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Agenda

● Update on year past
○ MLIR announced at C4ML last year

● Brief introduction to MLIR
● MLIR in TensorFlow ecosystem

○ Uses current and future in TF
○ An aside on simple ML inference engine

● MLIR community
○ Excluding the other talks today …
○ … and Albert Cohen's talk yesterday or Chris Lattner and Tatiana Shpeisman's talk at CGO

● Getting involved



The past year



Year since C4ML in review

~ MLIR announced @ C4ML 2019, Feb 17

~ MLIR open sourced
  - Core @ Mar 29th & TF/MLIR @ Jun 27

~ Partner announcement &
    proposal to contribute to LLVM @ Sep 9

~ MLIR core moved to LLVM project Dec 23rd
  - “Landing as a great Christmas present for LLVM developers
     interested in heterogeneous hardware compilation ...”

~ TF / TFLite converter replaced @ Feb 19 2020



What is MLIR?



A collection of modular and reusable software 
components that enables the progressive 

lowering of high level operations, to efficiently 
target hardware in a common way
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Multi-Level Intermediate Representation

     New compiler infrastructure              Originally built by TensorFlow team                                 Part of LLVM project



How is MLIR different?

From graph representation 
through optimization to code 

generation

State of Art Compiler 
Technology

MLIR is NOT just a common 
graph serialization format nor is 

there anything like it

Modular & Extensible Not opinionated

Choose the level of 
representation that is right for 

your device

We want to enable 
whole new class of 
compiler research

New shared industry 
abstractions spanning 
languages ("OMP" 
dialect?)

Mix and match 
representations to fit 
problem space



A toolkit for representing and transforming “code”

Represent and transform IR ⇄↺⇓

Represent Multiple Levels of

● tree-based IRs (ASTs),   
● graph-based IRs (TF Graph, HLO),
● machine instructions (LLVM IR)

IR at the same time

While enabling

Common compiler infrastructure 

● location tracking
● richer type system
● common set of conversion passes

And much more



Operations, Not Instructions

 %res:2 = "mydialect.morph"(%input#3) { some.attribute = true, other_attribute = 1.5 }
             : (!mydialect<"custom_type">) -> (!mydialect<"other_type">, !mydialect<"other_type">)
                                                                    loc(callsite("foo" at "mysource.cc":10:8))

● No predefined set of instructions
● Operations are like “opaque functions” to MLIR

Name of the
results

Op Id
Number of 

value returned
Dialect
prefix Argument

Index in
the producer’s results

Dialect prefix 
for the type

Opaque string
/

Dialect specific 
type

List of attributes:
constant named arguments

Mandatory and 
Rich Location



(Operations→Regions→Blocks)



Dialects

A MLIR dialect is a logical grouping including:

● A prefix (“namespace” reservation)

● A list of custom types, each defined by a C++ class.

● A list of operations, each its name and C++ class implementation:

○ Verifier for operation invariants 

○ Semantics (has-no-side-effects, constant-folding, CSE-allowed, ….)

● Possibly custom parser and assembly printer

● A list of passes (for analysis, transformations, and dialect conversions)



Interfaces

● Decouple transformations from dialect and 
operation definitions

○ LoopLike, Inlining

● Apply transformations across dialects

● Design passes to operate on 
characteristics/structure rather than 
specific ops

● Easily extend to new dialects/ops



Interfaces

● Decouple transformations from dialect and 
operation definitions

○ LoopLike, Inlining

● Apply transformations across dialects

● Design passes to operate on 
characteristics/structure rather than 
specific ops

● Easily extend to new dialects/ops

Much more info
  ~ defining ops
  ~ declarative patterns (DAG -> DAG)
  ~ declarative ASM syntax
  …

But that's a whole tutorial (see online 
and next iteration @ EuroLLVM!)



MLIR in TensorFlow ecosystem



TF Optimization & Compilation

Optimization 
& 

Legalization

Code 
Generation

CPU
GPU
TPU
TFLite
TensorFlow.js
EdgeTPU
?PU



SSA-based designs to generalize and improve ML “graphs”:
● Better side effect modeling and control flow representation
● Improve generality of the lowering passes
● Dramatically increase code reuse
● Fix location tracking and other pervasive issues for better user experience 

Goal: Global improvements to TensorFlow infrastructure



TensorFlow usage (current/ongoing/future)
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Arg

X Y

Z

Arg

Ret Ret

func @foo(  %arg0 : tensor<i1>, %arg1  : tensor<...>) ... {

    %X   = tf.X   %arg0 : tensor<...>

    %Y   = tf.Y   %arg0, %arg1 : tensor<...>, tensor<...>

    %Z:2 = tf.Z   %X, %Y : tensor<...>, tensor<...>

     return    %Z#0,                 %Z#1  : tensor<...>, tensor<...>

}

Computational Graph Dialect



Control flow and dynamic features of TF1, TF2
● Conversion from control to data flow
● Lazy evaluation

Concurrency
● Sequential execution in blocks
● Distribution
● Offloading
● Implicit concurrency in tf.graph regions

○ Implicit futures for SSA-friendly, asynchronous task parallelism

→ Research: task parallelism, memory models, separation logic 

Control Flow and Concurrency



Control Flow and Concurrency



TFLite : inference on the edge

● TensorFlow to TFLite converter
○ Adding control flow to TFLite
○ RNN support

● New quantization support
○ Forgot to mention: MLIR has quantized types!
○ Tooling to move state of the art forward 

● Model optimization passes
○ Sparsity optimization



CPU/GPU codegen

● Multiple collaboration on 
TensorFlow codegen

● XLA codegen (emitter style)
● Structured ops (e.g., LinAlg)
● (simplified) Polyhedral (e.g., Affine)

Albert's and other folks here's talks will look at different codegen!



MLIR community



MLIR is a community project

● Important takeaway from C4ML last year:
○ All solving the same problems over and over
○ Effort on common (but very important and not really common) parts take away from 

value add
● MLIR make it easy to add abstraction & compile down
● Community very important

○ Want to highlight some works
○ … but not those of folks already presenting here ;-)



Example: Stencil Computations

MLIR for 
accelerating
climate modelling



A Compiler Intermediate Representation for Stencils
JEAN-MICHEL GORIUS, TOBIAS WICKY, TOBIAS GROSSER, AND TOBIAS GYSI



Example: Flang: the LLVM Fortran Frontend

● Flang is a ground-up 
implementation of a Fortran 
front end written in modern 
C++



MLIR Pattern Matching and Rewrite
~ Instruction Selection problem.



MLIR Pattern Matching and Rewrite
An MLIR dialect to manipulate MLIR IR!
func @matcher(%0 : !Operation) {

^bb0:

  CheckArgCount(%0) [^bb1, ^ex0] {count = 2}

       : (!Operation) -> ()

^bb1:

  CheckOpName(%0) [^bb2, ^bb5] {name = "add"}

       : (!Operation) -> ()

^bb2:

  %1 = GetOperand(%0) {index = 0} : (!Operation) -> !Value

  %2 = GetOperand(%0) {index = 1} : (!Operation) -> !Value

  ValueEqualTo(%1, %2) [^rr0, ^bb3] : (!Value, !Value) -> ()

^rr0:

  // Save x

  RegisterResult(%1) [^bb3] {id = 0} : (!Value) -> ()

^bb3:

  %3 = GetDefiningOp(%2) : (!Value) -> !Operation

  CheckOpName(%3) [^bb4, ^bb5] {name = "mul"}

       : (!Operation) -> ()

^bb4:

  CheckArgCount(%3) [^rr1, ^bb5] {count = 2}

       : (!Operation) -> ()

^rr1:

  // Save x, y, and z

  %4 = GetOperand(%3) {index = 0} : (!Operation) -> !Value

  %5 = GetOperand(%4) {index = 1} : (!Operation) -> !Value

  RegisterResult(%1, %4, %5) [^bb5] {id = 1}

       : (!Value, !Value, !Value) -> ()

^bb5:

  // Previous calls are not necessarily visible here

  %6 = GetOperand(%0) {index = 0} : (!Operation) -> !Value

  %7 = GetOperand(%0) {index = 1} : (!Operation) -> !Value

  ValueEqualTo(%6, %7) [^bb6,  ^ex0] : (!Value, !Value) -> ()

^bb6:

  CheckOpName(%0) [^rr2, ^ex0] {name = "mul"}

       : (!Operation) -> ()

^rr2:

  // Save x

  RegisterResult(%6) [^ex0] {id = 2} : (!Value) -> ()

^ex0:

  return

}



Example: Tiny C Inference Engine

● Problem:
○ Running ML models in highly resource 

constrained environments
○ On-device training in an end-to-end 

fashion with <1kB of on-device code

● End-to-end toolchain prototype
○ Stateful model, Multiple model entry 

points, Structured Python signatures with 
@tf.function

● Required less than 1 SWE-week of 
effort to implement



Conclusion



MLIR : Reusable Compiler Abstraction Toolbox

No forced IR impedance 
mismatch

Fresh look at problems

IR design involves multiple tradeoffs
● Iterative process, constant learning experience

MLIR allows mixing levels of abstraction with non-obvious compounding benefits
● Dialect-to-dialect lowering is easy
● Ops from different dialects can mix in same IR

○ Lowering from “A” to “D” may skip “B” and “C” 
● Avoid lowering too early and losing information

○ Help define hard analyses away



Recap

MLIR is a great infrastructure for higher-level compilation
● Gradual and partial lowerings to mixed dialects 

○ All the way to LLVMIR and execution

● Reduce impedance mismatch at each level

MLIR provides all the infrastructure to build dialects and transformations
● At each level it is the same infrastructure

Toy language tutorial available on github



Getting Involved



Get involved!

Visit us at mlir.llvm.org:
● Code, documentation, tutorial
● Developer forum/mailing list

  LLVM Discourse server
  mlir@tensorflow.org

● Open design meetings / TF MLIR SIG
● Contributions welcome!

Students: We have internship openings still
● Contact at mlir-hiring@google.com 

And Google Summer of Code projects



We are hiring!
mlir-hiring@google.com

Thank you to the team!

Questions?


