Google

MLIR in TensorFlow Ecosystem

C4ML II at CGO 2020

Agenda

- Update on year past
 - MLIR announced at C4ML last year
- Brief introduction to MLIR
- MLIR in TensorFlow ecosystem
 - Uses current and future in TF
 - o An aside on simple ML inference engine
- MLIR community
 - Excluding the other talks today ...
 - o ... and Albert Cohen's talk yesterday or Chris Lattner and Tatiana Shpeisman's talk at CGO
- Getting involved

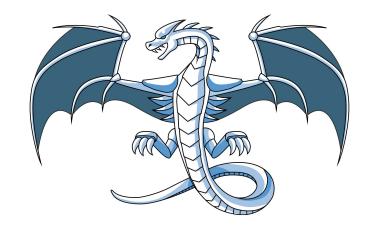
The past year

Year since C4ML in review

- ~ MLIR announced @ C4ML 2019, Feb 17
- ~ MLIR open sourced
- Core @ Mar 29th & TF/MLIR @ Jun 27
- ~ Partner announcement & proposal to contribute to LLVM @ Sep 9
- ~ MLIR core moved to LLVM project Dec 23rd
 - "Landing as a great Christmas present for LLVM developers interested in heterogeneous hardware compilation ..."
- ~ TF / TFLite converter replaced @ Feb 19 2020

What is MLIR?

Multi-Level Intermediate Representation



New compiler infrastructure

Originally built by TensorFlow team

Part of LLVM project

How is MLIR different?

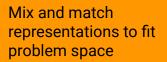
State of Art Compiler Technology

MLIR is NOT just a common graph serialization format nor is there anything like it

New shared industry abstractions spanning languages ("OMP" dialect?)

Modular & Extensible

From graph representation through optimization to code generation



Not opinionated

Choose the level of representation that is right for your device

We want to enable whole new class of compiler research

A toolkit for representing and transforming "code"

Represent and transform IR ≥5↓

Represent Multiple Levels of

- tree-based IRs (ASTs),
- graph-based IRs (TF Graph, HLO),
- machine instructions (LLVM IR)

IR at the same time

While enabling

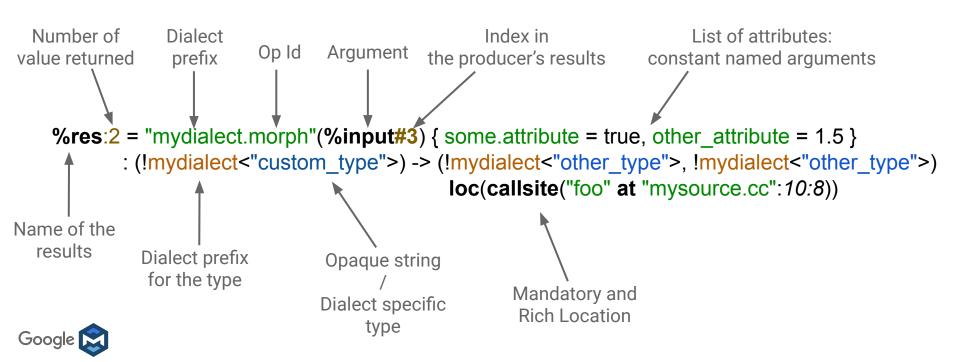
Common compiler infrastructure

- location tracking
- richer type system
- common set of conversion passes

And much more

Operations, Not Instructions

- No predefined set of instructions
- Operations are like "opaque functions" to MLIR



(Operations→Regions→Blocks)

```
%results:2 = "d.operation"(%arg0, %arg1) ({
  // Regions belong to Ops.
                                                           Region
 ^block(%argument: !d.type):
                                                          Block:
   // Ops have function types
   %value = "nested.operation"() ({
    // Nested region
                                                       Region
    "d.op"() : () -> ()
   }) : () -> (!d.other_type)
    "consume.value"(%value) : (!d.other_type) -> ()
  ^other block:
                                                          Block:
    "d.terminator"() [^block(%argument : !d.type)] : () -> () :
// Ops have a list of attributes
{attribute="value" : !d.type} : () -> (!d.type, !d.other_type)
```


Dialects

A MLIR dialect is a logical grouping including:

- A prefix ("namespace" reservation)
- A list of custom types, each defined by a C++ class.

- Verifier for operation invariants
- Semantics (has-no-side-effects, constant-folding, CSE-allowed,)
- Possibly custom parser and assembly printer
- A list of passes (for analysis, transformations, and dialect conversions)

Interfaces

- Decouple transformations from dialect and operation definitions
 - LoopLike, Inlining
- Apply transformations across dialects
- Design passes to operate on characteristics/structure rather than specific ops
- Easily extend to new dialects/ops

Interfaces

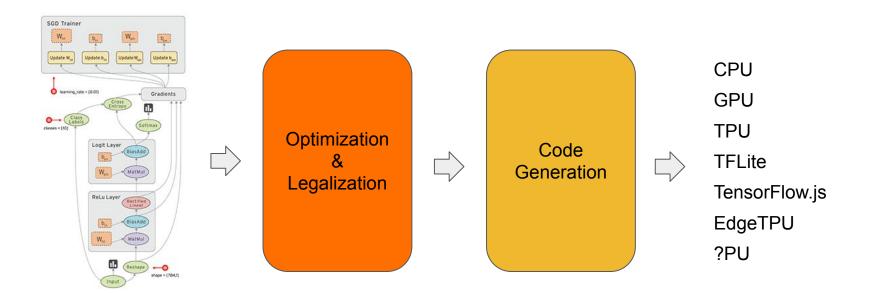
- Decouple tra Much more info operation de
 - ~ defining ops
 - LoopLike, ~ declarative patterns (DAG -> DAG)
 - ~ declarative ASM syntax Apply transf
- Design pass specific ops

characterist But that's a whole tutorial (see online and next iteration @ EuroLLVM!)

Easily extend to new dialects/ops

MLIR in TensorFlow ecosystem

TF Optimization & Compilation

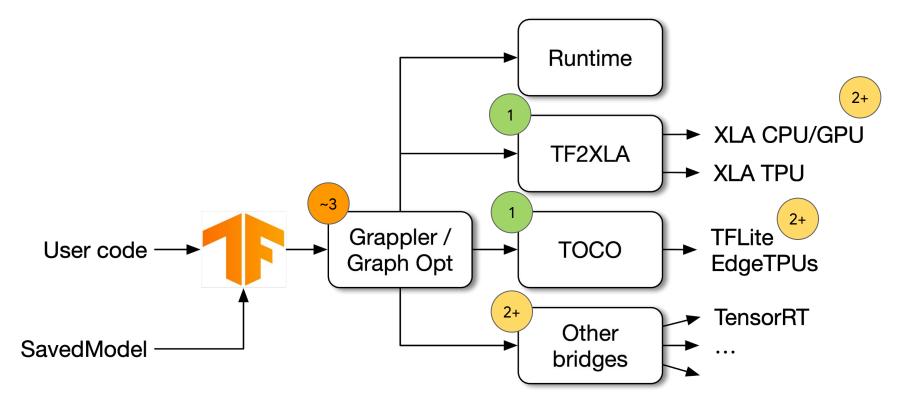


Goal: Global improvements to TensorFlow infrastructure

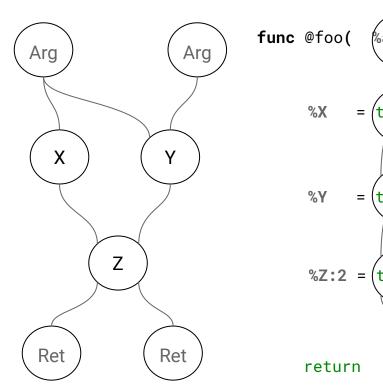
SSA-based designs to generalize and improve ML "graphs":

- Better side effect modeling and control flow representation
- Improve generality of the lowering passes
- Dramatically increase code reuse
- Fix location tracking and other pervasive issues for better user experience

TensorFlow usage (current/ongoing/future)



Computational Graph Dialect



```
%arg0 ): tensor<i1>, (%arg1) : tensor<...>) ... {
     %arg0 : tensor<...>
      %arg0, %arg1 : tensor<...>, tensor<...>
       %X, %Y : tensor<...>
  %Z#0,
                             : tensor<...>, tensor<...>
```

Control Flow and Concurrency

Control flow and dynamic features of TF1, TF2

- Conversion from control to data flow
- Lazy evaluation

Concurrency

- Sequential execution in blocks
- Distribution
- Offloading
- Implicit concurrency in tf.graph regions
 - Implicit futures for SSA-friendly, asynchronous task parallelism

→ Research: task parallelism, memory models, separation logic

Control Flow and Concurrency

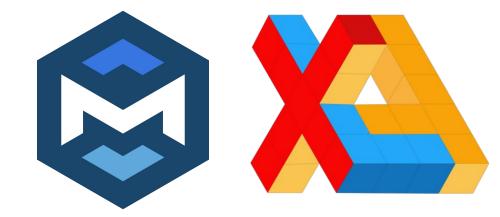
```
%0 = tf.graph (%arg0 : tensor<f32>, %arg1 : tensor<f32>,
               %arq2 : !tf.resource) {
 // Execution of these operations is asynchronous, the %control
 // return value can be used to impose extra runtime ordering,
 // for example the assignment to the variable %arg2 is ordered
 // after the read explicitly below.
 %1, %control = tf.ReadVariableOp(%arg2)
     : (!tf.resource) -> (tensor<f32>, !tf.control)
 %2, %control 1 = tf.Add(%arg0, %1)
     : (tensor<f32>, tensor<f32>) -> (tensor<f32>, !tf.control)
 %control 2 = tf.AssignVariableOp(%arg2, %2, %control)
     : (!tf.resource, tensor<f32>) -> !tf.control
 %3, %control 3 = tf.Add(%2, %arg1)
     : (tensor<f32>, tensor<f32>) -> (tensor<f32>, !tf.control)
 tf.fetch %3, %control 2 : tensor<f32>, !tf.control
```


TFLite: inference on the edge

- TensorFlow to TFLite converter
 - Adding control flow to TFLite
 - RNN support
- New quantization support
 - Forgot to mention: MLIR has quantized types!
 - Tooling to move state of the art forward
- Model optimization passes
 - Sparsity optimization

CPU/GPU codegen

- Multiple collaboration on TensorFlow codegen
- XLA codegen (emitter style)
- Structured ops (e.g., LinAlg)
- (simplified) Polyhedral (e.g., Affine)



Albert's and other folks here's talks will look at different codegen!

MLIR community

MLIR is a community project

- Important takeaway from C4ML last year:
 - All solving the same problems over and over
 - Effort on common (but very important and not really common) parts take away from value add
- MLIR make it easy to add abstraction & compile down
- Community very important
 - Want to highlight some works
 - ... but not those of folks already presenting here ;-)

Example: Stencil Computations

MLIR for accelerating climate modelling

Open Climate Compiler Initiative

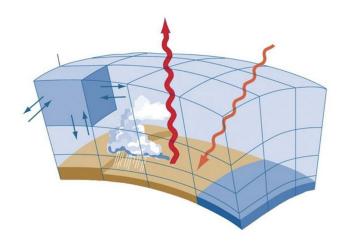
A Compiler Intermediate Representation for Stencils

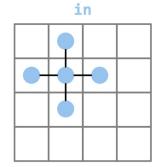
JEAN-MICHEL GORIUS, TOBIAS WICKY, TOBIAS GROSSER, AND TOBIAS GYSI

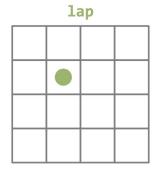
Domain-Science vs Computer-Science

- solve PDE
- finite differences
- structured grid

- element-wise computation
- fixed neighborhood





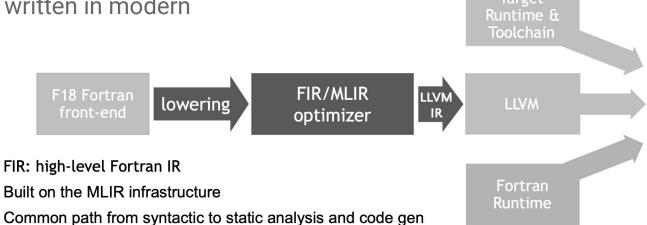


Example: Flang: the LLVM Fortran Frontend

Flang is a ground-up implementation of a Fortran front end written in modern
 C++

FLANG

The LLVM Fortran compiler



Separation of concerns: constraints checking vs. optimizing computation

Shrink abstraction gap: core Fortran operational properties

Focus on writing Fortran aware optimizations

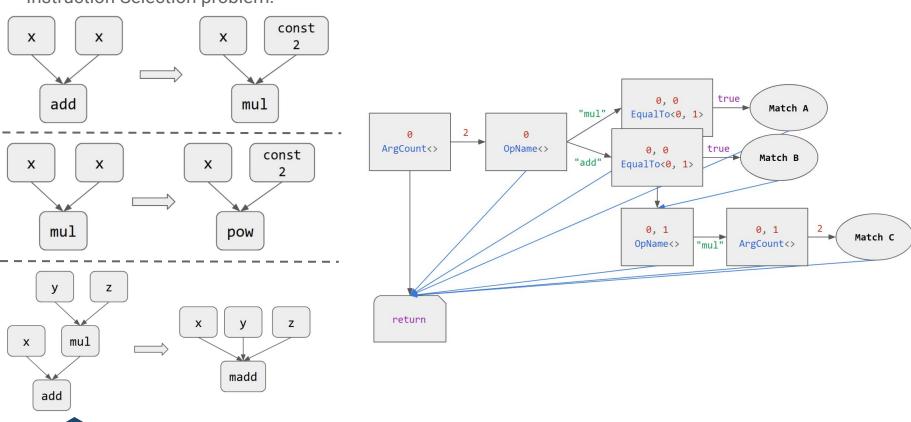
010110

110011

101000

MLIR Pattern Matching and Rewrite

~ Instruction Selection problem.



MLIR Pattern Matching and Rewrite

An MLIR dialect to manipulate MLIR IR!

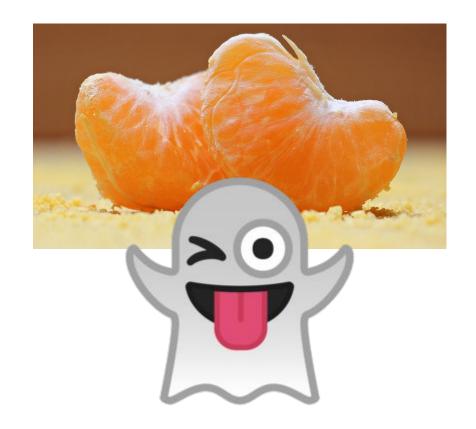
```
func @matcher(%0 : !Operation) {
^bb0:
 CheckArgCount(%0) [^bb1, ^ex0] {count = 2}
       : (!Operation) -> ()
^bb1:
 CheckOpName(%0) [^bb2, ^bb5] {name = "add"}
       : (!Operation) -> ()
^hh2:
 %1 = GetOperand(%0) {index = 0} : (!Operation) -> !Value
 %2 = GetOperand(%0) {index = 1} : (!Operation) -> !Value
 ValueEqualTo(%1, %2) [^rr0, ^bb3] : (!Value, !Value) -> ()
^rr0:
 // Save x
 RegisterResult(\%1) [^bb3] {id = 0} : (!Value) -> ()
^bb3:
 %3 = GetDefiningOp(%2) : (!Value) -> !Operation
 CheckOpName(%3) [^bb4, ^bb5] {name = "mul"}
       : (!Operation) -> ()
^bb4:
 CheckArgCount(%3) [^rr1, ^bb5] {count = 2}
       : (!Operation) -> ()
```

```
^rr1:
 // Save x, y, and z
 %4 = GetOperand(%3) {index = 0} : (!Operation) -> !Value
 %5 = GetOperand(%4) {index = 1} : (!Operation) -> !Value
 RegisterResult(\%1, \%4, \%5) [^bb5] {id = 1}
       : (!Value, !Value, !Value) -> ()
^bb5:
 // Previous calls are not necessarily visible here
 %6 = GetOperand(%0) {index = 0} : (!Operation) -> !Value
 %7 = GetOperand(%0) {index = 1} : (!Operation) -> !Value
 ValueEqualTo(%6, %7) [^bb6, ^ex0] : (!Value, !Value) -> ()
^bb6:
 CheckOpName(%0) [^rr2, ^ex0] {name = "mul"}
       : (!Operation) -> ()
^rr2:
 // Save x
 RegisterResult(\%) [^ex0] {id = 2} : (!Value) -> ()
^ex0:
 return
```


Example: Tiny C Inference Engine

Problem:

- Running ML models in highly resource constrained environments
- On-device training in an end-to-end fashion with <1kB of on-device code
- End-to-end toolchain prototype
 - Stateful model, Multiple model entry points, Structured Python signatures with @tf.function
- Required less than 1 SWE-week of effort to implement



Conclusion

MLIR: Reusable Compiler Abstraction Toolbox

IR design involves multiple tradeoffs

Iterative process, constant learning experience

MLIR allows mixing levels of abstraction with non-obvious compounding benefits

- Dialect-to-dialect lowering is easy
- Ops from different dialects can mix in same IR
 - Lowering from "A" to "D" may skip "B" and "C"
- Avoid lowering too early and losing information
 - Help define hard analyses away

No forced IR impedance mismatch

Fresh look at problems

Recap

MLIR is a great infrastructure for higher-level compilation

- Gradual and partial lowerings to mixed dialects
 - All the way to LLVMIR and execution
- Reduce impedance mismatch at each level

MLIR provides all the infrastructure to build dialects and transformations

At each level it is the <u>same</u> infrastructure

Toy language tutorial available on github

Getting Involved

Get involved!

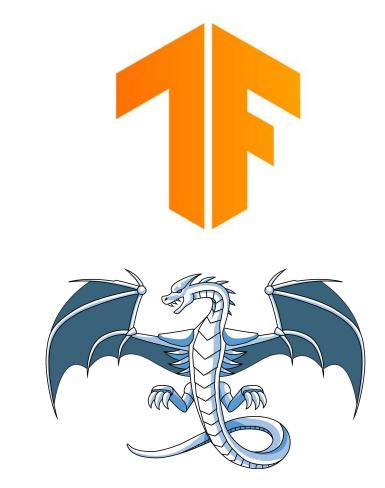
Visit us at mlir.llvm.org:

- Code, documentation, tutorial
- Developer forum/mailing list
 <u>LLVM Discourse server</u>
 - mlir@tensorflow.org
- Open design meetings / TF MLIR SIG
- Contributions welcome!

Students: We have internship openings still

Contact at <u>mlir-hiring@google.com</u>

And Google Summer of Code projects



Thank you to the team!

Questions?

We are hiring! mlir-hiring@google.com