Google
MLIR in TensorFlow Ecosystem

C4AML Il at CGO 2020

Jacques Pienaar
Google

Agenda

e Update on year past
o MLIR announced at C4ML last year

e Brief introduction to MLIR

e MLIR in TensorFlow ecosystem

o Uses current and future in TF
o An aside on simple ML inference engine

e MLIR community
o Excluding the other talks today ...
o .. and Albert Cohen's talk yesterday or Chris Lattner and Tatiana Shpeisman's talk at CGO

e Getting involved

Google @

The past year

Year since C4ML in review

~ MLIR announced @ C4ML 2019, Feb 17

~ MLIR open sourced
- Core @ Mar 29th & TF/MLIR @ Jun 27

~ Partner announcement &
proposal to contribute to LLVM @ Sep 9

~ MLIR core moved to LLVM project Dec 23rd
- “Landing as a great Christmas present for LLVM developers
interested in heterogeneous hardware compilation ..."

~ TF / TFLite converter replaced @ Feb 19 2020

Google @

What is MLIR?

S

A collection of modular and reusable software
components that enables the progressive
lowering of high level operations, to efficiently
target hardware in a common way

Multi-Level Intermediate Representation

=t

o T

New compiler infrastructure Originally built by TensorFlow team Part of LLVM project

Google @ 7

How is MLIR different?

State of Art Compiler

Modular & Extensible o Not opinionated
Technology L]
MLIR is NOT just a common From graph representation Choose the level of
graph serialization format nor is through optimization to code - - representation that is right for

there anything like it generation your device

A toolkit for representing and transforming “code”

Represent and transform IR 20U While enabling
Represent Multiple Levels of Common compiler infrastructure

e tree-based IRs (ASTs), e location tracking

e graph-based IRs (TF Graph, HLO), e richer type system

e machine instructions (LLVM IR) e common set of conversion passes
IR at the same time And much more

Google @

Operations, Not Instructions

e No predefined set of instructions
e Operations are like “opaque functions” to MLIR

Number of Dialect Index in List of attributes:
value returned prefix Opld Argument the producer's results constant named arguments

%res:2 = "mydlalect.morph"(%input#éne.attribute = true, other_attribute = 1.5 }

. ('mydialect<"custom_type">) -> (Imydialect<"other_type">, Imydialect<"other_type">)
loc(callsite("foo" at "mysource.cc":10:8))
Name of the \
results Dialect prefix Opaque string
forthe type / Mandatory and

Dialect specific

Google @ type

Rich Location

(Operations—Regions—Blocks)

%sresults:2 = "d.operation"(%arg@, %argl) ({
// Regions belong to Ops. Region
i Ablock(%argument: !d.type): T aloek s
: // Ops have function types :
%svalue = "nested.operation" () ({
// Nested region Region
"d.op"() : () = ()
}) : () — (!d.other_type)
"consume,value" (%value) : (!d.other_type) —> ()

..

// 0Ops have a list of attributes
{attribute="value" : !d.type} : () —> (!d.type, !'d.other_type)

Google @

Dialects

A MLIR dialect is a logical grouping including:

e A prefix (“namespace” reservation)

e Alist of custom types, each defined by a C++ class.

e Alist of operations, each its name and C++ class implementation:

o Verifier for operation invariants

o Semantics (has-no-side-effects, constant-folding, CSE-allowed,)

e Possibly custom parser and assembly printer

e Alist of passes (for analysis, transformations, and dialect conversions)

Google @

Interfaces

e Decouple transformations from dialect and
operation definitions

o LoopLike, Inlining

e Apply transformations across dialects

e Design passes to operate on
characteristics/structure rather than
specific ops

e Easily extend to new dialects/ops

Google @

Interfaces

Decouple tr:
operation de

o LoopLike
Apply transf

Design pas
characterist
specific ops

Easily extenad dialects/ops

Google @

MLIR in TensorFlow ecosystem

TF Optimization & Compilation

CPU

GPU

TPU

TFLite
TensorFlow.js
EdgeTPU
?7PU

Goal: Global improvements to TensorFlow infrastructure

SSA-based designs to generalize and improve ML “graphs”:
e Better side effect modeling and control flow representation
e Improve generality of the lowering passes
e Dramatically increase code reuse
e Fix location tracking and other pervasive issues for better user experience

Google @

TensorFlow usage (current/ongoing/future)

Runtime

\

TF2XLA

/O

User code —>T ?

Grappler /
Graph Opt

SavedModeI

Google @

TOCO

2+

Other
bridges

/

(2

—> XLA CPU/GPU

—>

XLA TPU

TFLite @

EdgeTPUs

_v» TensorRT

A

Computational Graph Dialect

: tensor<...>) ... {

%arg0, %argl : tensor<...>, tensor<...>

a %Z 22 = %X, %Y :

tensor<...>, tensor<...>

. tensor<...>, tensor<...>

Google @ }

Control Flow and Concurrency

Control flow and dynamic features of TF1, TF2
e Conversion from control to data flow
e Lazy evaluation

Concurrency

Sequential execution in blocks
Distribution

Offloading

Implicit concurrency in tf.graph regions

O Implicit futures for SSA-friendly, asynchronous task parallelism

— Research: task parallelism, memory models, separation logic

Google @

Control Flow and Concurrency

%0 = tf.graph (%arg@ : tensor<f32>, %argl : tensor<f32>,
%arg2 : !'tf.resource) {

// Execution of these operations is asynchronous, the %control
// return value can be used to impose extra runtime ordering,
// for example the assignment to the variable %arg2 is ordered
// after the read explicitly below.
%1, %control = tf.ReadVariableOp(%arg2)

('tf.resource) —> (tensor<f32>, !tf.control)
%2, %control_1 = tf.Add(%arg0, %1)

(tensor<f32>, tensor<f32>) —> (tensor<f32>, !tf.control)
%scontrol_2 = tf.AssignVariableOp(%arg2, %2, %control)

(!'tf.resource, tensor<f32>) —> !tf.control
%3, %scontrol_3 = tf.Add(%2, %argl)

(tensor<f32>, tensor<f32>) —> (tensor<f32>, !tf.control)
tf.fetch %3, %control_2 : tensor<f32>, !'tf.control

}

Google @

TFLite : inference on the edge

e TensorFlow to TFLite converter

o

(@]

Adding control flow to TFLite
RNN support

e New quantization support

(@]

O

Forgot to mention: MLIR has quantized types!
Tooling to move state of the art forward

e Model optimization passes

(@]

Google @

Sparsity optimization

1223 C i ¥ .4 §69%

“> TensorFlow

banana 98.82%
Granny Smith 0.78%

fig 0.39%

CPU/GPU codegen

e Multiple collaboration on
TensorFlow codegen

e XLA codegen (emitter style)
e Structured ops (e.g., LinAlg)
e (simplified) Polyhedral (e.g., Affine)

Google g

MLIR community

MLIR is a community project

e Important takeaway from C4ML last year:

o All solving the same problems over and over
o Effort on common (but very important and not really common) parts take away from
value add

e MLIR make it easy to add abstraction & compile down

e Community very important

o Want to highlight some works
o .. but not those of folks already presenting here ;-)

Google @

Example: Stencil Computations

Open Climate Compiler Initiative

MLIR for
accelerating
climate modelling

) v MeteoSwiss

VULCAN

% ETHzirich
Google @

A Compiler Intermediate Representation for Stencils

JEAN-MICHEL GORIUS, TOBIAS WICKY, TOBIAS GROSSER, AND TOBIAS GYSI

Domain-Science vs Computer-Science

* solve PDE * element-wise computation
* finite differences * fixed neighborhood
 structured grid

lap(i,j) = -4.0 * in(i,j) +
in(i-1,j) + in(i+1,j) +
in(i,j-1) + in(i,j+1)

in lap

s
e o
®

Google @

Example: Flang: the LLVM Fortran Frontend
FLANG

is a ground-up
implementation of a Fortran
front end written in modern

C++
FIR/MLIR
optimizer

FIR: high-level Fortran IR
Built on the MLIR infrastructure

Common path from syntactic to static analysis and code gen

Shrink abstraction gap: core Fortran operational properties

Focus on writing Fortran aware optimizations

Separation of concerns: constraints checking vs. optimizing computation

Google @ 3 <ANVIDIA.

MLIR Pattern Matching and Rewrite

~ Instruction Selection problem.

) e

0, 0
"mul"” EqualTo<@, 1>
0 2 0 |
ArgCount<> . OpName<> 0, 0 true
EqualTo<@, 1>

0, 1 | e 1
OpName<> |"mul"| ArgCount<>

Match C

return

MLIR Pattern Matching and Rewrite

An MLIR dialect to manipulate MLIR IR!

func @matcher (%0 :
~bbo:
CheckArgCount(%0) [~bbl, ~ex@] {count = 2}
: (!Operation) -> ()

I0peration) {

~“bb1l:
CheckOpName(%0) [~bb2, ~bb5] {name = "add"}
: (!Operation) -> ()

~“bb2:
%1 = GetOperand(%0) {index = ©} : (!Operation) -> !Value
%2 = GetOperand(%0) {index = 1} : (!Operation) -> !Value

ValueEqualTo(%1, %2) [“rr@, ~bb3] : (!Value, !Value) -> ()
~rro:
// Save x
RegisterResult(%1) [~bb3] {id = @} : (!Value) -> ()
~bb3:
%3 = GetDefiningOp(%2) : (!Value) -> !Operation
CheckOpName (%3) [~bb4, ~bb5] {name = "mul"}
: (!Operation) -> ()
~bb4:
CheckArgCount(%3) [~rrl, ~bb5] {count = 2}
: (!Operation) -> ()

Google @

~rrl:
// Save x, y, and z
%4 = GetOperand(%3) {index = @} : (!Operation) -> !Value
%5 = GetOperand(%4) {index = 1} : (!Operation) -> !Value
RegisterResult (%1, %4, %5) [~bb5] {id = 1}
: (!value, !Value, !value) -> ()

~bb5:
// Previous calls are not necessarily visible here
%6 = GetOperand(%0) {index = @} : (!Operation) -> !Value
%7 = GetOperand(%0) {index = 1} : (!Operation) -> !Value
ValueEqualTo(%6, %7) [~bb6, ~ex@] : (!Value, !Value) -> ()
~“bb6:
CheckOpName (%0) [~rr2, ~ex@] {name = "mul"}
: (!Operation) -> ()

rr2:

// Save x

RegisterResult(%6) [~ex@] {id = 2} : (!Value) -> ()
~exo:

return

Example: Tiny C Inference Engine

e Problem:

o Running ML models in highly resource
constrained environments

o On-device training in an end-to-end
fashion with <1kB of on-device code

e End-to-end toolchain prototype

o Stateful model, Multiple model entry
points, Structured Python signatures with
@tf.function

e Required less than 1 SWE-week of
effort to implement

Google @

Conclusion

Google @

MLIR : Reusable Compiler Abstraction Toolbox

IR design involves multiple tradeoffs
e |terative process, constant learning experience

MLIR allows mixing levels of abstraction with non-obvious compounding benefits

e Dialect-to-dialect lowering is easy
e Ops from different dialects can mix in same IR - r’:‘}i’sﬁ;‘iﬂ IR impedance
o Lowering from “A” to “D” may skip “B” and “C”
e Avoid lowering too early and losing information
Fresh look at problems
o Help define hard analyses away

Google @

Recap
MLIR is a great infrastructure for higher-level compilation

e Gradual and partial lowerings to mixed dialects
o Allthe way to LLVMIR and execution

e Reduce impedance mismatch at each level

MLIR provides all the infrastructure to build dialects and transformations
e At each level it is the same infrastructure

Toy language tutorial available on github

Google @

Getting Involved

Get involved!

Visit us at mlir.llvm.ora:
e Code, documentation, tutorial
e Developer forum/mailing list
LLVM Discourse server
mlir@tensorflow.org
e Open design meetings / TF MLIR SIG
e Contributions welcome!

Students: We have internship openings still
e (Contact at mlir-hiring@google.com
And Google Summer of Code projects

Google @

Thank you to the team!

Questions?

We are hiring!
mlir-hiring@google.com

