workflow 
steps, and then define clear interfaces for data passing between 
them. These challenges can be a barrier to migrating existing code 
to pipeline systems, as evidenced by teams who built a single, 
monolithic component “train,” as their first pipeline, which in fact 
contains much more than model fitting code such as data loading, 
data transformation, and evaluation. Enterprise teams expressed 
difficulty in understanding how to design logical, canonical, and 
reusable components for pipelines.   

3.3 Leveraging premade components 
Finally, once ML teams (1) understand producing pipelines as the 
end deliverable of model development (versus a model); and (2) 
break the code into logical workflow steps, i.e., components, they 
want to (3) leverage and reuse premade ‘authoritative’ components 
that implement best practices of production ML [4], as opposed to 
reinventing the wheel from scratch. We observed that Kubeflow 

Pipelines, a highly flexible ML pipelines system, accommodated 
diverse ML topologies, yet imposed high user burden to design 
technically sophisticated components for common ML steps. 
Teams expressed interest in ready-made components, including 
templates, that could help them to adopt and customize ML-specific 
workflow steps for tasks such as automated model analysis and 
validation. TensorFlow Extended provides such components for 
best practices [5]. However, it also requires that other custom 
components in the pipeline be implemented in particular ways to 
match with out-of-box components. Given (1) and (2) are already 
non-trivial, refactoring the code to implement custom components 
to interoperate with out-of-box components implemented 
elsewhere, poses a further challenge. 

CONCLUSION 
Many organizations have well established practices for developing 
ML models, but we have observed a substantial—and as yet 
unsupported—conceptual leap in migrating from monolithic ML 
programs to componentized ML pipelines. This conceptual leap 
makes it difficult to use and adopt ML pipelines systems and poses 
barriers to productionizing machine learning at scale. To smooth 
out the enterprise journey to production ML systems, we have 
identified the following opportunities: 1) The environment for 
prototyping ML models should be designed to prevent the need to 
re-implement from scratch for production, 2) ML pipelines should 
provide a framework of pre-defined canonical unit of operations as 
components such that ML code can follow ML engineering best 
practices [6], as opposed to free-form flexibility, 3) Interfaces 
between components—both code and data—should be made 
explicit and simple enough so that implementing such interface is 
easy to use for ML code authors.  
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