Predicting Developers’ Negative Feelings about Code Review

Carolyn D. Egelman’, Emerson Murphy-Hill', Elizabeth Kammer!, Margaret Morrow Hodges?,

Collin Green!, Ciera Jaspanl, James Lin!
1Google, 2Artech
{cegelman,emersonm,eakammer,hodgesm,colling,ciera,jameslin}@google.com

ABSTRACT

During code review, developers critically examine each others’ code
to improve its quality, share knowledge, and ensure conformance
to coding standards. In the process, developers may have negative
interpersonal interactions with their peers, which can lead to frus-
tration and stress; these negative interactions may ultimately result
in developers abandoning projects. In this mixed-methods study at
one company, we surveyed 1,317 developers to characterize the neg-
ative experiences and cross-referenced the results with objective
data from code review logs to predict these experiences. Our results
suggest that such negative experiences, which we call “pushback”,
are relatively rare in practice, but have negative repercussions when
they occur. Our metrics can predict feelings of pushback with high
recall but low precision, making them potentially appropriate for
highlighting interactions that may benefit from a self-intervention.

KEYWORDS

code review, interpersonal conflict

ACM Reference Format:

Carolyn D. Egelman?!, Emerson Murphy-Hill!, Elizabeth Kammer!, Mar-
garet Morrow Hodgesz, Collin Green!, Ciera Jaspanl, James Lin!. 2020.
Predicting Developers’ Negative Feelings about Code Review. In 42nd In-
ternational Conference on Software Engineering (ICSE °20), May 23-29, 2020,
Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages. https://doi.
org/10.1145/3377811.3380414

1 INTRODUCTION

It is well established that modern code review provides many ben-
efits for a software organization, including finding defects [3, 17],
knowledge sharing [3, 17, 19], and improving software mainte-
nance [19]. However, code review can also lead to interpersonal
conflict in the workplace; prior research in the social sciences de-
scribe interpersonal conflicts as a “consequential stressor in the
workplace” [21]. Anecdotally, professional developers have reported
their experiences with stressful [2], toxic [16], and insufferable [7]
reviewers of their code. A code review in 2015 of Linux kernel code
illustrates conflict vividly:

Christ people. This is just sh*t. The conflict I get is
due to stupid new gcc header file crap. But what makes

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE °20, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7121-6/20/05.

https://doi.org/10.1145/3377811.3380414

me upset is that the crap is for completely bogus rea-
sons... anybody who thinks that the above [code snip-
pet] is (a) legible (b) efficient (even with the magical
compiler support) (c) particularly safe is just incompe-
tent and out to lunch. The above code is sh*t, and it
generates shit code. It looks bad, and there’s no reason
for it.

Just like in the physical workplace, such interactions can have
significant consequences. For example, the Linux kernel lost at least
one developer due to its apparent toxic culture [22]:

I'm not a Linux kernel developer any more... Given the
choice, I would never send another patch, bug report,
or suggestion to a Linux kernel mailing list again...I
would prefer the communication style within the Linux
kernel community to be more respectful. I would prefer
that maintainers find healthier ways to communicate
when they are frustrated. I would prefer that the Linux
kernel have more maintainers so that they wouldn’t
have to be terse or blunt.

Unfortunately, we have little systematic understanding of what
makes a code review go bad. This is important for three reasons.
First, from an ethical perspective, we should seek to make the
software engineering process fair and inclusive. Second, from a
competitiveness perspective, organizations must retain software
engineering talent. Third, happier developers report increased feel-
ings of well-being and productivity [9].

This paper seeks to understand and measure negative experi-
ences in code review. This paper contributes the first study, to the
authors’ knowledge, that quantifies feelings of pushback in the
code review process. Measurement enables understanding of the
prevalence of the bad experiences, whether negative experiences
are occurring at different rates in subpopulations of developers,
and whether initiatives aimed at reducing negative experiences,
like codes of conduct, are working. In a first step towards enabling
new initiatives, we use interviews, surveys, and log data from a
single company, Google, to study pushback, which we define as
“the perception of unnecessary interpersonal conflict in code review
while a reviewer is blocking a change request.” We articulate five
main feelings associated with pushback, and we create and validate
logs-based metrics that predict those five feelings of pushback. This
paper focuses on practical measurement of feelings of pushback
rather than developing theories around the root causes of pushback
happening or why developers feel pushback in different ways.

We asked the following research questions:

RQ1: How frequent are negative experiences with code review?
RQ2: What factors are associated with pushback occuring?
RQ3: What metrics detect author-perceived pushback?

https://doi.org/10.1145/3377811.3380414
https://doi.org/10.1145/3377811.3380414
https://doi.org/10.1145/3377811.3380414

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

2 METHOD

To study negative behaviors in code reviews, we combine quali-
tative and quantitative methods using surveys and log data from
Google, a large international software development company. We
developed three log-based metrics, informed by interviews with a
diverse group of 14 developers, to detect feelings of pushback in
code reviews and validated those metrics through a survey with a
stratified sample of 2,500 developers that covered five feelings of
pushback; 1,317 developers completed the survey. In the survey we
collected qualitative feedback and asked respondents to volunteer
code reviews that matched a list of problematic behaviors.

2.1 Code Review at Google

At Google, code review is mandatory. The artifact being evaluated
in a code review we will call a change request, or CR for short. When
a change request is ready, its author seeks acceptance through code
review, meaning that the reviewer certifies that they have reviewed
the change and it looks okay to check in. A given code review may
be performed by one or more developers. Authors choose their re-
viewers, or use a tool-recommended reviewer. Once each reviewer’s
concerns (if any) have been addressed, the reviewer accepts the
change and the author merges the code into the codebase. Unlike
the open source community, almost all code that is reviewed is even-
tually merged, which makes metrics like “acceptance rate,” which
are common in studies on open source code reviews, inappropriate
in the Google context.

Additionally, any code that is checked into the company’s code
repository must comply with internal style guides. To ensure com-
pliance, code must either be written or reviewed by a developer
with readability in the programming language used, which is a
certification that a Google developer earns by having their code
evaluated by already-certified developers. More information about
Google’s code review process can be found in prior work [19].

2.2 Interviews about Code Review Pushback

The goals of the interview were to refine our initial definition of
pushback and to understand how developers deal with pushback.
One primary interviewer conducted all 14 semi-structured, 1-hour
interviews, with 1-2 notetakers present for most sessions. Given
the sensitivity of the interview topics, we conducted interviews
with informed consent and according to a strict ethical protocol.!
Participants were recruited in two samples by randomly invit-
ing developers from the company’s human resources database. Al-
though Google has developers in multiple countries, all intervie-
wees were based in US offices. The first sample was developers who
replied to the recruitment screener (n = 7), consisting predomi-
nantly of white, male, and senior developers. As this uniform sample
might not include experiences more common to less tenured devel-
opers or those from underrepresented backgrounds, we rewrote our
recruitment materials to be more inclusive and adjusted our sam-
pling script. Consequently, the second sample (n = 7) included more

1We note specifically that we provided participants the option to participate with or
without audio recording, and we paused recording when starting to discuss topics the
interviewer or participant identified as potentially sensitive. We also provided materials
on organizational resources for dealing with workplace concerns, and described the
responsibilities the researchers and notetakers had related to reporting policy violations
to reduce any ambiguity about what to expect during or after the session.

C.D. Egelman, E. Murphy-Hill, E. Kammer, M.M. Hodges, C. Green, C. Jaspan, J. Lin

junior developers, included racial/ethnic diversity, and consisted
entirely of women.

Developers’ experience with code review is mostly positive.
All 14 interviewees viewed the code review process as helpful, and
newer developers particularly appreciated its inherent mentorship.
Nonetheless, the interviews pointed out the challenges developers
face during code review.

Defining pushback. To inform our definition of pushback, we
asked developers what pushback meant to them. While their defini-
tions largely aligned with our a priori notion that acceptance was
being withheld by a reviewer, it included the idea that pushback also
contained interpersonal conflict. Interpersonal conflict was also
a recurring theme in the instances of pushback that interviewees
shared during the interviews. Thus, our definition of pushback is
“the perception of unnecessary interpersonal contflict in code review
while a reviewer is blocking a change request.”

Dealing with Pushback. Interviewees talked about their reac-
tions, working towards resolution, and the consequences of the
pushback they received:

e Initial reaction. Aggressive comments can provoke strong
emotional reactions, followed by a desire to seek social sup-
port from trusted colleagues. Participants talked about shock,
frustration, second guessing themselves, and a sense of guilt
or shame that came from reading aggressive comments. From
a behavioral standpoint, participants discussed asking team-
mates’ opinions, asking a manager or team lead for advice,
reviewing the code change and related materials, and review-
ing code review guidelines or documentation.

e Investing time to work towards a resolution. Partici-
pants brought up adding comments asking for clarification,
talking directly with reviewers (within the code review tool,
over chat, video conference, or offline), making changes to
code, and adding docs or other context in the CR feedback
as the primary ways they worked toward resolution.

e Appeal to authority or experts. Some participants elicited
support from someone with authority or expertise to mediate
or to steer the review back on track. Techniques used here
included adding a manager or team lead to the review, having
offline meetings as a part of resolution, or reaching out to an
internal company email alias designed to help code reviews
(either privately or by directly adding the email alias as a
participant in the code review).

e Long-term consequences. Participants also shared longer
term effects that came about because of code reviews with
pushback including not sending code changes to the same re-
viewer or codebase again, adding more context in future code
submissions, building offline relationships before submitting
code to a new reviewer or codebase, soliciting more feedback
from teammates before sending code changes outside of the
team, and avoiding working on projects that overlap with
the same reviewer/codebase.

2.3 Design of Metrics

From the interviews we synthesized three potential metrics that
we could calculate with existing tool logs to identify code reviews
that may be likely to contain pushback. To develop the metrics, we

Predicting Developers’ Negative Feelings about Code Review

focused on the immediate consequences mentioned in the inter-
views of pushback: investing time to work towards a resolution
and appealing to authority or experts.

We calculate each of the metrics for each developer and for each
code review, based on tool logs. We collect user logs from a variety
of developer tools and are able to associate logs to a particular
code change based on task-identifying artifacts, such as common
code review identifiers or version control workspace. We include
time using the code review and code search tools, editing code, and
browsing documentation. We cannot account for non-logged time
such as in-person conversations.

Metric 1: Rounds of a review is a measure of working towards
a resolution as mentioned by interviewees, as it captures the ex-
tent to which there was back-and-forth between the author and
reviewer. We calculate this metric as the number of times an author
or reviewer sent a batch of comments for the selected CR.

Metric 2: Active reviewing time is the time invested by the
reviewer in providing feedback, as mentioned by interviewees. An-
other benefit to reviewing time as a metric is that it captures time
spent for all reviewers, so it would capture time invested by a re-
viewer who was an escalation point. It also seems prudent to include
time spent by reviewers to cover the case of a reviewer spending a
lot of time developing and writing the feedback that is viewed as
pushback. We calculate this metric as the total reviewer time spent
actively viewing, commenting, or working on the selected CR. This
may include time outside of the main code review tool used, such
as looking up APIs or documentation. Notably, active review time
is not wall-clock time of start-to-finish reviews, but based on time
specifically spent working on the code review and related actions.

Metric 3: Active shepherding time covers most of the activi-
ties that interviewees mentioned as investing time to work towards
a resolution. We calculate this metric by measuring time the author
spent actively viewing, responding to reviewer comments, or work-
ing on the selected CR, between requesting the code review and
actually merging the change into the code base. Similar to active
reviewing time, this may include time outside of the primary code
review tool, including time editing files to meet reviewers’ requests
but does not account for in-person conversations.

Each “long” cutoff point was at the 90" percentile? for that
metric across all developers in the company. We used these criteria
to flag reviews with potential pushback:

e 48 minutes for active reviewing time (which we’ll call “review
time” henceforth for brevity),

e 112 minutes for shepherding time (“shepherd time”), and

e 9 batches of comments for number of rounds of review
(“rounds”).

We acknowledge that there are situations where flagged, long re-
views are useful and desirable (e.g., during mentoring), and part
of the validation of these metrics is understanding how often the
metrics predict negative interaction compared to other interactions.

2For reference, at the 10 percentile: 2 seconds active shepherding time, 14 seconds
active reviewing time, 2 rounds of review; and at the median: 13 minutes active
shepherding time, 4 minutes active reviewing time, 3 rounds of review.

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

2.4 Survey Design

To validate the metrics, and to understand developers’ experience
with pushback more broadly across Google, we designed a survey.
We picked a pair of code reviews for each developer invited to take
the survey. Each participant was asked to rate those code reviews,
supply qualitative feedback, and asked to volunteer code reviews
that matched a list of problematic behaviors.

2.4.1 Survey Overview. Below we include a summary of the types
of questions we asked. We include question wording in the relevant
places in the results, with the full survey in the Supplementary
Material. The survey had several parts:

e Overall code review perceptions. We asked three overar-
ching questions about perceptions of the code review process
covering improvements to code quality, satisfaction and fre-
quency of bad experiences with the code review process.
Rating of two selected change requests. We asked devel-
opers similar questions about two CRs; one in which they
were involved as either an author or reviewer, and one in
which they were not involved. For the selected CRs, we asked
respondents to rate the CR on each of the five feelings of
pushback (Section 2.4.2) and asked developers to provide
open-ended comments to give context.

e Asking for problematic code reviews. Finally, we asked
our survey takers to volunteer CRs that matched any be-
haviors from a list of 29 potentially problematic behaviors,
shown in Figure 1 drawn from interviewee experiences and
literature on workplace bullying [15]. We also asked for
open-ended comments, giving participants the option to
paste excerpts of the CR they believed were problematic into
a text box and to share context on why they believed the
behavior occurred.

2.4.2 Feelings of Pushback. To validate our metrics, we began by
defining several aspects of the “ground truth” of pushback through
feelings expressed in the interviews (Section 2.2). The feelings were:

e interpersonal conflict, from the definition of pushback;

o feeling that acceptance was withheld for too long, one
aspect of ‘blocking’ behavior from the definition of pushback;

o reviewer asked for excessive changes, another aspect of
‘blocking’ behavior;

o feeling negatively about future code reviews, from the
long-term consequences of pushback; and

o frustration, a direct aspect from the initial reaction to ag-
gressive comments and a consistent theme throughout in-
terviews (e.g., people were frustrated about reviews taking
a very long time or not having context on why a reviewer
required certain changes).

These aspects allow us to ask developers about specific feelings of
pushback, and evaluate to what extent our metrics predict them.
These five feelings are not mutually exclusive of each other, and
we do not think that they completely cover the range of potential
feelings of pushback in the code review process. For example, we
didn’t use feelings of difficulty, pain, personal attacks, commonness,
or fairness, which were all considered in the development of the
interview script and survey. However, the feelings chosen were

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

CR Ceriteria for Inclusion

Flag: Flag: Flag:
Surveyed Review Shepherd Rounds of
CRs Time Time Review
0 Flags 250
1Flag 200 v
200 v
200 v
2 Flags 100 v v
100 v v
100 v v
3 Flags 100 v v v

Table 1: Dist. of surveyed CRs by metric flag combinations.

prominent themes that came up in our interviews that most closely
aligned with our definition of pushback.

One challenge in developing the questions about these feelings
for the survey was the appropriate scale to use. We chose to develop
item-specific response scales rather than use Likert scale to reduce
cognitive complexity and elicit higher quality responses [20]. For
our analysis we binned the quantitative survey responses for two
reasons: first, for some questions we only cared about one polarity
(e.g., acceptance was given “too early” is not pushback by definition
and neither are cases where less change was requested than nec-
essary) and second, binning allowed us to treat different response
scales uniformly.

2.4.3 Selecting the Code Reviews for the Survey. To evaluate our
metrics, we compare the CRs flagged by one or more of our metrics
to developers’ feelings of pushback. Individual CRs can fall into any
one of eight “categories” with respect to the metrics or metric com-
binations, as detailed in Table 1. We developed a stratified sampling
plan to ensure that we selected CRs from all eight categories.

An insight from our interviews was the importance of bringing
in a third party to help resolve or escalate any conflict. Because of
this, we shaped the survey design to ask developers not only about
a change request that they were involved in, but also to evaluate a
change request they were not involved in to better understand how
apparent feelings of pushback would be in cases where a change
request was escalated. We asked the author, one reviewer, and
two third-party developers to rate the feelings of pushback they
perceived in the code review. See the Supplementary Material for
details about our survey stratification process.

2.5 Analysis

Quantitative data. In addition to the survey ratings on the five
feelings of pushback, we incorporate data about CRs, authors, and
reviewers which may impact the metrics we are measuring in-
cluding: CR size, if the CR needed readability or was part of the
readability certification process, if the author was a new employee,
author seniority, the number of reviewers, and the data from our

C.D. Egelman, E. Murphy-Hill, E. Kammer, M.M. Hodges, C. Green, C. Jaspan, J. Lin

three flags (high review time, high shepherd time, and long rounds).
For analysis purposes, we treat the ratings of the pushback feelings
as binary and evaluate incidence rates of these undesirable behav-
iors. We use a logit regression model to predict the likelihood of
developers reporting each feeling of pushback based on our metrics
controlling for CR attributes. The logit model is ideally suited to
predict binary outcomes. We report the transformed odds-ratio by
exponentiating the log-odds regression coefficient for all results in
this report to aid in interpretation.

Qualitative data. To analyze the qualitative data from open
ended survey responses, we used inductive coding to surface themes.
One researcher coded the responses from the ratings of CRs selected
for the survey and another researcher coded the responses from
the volunteered CRs, each developing their own codebook.

Member Checking. We emailed a copy of our internal research
report to 1,261 employees and the report was accessible to the
entire company of Google; 643 employees viewed the report. Four
developers reached out proactively adding their own anecdotal
support for the findings. No one refuted the findings. Months after
the findings we also distilled recommendations into a one-page
article widely circulated at Google; and subsequently published the
article on the external Google Testing Blog®. The blog article was
one of the most viewed Google Testing Blog posts in 2018 or 2019
and generated lively discussion on both Reddit* and HackerNews".

3 RESULTS

We next describe the results of our survey, where all questions were
optional. Of 2,500 survey invitees: 1,317 completed the first section;
606 authors and 573 reviewers completed the second section, about
their own CRs; and 1,182 completed the section on third-party CR
evaluation. We found no statistically significant response bias from
any of the participant or CR attributes considered as part of this
analysis. 78% of survey respondents worked in a US office; 16% in
Europe, the Middle East, or Africa; 4% in the Asia Pacific region;
and 2% in the Americas, but not the US.

3.1 How frequent are negative experiences
with code review?

Overall, developers are quite happy with the code review process
at Google, with 87% (+2% Clopper-Pearson confidence interval)
of developers reporting being at least moderately satisfied, and
96% (+1%) saying code review improves the quality of their code at
least a moderate amount. Still, 57% (+3%) report having negative
experiences with the code review process at least once a quarter
during their employment at Google, and 26% (+2%) have had neg-
ative experiences at least once a month. Note that the phrasing
of the question on the survey used “bad experience” without any
specific definition; consequently, some of these experiences likely
fit within our definition of pushback, but most are probably not
directly interpersonal conflict. As evidence, looking ahead at the
types and frequency of developer-reported negative experiences in
Figure 1, “excessive review delays” was the most common.

Shttps://testing.googleblog.com/2019/11/code- health-respectful-reviews-
useful.html
*https://www.reddit.com/r/programming/comments/dsxpxp/tips_to_resolve_code_
review_comments_respectfully/

Shttps://news.ycombinator.com/item?id=21474271

https://testing.googleblog.com/2019/11/code-health-respectful-reviews-useful.html
https://testing.googleblog.com/2019/11/code-health-respectful-reviews-useful.html
https://www.reddit.com/r/programming/comments/dsxpxp/tips_to_resolve_code_review_comments_respectfully/
https://www.reddit.com/r/programming/comments/dsxpxp/tips_to_resolve_code_review_comments_respectfully/
https://news.ycombinator.com/item?id=21474271

Predicting Developers’ Negative Feelings about Code Review

On the survey, we asked about each of the five different feelings
of pushback for each change request we assigned to respondents.
For analysis purposes, we treat the variables as binary (feeling
pushback in that way, or not) and look at incidence rates of these
undesirable behaviors. For example, we asked authors “Setting aside
inherent difficulties in coding, how frustrating was it for you to
get [the selected change request] through review?” and gave the
five options of “none”, “a little”, “a moderate amount”, “a lot”, and
“don’t know”; we categorize any response options of “a moderate
amount” and “a lot” as frustrating and the other response options
as not frustrating. Exact survey question wording, response options
and their categorization are in Supplementary Material.

As part of this first research question, we look at incidence rates
of each of the five feelings of pushback. Given that we intention-
ally and disproportionately sampled change requests where we
expected a higher likelihood of these feelings as part of our strati-
fied sample, we weight our results by the incidence of each flagged
metric combination.

Specifically, in the surveyed change requests (n = 606):

® 3% (+2%) of authors reported frustration with a review,

® 2% (+1%) of authors reported interpersonal conflict,

® 5% (+2%) reported reviewers withholding acceptance longer
than necessary,

® 2% (+1%) reported that reviewers requested more change
than was necessary, and

o 4% (+2%) reported they did not feel positively about submit-
ting similar changes in the future.

Aggregating across the feelings of pushback, we find 11% (+3%) of
unflagged CRs include at least one of these feelings of pushback,
while 3% (+2%) include two or more feelings of pushback behavior.

3.2 What factors are associated with pushback
occuring?

To investigate in what situations pushback is more likely to occur,
we leverage both quantitative and qualitative data. First we look
at incidence rates for each of our feelings of pushback for key
CR attributes such as readability, CR size, new employee status,
author seniority, and number of reviewers. Second, we look at
how developers answered the question “Why do you think the
[frustration, negative behavior] happened?”

3.2.1 Code Review Attributes. There are several important CR at-
tributes we investigated which may impact the metrics we are
measuring: readability (both needing readability approval and if
the review was a part of the readability certification process), CR
size, if the author was a new employee, the seniority of the author,
and the number of reviewers. We ran a logit regression with all of
these attributes on each of the pushback feelings to test which were
predictive of the feelings of pushback. In the following paragraphs
we describe which attributes are predictive. Full regression results
are available in the Supplementary Material.

Readability. Our internal research at Google on readability
suggests that reviews tend to take longer while a developer goes
through the readability process, compared to before and after get-
ting readability. That research also suggests that achieving readabil-
ity is especially frustrating, based on surveys of Google developers.

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Surprisingly, neither code reviews that were undergoing the read-
ability process nor code reviews that required a readability review
were predictive of any of our feelings of pushback. Most open-ended
comments related to readability in this dataset lamented the delays
that time-zone difference with readability reviewers introduced,
as the following participant noted along with a suggested remedy:
“The main frustration relating to this code review was the round-trip
required to get the review through readability review. Ideally, there
would be more reviewers in the same time zone.”

Code Review Size. Code review size was the one attribute that
was predictive of most of the feelings of pushback, but different
sized CRs were predictive of different pushback feelings. Google
categorizes CRs into specific sizes®, these sizes are indicated as
part of the code review tool and in the notification to the reviewer
of the code change, so we used these pre-set categorizations as
the levels for CR size rather than a raw number of lines of code
changed. Compared to very small code changes (less than 10 lines),
changes that were between 250-999 lines long were 4.8 times more
likely for authors to feel more change was requested than necessary
and changes that were between 10-49 lines were 4.7 times more
likely to have authors report they felt negatively about submitting
a similar change in the future. For the aggregated pushback feelings
of “any pushback” we see any change between 10-999 lines of
code is between 2.2 and 2.6 times more likely have some feeling
of pushback in the code review. This lends support to the general
advice [5] to split change requests for easier and quicker reviews
when possible, but it also points to the importance of using multiple
metrics to predict pushback.

New Employee Status & Author Seniority. Being a new em-
ployee is not a statistically significant predictor of any of our feel-
ings of pushback. Compared to authors at level 1 (entry level),
authors at level 3 are 28% less likely to see conflict in their code
review changes. Likewise, employees at level 2 are 31% less likely
to feel negatively about submitting similar changes in the future.

Number of Reviewers. The number of reviewers is not predic-
tive of any of our pushback feelings.

3.2.2 Selected code reviews: emergent themes on why pushback oc-
curs. In addition to quantitative ratings, we asked respondents why
they thought “that behavior occurred during this” change request
and a general open ended question about “anything else important
that we should know about this” change request. Respondents de-
scribed diverse issues in flagged change requests, consistent with
our interviews: time zones/delays (8% of comments on flagged CRs),
mentorship and tenure (6%), conflict (4%), and team- or seniority-
related politics (2%). With the exception of one mention of delays,
none of these issues were described in any of the unflagged change
requests, which bodes well for our metrics, considering they di-
rectly measure only engineering time and roundtrips. Although
the smaller sample size may conceal some lower incidence issues
(unflagged n = 71, flagged n = 320), the breadth of issues repre-
sented among the flagged reviews suggests our metrics successfully
capture several important aspects of code review issues.

©The categories of CR sizes are: XS (0-9 lines changed), S (10-49 lines changed), M (50-
249 lines changed), L (250-999 lines changed), and XL (over 1,000 lines changed). For
the 3-month period for CRs eligible for this study, the distribution of all CRs was:
36% XS, 26% S, 25% M, 10% L, 3% XL; and for CRs selected for this study: 17% XS, 22% S,
35% M, 21% L, 4% XL.

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Unflagged
Total Review
Topic Comments Comments Comments

Flagged

Review

Time zone & delays 26 1 25
Offline Conversation 19 1 18
Readability 15 0 15

Code review was
complex or large 14 0 14
Conflict 12 0 12

Code quality &
formatting 12 1 11

Documentation &
comment clarity 7 1 6

Seniority, tenure,
politics 5 0 5

Table 2: Frequencies of codes within open-ended comments
for unflagged and flagged change requests.

This meta comment by a participant describes why open-ended
comments are a valuable addition to the quantitative ratings; they
expose the perspectives of people who have context to interpret
more than a neutral observer might pick up:

“Code review is the clearest place where interpersonal
conflicts play out in the harsh light of day at Google. As
a people manager I have had team members point me
at code review comment threads as evidence of under-
currents of interpersonal conflict and indeed they are
very telling.”

When presented with CRs they had authored or reviewed, re-
spondents pointed out issues including interpersonal, tooling, orga-
nizational, and historical attributes of the review interaction or the
code itself. Table 2 shows the frequencies of themes that emerged
from coding of participant comments about their own CRs. Next,
we describe how authors and reviewers view each party’s respon-
sibilities, intentions, and actions during contentious reviews, to
elucidate some of the factors respondents considered when indicat-
ing whether or not a flagged CR contains feelings of pushback.

Authors infer negative and positive intents of their reviewers. Au-
thors made varied assumptions about their reviewers’ intentions,
varying with how helpful or transgressive they viewed the re-
viewer’s actions. On one hand, many flagged CRs were specifically
called out as positive, constructive interactions by the authors:

“T was appreciated by [the] reviewer. He suggested a
lot of better solution, approach, how I should follow the
coding style. I enjoyed to learn from him [sic].”

On the other hand, when reviews were frustrating, authors specu-
lated about situational factors that might have affected the review
rather than assuming negative intentions, particularly when the
frustration was due to silence rather than perceived conflict.

C.D. Egelman, E. Murphy-Hill, E. Kammer, M.M. Hodges, C. Green, C. Jaspan, J. Lin

Authors didn’t interpret positive intent in situations where they
believed factors beyond resource needs and the quality of the cur-
rent CR affected reviewers’ behavior, such as career advancement,
previous conflict, or personality clashes:

“[The reviewer] probably wants to put [this particular
migration] in his [promotion] packet...I think [this re-
viewer] is actually doing the right thing by trying to
break this APL but I think [they] could have been a bit
less obtuse about it...”

“The relevant [developer] disagrees with decisions we
made many months ago and is attempting to relitigate
the same issue.”

“T tried to find the best intention - which is that the
reviewer has a strong preference on how the code should
look like, especially this is the code base that the reviewer
usually worked on. However, we did have some strong
arguments for another project a few weeks before.
I do hope that it’s not a factor but I don’t know.”
(Emphasis ours.)

The final quote above shows a tension shared by other developers:
not knowing the degree to which the other party brings past con-
flicts into the current code review can increase tensions moving
forward. Displaying author names in the code review tool may fa-
cilitate faster code review where reviewers and authors share high
trust, but other design choices such as anonymous author code
review might alleviate tensions that spiral due to an accumulation
of frustrating interactions.

We also note that, as we found in the interviews, power im-
balances between code owners and authors were perceived as an
important feature of difficult interactions to authors. This partici-
pant explained their perspective on this issue bluntly:

“Code owners use their privilege to force making un-
necessary change.”

Authors’ self-effacing comments about their limitations. Right or
wrong, some authors blamed themselves for reviewers’ irritations:

“My frustration was how weak was my knowledge of
C++ and internal coding style.”

“They did not think my skills were sufficient (and to
some extent they are certainly correct).”

Comments like these may reflect authors’ polite reluctance to place
blame on reviewers for frustrating interactions; this may be a good
strategy to maintain relationships with reviewers after conflicts.

3.2.3 Volunteered Code Reviews: Problematic Behaviors and Emer-
gent Themes on why pushback occurs. Since our initial interviews
suggest that pushback at Google is rare, we were concerned that
of our surveyed flagged CRs may not include a sufficient number
of developer-identified instances of pushback. To ensure that we
would be able to collect a set of CRs that did exhibit pushback,
we showed developers a list of 29 potentially problematic behav-
iors and gave them the option to volunteer a change request that
matched any behaviors from the list. Again, they were asked why
“that behavior occurred during this” change request and a general
open ended question about “anything else important that we should
know about this” change request. In contrast to the flagged CRs

Predicting Developers’ Negative Feelings about Code Review

that respondents were surveyed about, which contained a mix of
CRs that respondents believed did and did not exhibit feelings of
pushback, all of the CRs volunteered by respondents explicitly in-
volved feelings of pushback. Analysis of the open comments about
volunteered CRs consequently focused on identifying causes, con-
sequences, and associated factors of feelings of pushback, rather
than analyzing whether or not feelings of pushback were present,
as was done with the flagged CRs.

The most common behaviors from the list which participants
chose to volunteer examples for were excessive review delays (68 re-
views), excessive nitpicking (57 reviews), long wait for review to
start (53 reviews), and confrontational comments (45 reviews). Re-
spondents could indicate if a CR had more than one of these behav-
iors. The full summary of the indicated behaviors is in Figure 1.

The relative frequency of the behaviors within this sample of
210 volunteered reviews cannot be considered representative of how
often these behaviors occur overall within code review at Google,
because the sample may have been biased by what respondents
felt comfortable volunteering (i.e., respondents may have felt safer
sharing a CR with a delay versus a more sensitive CR with an
example of humiliation). However, the high incidence of certain
behaviors within this sample does validate their existence as anti-
patterns worth addressing, for example, excessive nitpicking and
confrontational comments.

Additionally, for each of the 29 behaviors, we analyzed code
review excerpts and their accompanying open-ended comments to
pull out common themes and formulate a working definition for
each category. The goal of this analysis was to better understand
what was distinctive about each behavior as well as the context
surrounding each type of occurrence.

Of the emergent themes that surfaced during qualitative analysis
of the 210 volunteered CRs, some of the most commonly mentioned
associated factors were delays (65), references to code style (46) and
documentation (39), the tone in which feedback was delivered (43),
familiarity with the codebase (35), and the CR being part of a read-
ability review (34). The most common emergent themes which we
classified as consequences were inefficient use of time (31), negative
emotions (29), and offline conversations (28). These consequences
align with those described by participants in the initial interviews,
including reactions of shock, frustration and shame when experi-
encing feelings of pushback, and the need to invest additional time
to work toward resolution.

Of the common associated factors, four that could be considered
causes of pushback in code review were comments on code style,
the tone in which feedback was delivered, low familiarity with the
code base, and lack of rationale for suggestions or requests made.

Many respondents felt pressured to implement what they con-
sidered to be subjective preferences related to how code is written
and formatted. One respondent summarized the issue with the ex-
ample CR they volunteered in this way: “the personal opinion of
the reviewer was strong and they felt the need to point it out, even if
it is not in guidelines, and it is a practice that is not uncommon in
standard libraries.” Another respondent explained, “there are a lot
of reviewers that are unreasonable and take their criticism far beyond
what’s documented in the style guide.”

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Attacks on work quality
Unjustified monitoring of your work 24
Attempts to undermine effort 21
Attempts to undermine work 21
Attempts to undermine personal integrity 12
Coercion
Confrontational comments 45 [N
Unnecessary pressure to make changes 38 [
Aggression 19 [l

Harsh communication
Curtness 43
Harsh feedback 28
Unjustified criticism 19

Unhelpful technical contributions
Excessive nitpicking 57
Request for out-of-scope change 43
Shifting of goal posts 25
Setting unreasonable deadlines 2

Personal attacks
Belitting 14 [l
Attempts to demoralize 9 [l
Humiliation |
Teasing 0
Inappropriate jokes about a employee(s) 0

Poor quality review
Requesting a change without justification 27 [l
Freezing out, ignoring, or excluding 17 [l
Withholding of necessary information 12 [l
Lots of automated warnings in comments 4 ||

Very slow reviews

Excessive review delays 68 |G
Long wait for review to start 53 [NN

Threat to professional status
Intimation of negative perf repercussions 2 |
Intimation of disciplinary procedures 0

Figure 1: Frequency of behaviors indicated by developers in
CRs they volunteered in the final section of the survey.

The tone of feedback also formed a key aspect of respondents’
experiences in these scenarios, as one respondent stated, “presum-
ably the reviewer was trying to educate me on issues seen in the code.
What I found objectionable was the way in which it was phrased, the
scope creep, and the dismissive tone.” Another respondent described
confrontational language in one review as akin to “treating code
review like a discussion on a web forum, i.e., ignoring the other per-
son as an individual and arguing overly aggressively.” This theme
aligns with findings from the interviews, during which participants
framed aggressive comments as an initial factor often contributing
to feelings of pushback

Lack of context on the codebase was also identified as a cause of
friction within reviews: “it was annoying that he was not familiar
with the codebase and was questioning stuff about business logic and
naming.” Another respondent described a situation in which the

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Feeling of Pushback 0Flags 3 Flags

frustration 1% 27%

interpersonal conflict 0% 22%

acceptance was withheld for too long 4% 27%
reviewer asked for excessive changes 1% 16%
feeling negatively about future CRs 4% 8%
any pushback behavior 7% 49%

2+ types of pushback behavior 1% 27%

Table 3: Incidence rates for each feeling of pushback as rated
by authors of surveyed CRs; comparison of CRs not flagged
by any metrics and flagged on all 3 metrics.

reviewer was “not willing to stop asking for something when working
in a completely different code base even after we told him it was not
normal for our code base,” concluding that they “[did not let up] until
a more senior (and male) engineer stepped in.” This factor echoes
interview participants’ descriptions of providing additional context
or documentation during code review as a strategy to both prevent
or mitigate feelings of pushback, particularly when submitting code
outside of their team.

Several respondents expressed frustration when reviewers re-
quested non-trivial changes without providing a justification. For
example, one respondent described how, “some of the comments
seemed in general hard to understand, and required a chain of replies
from the reviewer/author until the reason why the change is asked is
explained,” concluding, “this prevents the person asking for review
from learning.”

3.3 What metrics detect author-perceived
pushback?

3.3.1 Occurrence of undesirable behaviors. As discussed in Sec-
tion 3.1, our five feelings of undesirable pushback behavior are rare
occurrences in unflagged CRs with 3% (+2%) of reviews including
two or more types of pushback feelings and 11% (+3%) including at
least one type (n = 606).

However, all these feelings are more frequent in the reviews
we identified with our candidate pushback measures, as seen in
Table 3. Most notable is the case where reviews are long on all three
of our metrics. Of CR authors with long shepherding time, long
reviewing time, and many rounds of review, 27% report frustration,
22% report interpersonal conflict, 27% report delayed acceptance,
16% report more change requested than necessary, and 8% report
they feel negatively about submitting similar changes in the future.
49% of these authors report feeling at least one type of pushback
and 27% report 2 or more types of pushback. The incidence rates of
these feelings of pushback suggest that our metrics are effective at
flagging CRs where the author has feelings of pushback.

3.3.2 Precision & Recall of the Metrics. We quantify the perfor-
mance of our metrics through precision and recall in Table 4. To
get the top-level performance of our metrics we consider if a CR is
flagged by any one or combination of the three metrics to count

C.D. Egelman, E. Murphy-Hill, E. Kammer, M.M. Hodges, C. Green, C. Jaspan, J. Lin

Pushback Feeling Precision Recall

frustration 0.11 0.98

interpersonal conflict 0.10 1.00

acceptance was withheld for too long 0.10 0.93
reviewer asked for excessive changes 0.07 0.97
feeling negatively about future CRs 0.06 0.87

Table 4: Precision and recall by feeling of pushback.

as flagging that CR for possible pushback. For more detailed re-
sults on the performance of each metric or metric combination we
direct the reader to the regression results in Section 3.3.3, which
account for control variables. The metrics have a high recall rate
(between 93% and 100%) and low precision (between 6% and 11%),
meaning that while we are capturing most incidents of pushback
with our metrics, we are also flagging many reviews as potentially
containing pushback that did not include any feelings of pushback
for the author.

A caveat when interpreting Table 4 is that it’s not fully repre-
sentative of the expected precision and recall in the population of
CRs, due to our stratified sampling, which undersamples unflagged
reviews and oversamples flagged reviews. Consequently, in the full
population of CRs, we would expect to see higher precision and
lower recall than shown in Table 4; nonetheless, we expect the
low-precision and high-recall trend to generalize for our metrics.

3.3.3 Robustness of metrics to confounding factors. While we notice
patterns across flagged and unflagged CRs (and within different
combinations of our flags), it is important to account for other
aspects of code review that influence the time to review or shepherd
and the number of comments such as the change request attributes
we discuss in Section 3.2 (e.g., readability, change size, if the author
was a new employee, the seniority of the author, and the number of
reviewers). Our regression results’, in Figure 2, look at how effective
our metrics are at detecting feelings of pushback taking into account
those change request-level attributes. We report below on the odds
ratio for flag combinations that are statistically significant. Taking
these into account, compared to a typical change request, authors
of reviews which take a lot of round trips (9 or more) and a long
reviewing time (more than 48 minutes) are:
e 21 times more likely to be frustrated,
e 13 times more likely to say the reviewer requested more
changes than necessary, and
e 7 times more likely to report reviewers withholding accep-
tance longer than necessary.
When a similar CR additionally takes a long shepherding time,
those likelihoods of negative feelings increase dramatically:

e 45 times more likely to be frustrated,

e 20 times more likely to say the reviewer requested more
changes than necessary, and

e 14 times more likely to report reviewers withholding accep-
tance longer than necessary.

7Full regression results are also in the Supplementary Material.

Predicting Developers’ Negative Feelings about Code Review

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Excessive Feel negative 2+ types of
Acceptance change about future Any pushback pushback
Frustration Conflict withheld requested CRs behavior behavior
1 Flag Long Shepherding 35 10.1
Long Reviewing 3.0 7.0
Long Rounds 3.7 4.1 13.7

Long Reviewing,
Rounds
Long Shepherding,
2 Flags Rounds
Long Shepherding,
Reviewing
| Long Shepherding,
3 Flags Reviewing, Rounds

Figure 2: Regression results predicting the likelihood of CR having undesirable, pushback behaviors. Numbers shown are
the odds ratio from the fitted logistic regression model where the baseline category is an unflagged CR. Gray bars indicate a

coeflicient was not statistically significant at the p < 0.05 level.

When we look at the aggregate measures of feelings of push-
back, we see that a flag on any one of our metrics indicates that
authors are between 3.0 and 4.1 times more likely to experience at
least one feeling of pushback (compared to an unflagged review),
and between 7.0 and 13.7 times more likely to experience multiple
feelings of pushback. If a change request is flagged on having a
large number of rounds of review plus either long reviewing or
shepherding time, the likelihood of at least one feeling of pushback
is between 5.6 and 6.2 times that of an unflagged review, and for
multiple feelings of pushback is between 27.1 and 37.7 times that
of an unflagged review. Interestingly, if a change request is flagged
for both long reviewing time and long shepherding time, but not a
large number of rounds of review, then that review isn’t statistically
more likely to have feelings of pushback than an unflagged review.

To help illustrate what this means, consider these interactions:

e Situation 1: An author requests review for a change, the re-
viewer spends a long time looking at the code and providing
comments over 9+ different rounds of review, the author is
able to quickly address all comments as they come in, but
with each round there is more, detailed feedback to address.

e Situation 2: An author requests review for a change, the
reviewer gives short comments for each round, the author
spends a lot of time addressing the comments, this goes on
for 9+ rounds of back-and-forth.

e Situation 3: An author requests review for a change; the
reviewer takes a long time giving rich, detailed feedback; the
author then spends substantial time addressing all reviewer
comments. All of this is done in just a few rounds of review.

Situations 1 and 2 come across with our analysis as very frustrating
to authors, especially situation 2. Situation 1 also generates feelings
that acceptance is withheld and that excessive changes are being
requested. In both cases, authors are more likely to experience at
least two feelings of pushback. However, situation 3 doesn’t create
any of these negative feelings of pushback. It seems developers don’t
mind spending an extended time shepherding a change through
the process when they receive feedback (even if it came from a very
time-consuming review) as long as it is in a succinct number of
rounds of feedback. This may be due to reviewers being especially
clear about what they want in their initial feedback.

A Note on Conflict & Feelings about Future Changes. In our anal-
ysis on authors, two of our feelings of pushback did not yield
statistically significant results: conflict and negative feelings about
submitting future changes. We next describe why.

Negative Feelings About Future Changes. Some developers
indicated that particular CRs generated negative feelings about
submitting future changes, but none of our metrics or any controls
were predictive of answers to this question. Additionally, we only
asked this question of authors on the survey, so we cannot test the
strength of this measure from other perspectives. We conclude here
that our metrics don’t detect this feeling of pushback.

Conflict. The results on conflict tell a different story. For the
change requests where authors replied to the survey, none of the 0-
flag reviews included conflict, whereas authors did indicate conflict
on some of the reviews that were flagged by our metrics. While
this is generally positive evidence for the utility of our metrics, it
does create a problem for statistical analysis: a naive interpretation

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

here is that our metrics are perfect at detecting potential conflict.
That would be surprising given that conflict can manifest in ways
other than delays or in comment threads. Still, conflict appears to
be rare even for flagged reviews, and we see the metrics’ flagging
of reviews with conflict as an encouraging sign that they effectively
select problematic reviews.

3.3.4 Third-party evaluators detect pushback similar to authors.
How third parties’ perceive feelings of pushback is important be-
cause escalation or looping in a new person is one avenue to address
or mitigate pushback. We replicated the regression analysis® for
the third-party rated CRs, and found that developers who were not
involved in a particular CR detect feelings of pushback in similar
patterns to authors of those CRs. Specifically, when a CR has a large
number of round trips and a long active review time, third party
developers are 4.8 times more likely to report frustration for the
author and 14.3 times more likely to report that there was excessive
change requested by the reviewer (n = 1, 182).

3.3.5 Metrics identify other problematic code reviews. Echoing the
low precision and high recall from our five explicit feelings of push-
back, we find 1) most code reviews are uneventful and our current
metrics filter out many of those; unflagged CRs (75%) were over
three times more likely to be described as “boring” by respondents
compared to the CRs flagged by our metrics (23%) and 2) that of
the 210 CRs that developers volunteered as exhibiting problem-
atic behaviors in the last section of the survey, our metrics would
have flagged 93% of them. The later analysis demonstrates that our
metrics do well at detecting pushback beyond the five feelings we
explicitly covered in the survey.

4 LIMITATIONS

Readers should consider several limitations when interpreting our
results which we detail here.

Our results have limited generalizability to other companies.
Replication at other companies is necessary to determine how well
this result generalizes in a corporate context. In an open source
context, we hypothesize that pushback is more common, based on
previous work. Some open source communities use “frequent rejec-
tions and...harsh language deliberately as a ‘congestion control’
mechanism”[1] and that, for women in particular, negative inter-
personal interactions are “as constant as [they are] extreme”[14].

Likewise, our pushback definition and feelings we used in our
survey were derived from interviews with 14 developers. Also, while
we purposefully attempted to sample a diverse pool of interviewees,
they nonetheless all were employed by one company and do not
represent the full range of diverse experiences at that company.
Additionally, the taxonomy of feelings we used was not designed
to be comprehensive of all possible feelings of pushback.

While we asked survey respondents to determine whether cer-
tain code reviews contained feelings of pushback, they may have
been reluctant to do so over concerns about outing their peers,
despite our assurance that individual results are confidential. Con-
sequently, the frequency of pushback described in our study may
be an undercount.

8Full regression results are also in the Supplementary Material.

C.D. Egelman, E. Murphy-Hill, E. Kammer, M.M. Hodges, C. Green, C. Jaspan, J. Lin

We developed our own item-specific scales for the five feelings
of pushback. We performed limited validation on these question
scales through draft question review with four researchers and pilot
testing with two developers, and so these scales may not measure
developer feelings with full accuracy. It is possible there may be
knock-on effects from a non-accurate question scale and that our
logs-based metrics do not predict those feelings as well as reported
in this paper. Future work should look at validating any new scales
used, or draw on work on existing scales, such as Harrington’s
frustration discomfort scale [10].

Similarly, the pushback metrics for this paper are an initial at-
tempt at predicting developer-identified feelings of pushback. Some
of these metrics — active review time and shepherding time in
particular — are currently unavailable in many software develop-
ment contexts, but we anticipate that these will become increas-
ingly available as development in the cloud becomes more popular
(e.g., GitHub with the Atom editor). Other available code review
data, such as textual comment data analyzed using machine learn-
ing, can almost certainly improve pushback prediction accuracy.
Moreover, our 90% threshold in each metric for “high” pushback is
somewhat arbitrary — tuning this threshold with a larger dataset
would likely improve our metrics.

5 DISCUSSION

Overall, we find that pushback is relatively rare but does occur in
code review at Google.

Our metrics have high recall but low precision when predicting
which code reviews included feelings of pushback. Our metrics
detected code reviews that were significantly more likely to be
frustrating for authors (21 times more likely than unflagged reviews)
and invoke feelings that acceptance was withheld (7 times) and/or
that excessive changes were requested (15 times). We also found
that most code reviews are uneventful; our current metrics filter out
many of those. Unflagged reviews (75%) were over three times more
likely to be described as boring compared to the reviews flagged by
our metrics (23%). Moreover, our metrics would have flagged 93% of
code reviews that developers volunteered as exhibiting problematic
behaviors.

One particularly generalizable finding from this work is the
understanding that third parties generally detect pushback in the
same way that authors do. This demonstrates that a previously
uninvolved person, such as a manager or mentor, is likely to observe
pushback within the review if the author reaches out for help
and advice. In our study, developers who were not involved in
a particular code review do detect feelings of pushback in similar
patterns to authors of those CRs: when a CR was flagged by our
metrics, third-party developers are 5 times more likely to report
frustration for the author and 14 times more likely to report that
excessive changes were requested by the reviewer.

Our metrics can predict feelings of pushback with high recall
but low precision. The low precision makes them potentially ap-
propriate for highlighting interactions that may benefit from a
self-intervention (e.g., escalating the review to a manager, moving
a conversation offline, or seeking guidance from a colleague or
mentor). For instance, once a code review is flagged by our metrics,
a bot could comment on the code review, suggesting that the review

Predicting Developers’ Negative Feelings about Code Review

is statistically exceptional and that the involved parties should con-
sider alternative strategies to make progress. For instance, the bot
could suggest that discussions could be taken offline, that another
expert be brought in to provide an outside perspective, or that a
change should be broken into smaller parts. We suggest a tool like
this bot, which is at the weaker end of tools that could be built, due
to the high false positive rate of our current metrics. Fundamen-
tally, because of the high recall but low precision, a knowledgeable
developer must still be the one to judge whether pushback is truly
occurring and which strategy is appropriate. High recall makes the
metrics appropriate to apply in aggregate when looking at push-
back rates within a group or groups of developers to determine
the impact of any interventions targeted at reducing pushback, for
example anonymous code review.

There are several ways these metrics should not be used. We do
not think our metrics should be used to flag reviews to management
or human resources. We do not think that our metrics should be
used as a justification to say that a change request has gotten
“enough” feedback. And we do not think our metrics can be used as
a substitute for human judgement or empathy.

6 RELATED WORK

Code review has been described in the software engineering lit-
erature in a variety of companies. Bacchelli and Bird described
code review at Microsoft, finding that different teams had differ-
ent cultures and practices around code review [3]. Like Google,
Microsoft does have a centralized code review tool, which shows
change diffs that reviewers can comment on. Likewise, Facebook’s
Phabricator provides developers the ability to comment on pro-
posed changes [26]. Salesforce reviews code using the Collaborator
tool [29], with similar features.

Several papers have examined the benefits of code review. Alami
and colleagues interviewed 21 open source developers about why
code review works for open source communities, finding that rejec-
tion is important because it helps maintain code quality and that
success in contributing to open source depends on being able to
handle rejection [1]. Open source communities have mechanisms
to mitigate rejection, including an ethic of passion and caring. Al-
though Google code review does not have an explicit notion of
rejection, withholding acceptance is similar; we extend Alami and
colleagues’ work by examining the effect of withholding acceptance.
Bosu and colleagues found that within OSS code review has a posi-
tive effect on friendship and participants’ perceptions of expertise,
reliability, and trustworthiness [6]. Our work extends this research
by focusing on the cases where negative outcomes occur.

Other research has examined how decisions about how reviewers
are chosen. German and colleagues found that fairness is a concern
in open source code reviews [8]. They describe four types of fairness:
distributive, procedural, interaction, and information. Pushback is
most related to interaction fairness, as it involves authors having
negative interactions with reviewers during the code review process.
German and colleagues’ discussion of their framework was focused
on which code contributions are picked to be reviewed. Ruangwan
and colleagues find that reviewers tend to decide which review
requests to respond to based on their familiarity with the author,
their review workload, and how active the reviewer has been in

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

the past [18]. Yang and colleagues used social network analysis
to study the most important roles in the code review process [28].
Our work builds on this prior work by focusing on the interaction
between author and reviewer during the code review process.

There have been several studies on whether a code change
is accepted. Baysal and colleagues [4] and Kononenko and col-
leagues [13] discuss what non-technical factors affect whether a
change request is approved and how buggy the code may be. Terrell
and colleagues investigated the effect of gender on the acceptance
of code reviews for open source projects and found that, over-
all, women’s code reviews were approved at a higher rate than
men’s, but that code reviews from outsiders who were identifiable
as women were accepted at a lower rate than male outsiders [25].
von Krogh and colleagues found that in one open source commu-
nity, potential contributors who followed an implicit “joining script”
have a better chance of having their code reviews accepted [27].
Jiang and colleagues found, for patches to the Linux kernel, that the
more experience the patch’s developer had and the more discussion
and iteration the patch went through, the more likely the patch
was accepted [12]. Our paper builds on this work by focusing on
the interaction between an author and the reviewers.

Finally, prior researchers have studied newcomers to open source
projects about their initial experiences, finding that newcomers
sometimes feel their initial contributions are unwelcome. Jenson
and colleagues found that about while most newcomer contribu-
tions received positive replies, 1.5% were characterized as “rude
or hostile” [11]. Steinmacher and colleagues found that of 13 sur-
veyed developers who had dropped out of open source projects,
six reported a poor reception was the cause [24]. Steinmacher and
colleagues observe that more contextualized research is needed
to understand these negative interpersonal interactions [23]; this
paper provides a step in that direction.

7 CONCLUSION

Pushback during code review can have significant negative conse-
quences for individuals and organizations. In this paper, we found
that pushback is rare, can be identified by five negative developer
feelings, and that our three metrics for detecting author-perceived
pushback have high recall but low precision. While our predictions
are far from perfect, we believe such predictions are needed to
support future interventions designed to help reduce pushback so
that we can monitor the effectiveness of those interventions. De-
tecting pushback may also help identify any subpopulations where
pushback may be more prevalent.

8 ACKNOWLEDGEMENTS

Thanks to anonymous participants and reviewers, Adam Bender,
Daniel Berlin, Marian Harbach, Max Kanat-Alexander, Ash Kumar,
Andrew Macvean, Kristo6f Molnar, Ambar Murillo, Rachel Potvin,
Niranjan Tulpule, and Jeff Warshaw.

REFERENCES

[1] Adam Alami, Marisa Leavitt Cohn, and Andrzej Wasowski. 2019. Why does code
review work for open source software communities?. In Proceedings of the 41st
International Conference on Software Engineering. IEEE Press, 1073-1083.

KD Singh Arneja. 2015. Code reviews do not have to be stressful. Avail-
able from https://medium.com/idyllic- geeks/code-reviews-do-not-have-to-be-
stressful-919e0a8377al.

[2

https://medium.com/idyllic-geeks/code-reviews-do-not-have-to-be-stressful-919e0a8377a1
https://medium.com/idyllic-geeks/code-reviews-do-not-have-to-be-stressful-919e0a8377a1

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

[10]

[11

[12

[13

[14]
[15]

[16]

=
=

(18]

[19

[20

[21

[22]

[23

[24]

[25]

[26]

[27

Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-
lenges of modern code review. In International Conference on Software Engineering
(ICSE). IEEE Press, 712-721.

Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W Godfrey. 2013.
The influence of non-technical factors on code review. In Working Conference on
Reverse Engineering (WCRE). 122-131.

Atlassian Blog. 2018. The (written) unwritten guide to pull requests. Avail-
able from https://www.atlassian.com/blog/git/written-unwritten- guide-pull-
requests.

Amiangshu Bosu and Jeffrey C Carver. 2013. Impact of peer code review on
peer impression formation: A survey. In Empirical Software Engineering and
Measurement (ESEM). IEEE, 133-142.

Erik Dietrich. 2018. How to Deal with an Insufferable Code Reviewer. Available
from https://daedtech.com/insufferable-code-reviewer/.

Daniel German, Gregorio Robles, German Poo-Caamafio, Xin Yang, Hajimu lida,
and Katsuro Inoue. 2018. "Was My Contribution Fairly Reviewed?" A Framework
to Study the Perception of Fairness in Modern Code Reviews. In 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE). IEEE, 523-534.
Daniel Graziotin, Fabian Fagerholm, Xiaofeng Wang, and Pekka Abrahamsson.
2018. What happens when software developers are (un) happy. Journal of Systems
and Software 140 (2018), 32-47.

Neil Harrington. 2005. The frustration discomfort scale: Development and psy-
chometric properties. Clinical Psychology & Psychotherapy: An International
Journal of Theory & Practice 12, 5 (2005), 374-387.

Carlos Jensen, Scott King, and Victor Kuechler. 2011. Joining free/open source
software communities: An analysis of newbies’ first interactions on project
mailing lists. In 44th Hawaii International Conference on System Sciences. IEEE,
1-10.

Yujuan Jiang, Bram Adams, and Daniel M German. 2013. Will my patch make it?
and how fast?: Case study on the linux kernel. In International Working Conference
on Mining Software Repositories (MSR). IEEE Press, 101-110.

Oleksii Kononenko, Olga Baysal, Latifa Guerrouj, Yaxin Cao, and Michael W God-
frey. 2015. Investigating code review quality: Do people and participation matter?.
In International Conference on Software Maintenance and Evolution (ICSME). IEEE,
111-120.

Dawn Nafus. 2012. "Patches don’t have gender’: What is not open in open source
software. New Media & Society 14, 4 (2012).

Lyn Quine. 1999. Workplace bullying in NHS community trust: staff questionnaire
survey. BMJ 318, 7178 (1999), 228-232.

Philipp Ranzhin. 2019. I ruin developers’ lives with my code reviews and I'm
sorry. Available from https://habr.com/en/post/440736/.

Peter C Rigby and Christian Bird. 2013. Convergent software peer review prac-
tices. In International Symposium on Foundations of Software Engineering (FSE).
202-212.

Shade Ruangwan, Patanamon Thongtanunam, Akinori Thara, and Kenichi Mat-
sumoto. 2019. The impact of human factors on the participation decision of
reviewers in modern code review. Empirical Software Engineering 24, 2 (2019),
973-1016.

Caitlin Sadowski, Emma Séderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. 2018. Modern code review: a case study at google. In Proceedings of
the 40th International Conference on Software Engineering: Software Engineering
in Practice. ACM, 181-190.

Willem Saris, Melanie Revilla, Jon A. Krosnick, and Eric M. Shaeffer. 2010. Com-
paring Questions with Agree/Disagree Response Options to Questions with
Item-Specific Response Options. Survey Research Methods 4, 1 (May 2010), 61-79.
https://doi.org/10.18148/srm/2010.v4i1.2682

Scott Schieman and Sarah Reid. 2008. Job authority and interpersonal conflict in
the workplace. Work and Occupations 35, 3 (2008), 296-326.

Sage Sharp. 2015. Closing A Door. Available from http://sage.thesharps.us/2015/
10/05/closing-a-door/.

Igor Steinmacher, Marco Aurelio Graciotto Silva, Marco Aurelio Gerosa, and
David F Redmiles. 2015. A systematic literature review on the barriers faced by
newcomers to open source software projects. Information and Software Technology
59 (2015), 67-85.

Igor Steinmacher, Igor Wiese, Ana Paula Chaves, and Marco Aurélio Gerosa. 2013.
Why do newcomers abandon open source software projects?. In 6th International
Workshop on Cooperative and Human Aspects of Software Engineering (CHASE).
IEEE, 25-32.

Josh Terrell, Andrew Kofink, Justin Middleton, Clarissa Rainear, Emerson Murphy-
Hill, Chris Parnin, and Jon Stallings. 2017. Gender differences and bias in open
source: Pull request acceptance of women versus men. Peer] Computer Science 3
(2017), el11.

Alexia Tsotsis. 2011. Meet Phabricator, The Witty Code Review Tool Built
Inside Facebook. https://techcrunch.com/2011/08/07/oh-what-noble-scribe-hath-
penned-these-words/.

Georg Von Krogh, Sebastian Spaeth, and Karim R Lakhani. 2003. Community,
joining, and specialization in open source software innovation: a case study.
Research policy 32, 7 (2003), 1217-1241.

C.D. Egelman, E. Murphy-Hill, E. Kammer, M.M. Hodges, C. Green, C. Jaspan, J. Lin

[28] Xin Yang, Norihiro Yoshida, Raula Gaikovina Kula, and Hajimu Iida. 2016. Peer

review social network (PeRSoN) in open source projects. Transactions on Infor-
mation and Systems 99, 3 (2016), 661-670.

[29] Tianyi Zhang, Myoungkyu Song, Joseph Pinedo, and Miryung Kim. 2015. Interac-

tive code review for systematic changes. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 1. IEEE, 111-122.

https://www.atlassian.com/blog/git/written-unwritten-guide-pull-requests
https://www.atlassian.com/blog/git/written-unwritten-guide-pull-requests
https://daedtech.com/insufferable-code-reviewer/
https://habr.com/en/post/440736/
https://doi.org/10.18148/srm/2010.v4i1.2682
http://sage.thesharps.us/2015/10/05/closing-a-door/
http://sage.thesharps.us/2015/10/05/closing-a-door/

Supplement to “Predicting Developers’ Negative Feelings about Code Review” Carolyn D. Egelman, Emerson Murphy-Hill,
Elizabeth Kammer, Margaret Morrow Hodges, Collin Green, Ciera Jaspan, James Lin ICSE ’20: International Conference on
Software Engineering

This information is added as a supplement to aid in reproducibility. Note that we have chosen not to release our dataset and code for
calculating metrics. The reason for not releasing our dataset is that — at its core — the dataset is the code reviews themselves, which contain
both proprietary information and potentially sensitive discussions that may inadvertently reveal employee identities. The reason for not
releasing our code for calculating the pushback metric is that its constituent parts — review time, shepherding, and rounds - are all gathered
from tools not available outside our company; consequently, the code would be neither usable nor understandable outside of the context of
our company.

A INTERVIEW SCRIPT
A.1 Preparation & Front Matter (5 minutes)

Go through an information sheet and informed consent with participant, start recording

A.2 Discuss code review roles and definitions (5 minutes)
To start the conversation today, I'd like to understand how you think about a couple of aspects of code review.

In your view, what is the purpose of going through code review?

In your view, what are the reviewer’s responsibilities when they review a [CR]?

What would be out of scope of the reviewer’s responsibilities during code review?

What are the author’s responsibilities when going through code review?

What is out of scope for the author’s responsibilities when going through code review?

If a [CR] author said “The reviewer pushed back on my [CR] a lot” what would you think the author meant? / How would you define

pushback?

If a [CR] reviewer said “I pushed back on that [CR] a lot” what would you think the reviewer meant?

e We're talking to several people about their experiences, so as we go through the rest of the study, we want to make sure people have
the same definitions for terms in mind. So when we’re talking about pushback, we’re referring to instances where a reviewer is, in
your view, unnecessarily blocking approval of the [CR].

e How does that feel as a definition of pushback to you?

A.3 Thinking about [CR]s
Categories:

e Reviewer takes longer than expected to start review

Reviewer takes longer than expected to finish review

Reviewer has pushed back on my previous change in a similar way
Reviewer feedback takes many rounds to resolve

Reviewer requires changes without justifying them

Reviewer asks for the change to be split up

Reviewer phrases feedback as about you rather than the code
Reviewer asks for a change that will delay a launch

Reviewer requests changes based on their opinion rather than style guide/policy
Reviewer asks for changes without suggesting a fix

Reviewer provides feedback inconsistent with other reviewers
Reviewer phrases feedback in an aggressive way

(Participant suggestion)

Steps:

o Have the participant look at these categories on cards. We're going to go through a series of different rating scales for them. For each
one, I'll have you take a few minutes to go through the rating, and if you can talk me through how you’re deciding where to put them.
— Are there any categories we should add? If so, write on a card and rate with the rest.

e Rank: Very common, Somewhat common, Neither common nor uncommon, Somewhat uncommon, Very common
— Look at the ones on the [common] side: what do those kinds of CRs have in common?
— Same on the [uncommon] side.

o Rank: Extremely frustrating, Very frustrating, Moderately frustrating, Slightly frustrating, Not at all frustrating
— Look at the ones on the [more frustrating] side: what do those kinds of CRs have in common?

1

ICSE ’20, May 23-29, 2020, Seoul, South Korea C.D. Egelman, E. Murphy-Hill, E. Kammer, M.M. Hodges, C. Green, C. Jaspan, J. Lin

— Same on the [less frustrating] side.

e Rank: Very fair, Somewhat fair, Neither fair nor unfair, Somewhat unfair, Very unfair
— Look at the ones on the [fair] side: what do those kinds of CRs have in common?
— Same on [unfair] side.

A.4 Highest pushback deep dive (5 minutes)

Okay, we’ve talked a lot about these hypothetical situations with code reviews. Now I'd like to ask you about experiences you’ve had with
code review.
o IfI ask about the most unfair pushback that you’ve received during code review as the author of a change at Google, does a particular
experience come to mind?
— If so: Tell me about that experience.
— If not: Tell me about the most recent time you felt like a reviewer was unfair during a code review.
In your opinion, what factors contributed or led to that situation?
What were your options in responding to the reviewer?
How did you decide what to do?
How was the situation ultimately resolved?
How did that experience affect your expectations about future code reviews, or did it not have an effect?

A.5 General Questions and Wrap-up (10 minutes)

Let’s talk about code review in general for a few minutes to wrap up.
e What factors make a change more or less likely to elicit pushback from reviewers?
e Have you seen code review practices differ across different locations or teams?
e If you could wave a magic wand and change something about code reviews at Google, what would you change, and why?
o Is there anything else you’d like to share about your experiences with code review at Google?
o Anything you think we could ask future participants to get at their experiences with pushback in code review?

Debrief and thank participant

Predicting Developers’ Negative Feelings about Code Review ICSE ’20, May 23-29, 2020, Seoul, South Korea

B SURVEY
B.1 Full Survey

B.1.1 Welcome Text. You’ve been selected to tell us about your experiences with the code review process as a Google engineer. Answering
the following questions should take about 13 minutes and will have four parts:

(1) This page

(2) We will ask you about a [CR] you were involved in

(3) We will ask you about a [CR] you were not involved in

(4) We will ask you to provide a [CR]

The aggregate survey results will inform proposed improvements to the code review process and be shared with relevant leadership
teams within Google. Your participation is voluntary and your responses to this survey are confidential, as per our employee privacy design
doc and are compliant with Google’s employee privacy policy.

This survey may cover some [CR]s which provoked negative experiences. Congruent with blameless postmortems, we’re not interested in
placing blame after the fact, but we are seeking to understand the whole code review process and looking for examples to avoid future
unnecessary conflict.

In the course of our review, serious issues or potential policy violations may come to our attention. These issues may warrant further
investigation by HR, including following up with the submitter. You are encouraged to report concerns via any of the channels listed on
<internal website> (including the anonymous helpline open to employees which is run by a helpline provider that is entirely independent of
Google) or talk to your HR representative, so it can be addressed appropriately. If you have any questions about this survey, please email
<research team email alias>.

B.1.2 Part 1 - Initial Questions.

Item# Question Response(s)

Qo1 How much has code review at Google improved the quality of your code? None
A little
A moderate amount
Alot

Don’t know

Qo2 How satisfied are you with the code review process at Google? Very dissatisfied
Somewhat dissatisfied
Neither satisfied nor dissatisfied
Somewhat satisfied
Very satisfied

Qo3 Since joining Google, on average how often have you had a bad experience with Once or more a week
the code review process? Once or more a month
Once or more a quarter
Once or more a year
Never

ICSE ’20, May 23-29, 2020, Seoul, South Korea C.D. Egelman, E. Murphy-Hill, E. Kammer, M.M. Hodges, C. Green, C. Jaspan, J. Lin

B.1.3 Part 2 - A [CR] for which you were an author or reviewer. This set of questions asks about cr/[XXX]. Please take a moment to review
the [CR] and then return to this page to answer the following questions.

Item# Question Response(s)

Q04 Given the importance and initial quality of this [CR], the amount of Substantially less than was necessary
change requested by reviewers was: A little less than was necessary
The right amount
A little more than was necessary
Substantially more than was necessary
Don’t know

Q05 The reviewers [accepted]: Quite a bit before the [CR] was of sufficient quality
A little before the [CR] was of sufficient quality
When the [CR] was of sufficient quality
A little after the [CR] was of sufficient quality
Quite a bit after the [CR] was of sufficient quality
Don’t know

Q06 Setting aside inherent difficulties in coding, how frustrating was it for None
you to get this [CR] through review? A little
A moderate amount
Alot
Don’t know

Qo7 How much interpersonal conflict was there between the author and None
reviewer(s) in this [CR]? A little
A moderate amount
Alot
Don’t know

Qo8 [Authors only] When I received feedback about this [CR], I felt posi- Strongly disagree
tively about submitting a similar change in the future. Somewhat disagree
Neither agree or disagree
Somewhat agree
Strongly agree
Don’t remember

Based on our prior research at Google, we know that most [CR]s contain respectful interactions. But we also want to
Text understand those rare, negative behaviors. Congruent with blameless postmortems, we’re not interested in placing blame
after the fact, but we are looking for examples to avoid future unnecessary conflict.

Q09 Given any frustration and interpersonal conflict you noted above, Long text
please copy and paste below any text from the [CR] that signals that
behavior.

Q10 Why do you think that behavior occurred during this code review? Long text

Q11 Please share anything else important that we should know about this Long text
[CR].

Q12 Please check this box if we may we contact you by email about these Checkbox
responses if we have follow-up questions.

Predicting Developers’ Negative Feelings about Code Review ICSE ’20, May 23-29, 2020, Seoul, South Korea

B.1.4 Part 3 - A [CR] for which you had no involvement. This set of questions asks about cr/[XXX]. Please take a moment to review the [CR]
and then return to this page to answer the following questions.

Item# Question Response(s)

Q13 Given the importance and initial quality of this [CR], the amount of Substantially less than was necessary
change requested by reviewers was: A little less than was necessary
The right amount
A little more than was necessary
Substantially more than was necessary
Don’t know

Q14 The reviewers [accepted]: Quite a bit before the [CR] was of sufficient quality
A little before the [CR] was of sufficient quality
When the [CR] was of sufficient quality
A little after the [CR] was of sufficient quality
Quite a bit after the [CR] was of sufficient quality
Don’t know

Q15 Setting aside inherent difficulties in coding, how frustrating did it seem None
for the author to get this [CR] through review? A little
A moderate amount
Alot
Don’t know

Q16 How much interpersonal conflict was there between the author and None
reviewer(s) in this [CR]? A little
A moderate amount
Alot
Don’t know

Based on our prior research at Google, we know that most [CR]s contain respectful interactions. But we also want to
Text understand those rare, negative behaviors. Congruent with blameless postmortems, we’re not interested in placing blame
after the fact, but we are looking for examples to avoid future unnecessary conflict.

Q17 Given any frustration and interpersonal conflict you noted above, Long text
please copy and paste below any text from the [CR] that signals that
behavior.

Q18 Why do you think that behavior occurred during this code review? Long text

Q19 Please share anything else important that we should know about this Long text
[CR].

Q20 Please check this box if we may we contact you by email about these Checkbox
responses if we have follow-up questions.

ICSE ’20, May 23-29, 2020, Seoul, South Korea C.D. Egelman, E. Murphy-Hill, E. Kammer, M.M. Hodges, C. Green, C. Jaspan, J. Lin

B.1.5 Part 4 - Choosing a [CR]. This form is a continuation of a survey! about code review at Google from the [internal research team
name] team. You should have landed on this page from the final page of that survey. If you did not land on this page through the primary
survey link (or redirecting to this page to submit additional [CR]s), please exit this page and do not complete the form.

The core survey is confidential, this form is anonymous; we do not collect your username as part of this form.

If you have any questions about this survey, please email <research team email alias>.

Item# Question Response(s)

Based on our prior research at Google, we know that most [CR]s contain respectful interactions. But we also want to
understand those rare, negative behaviors. Congruent with blameless postmortems, we’re not interested in placing blame
after the fact, but we are looking for examples to avoid future unnecessary conflict.

Reviewing the list of behaviors in the next question, can you provide a [CR] which exhibits one or more of those
behaviors? (If there are other behaviors which have prompted a negative experience, please use the Other box in the next
question to elaborate).

text

This can be a [CR] that you were an author of, a reviewer of, or neither. If you do not have such as [CR] to
share, please jump to the section labeled “Your own experience”.

Q21 Which, if any, behaviors occurred during this code review? (Check all ~ [See list below]
that apply.)

Q22 Given the behavior you noted above, please copy and paste below any Long text
text from the [CR] that signals that behavior.

Q23 Why do you think that behavior occurred during this code review? Long text

Q24 Please share anything else important that we should know about this Long text
[CR].

Q25 Is there anything you would like to share about negative/positive Long text
experiences you have had with the code review process?

Behavior list for Q21: Which, if any, behaviors occurred during this code review? (Check all that apply.)

o Attacks on work quality
— Attempts to undermine effort
— Attempts to undermine work
— Attempts to undermine personal integrity
- Unjustified monitoring of your work
e Coercion
— Confrontational comments
- Aggression
- Unnecessary pressure to make changes
e Harsh communication
— Harsh feedback
- Curtness
— Unjustified criticism
e Unbhelpful technical contributions
- Excessive nitpicking
— Request for out-of-scope change
Shifting of goal posts
— Setting unreasonable deadlines
o Personal attacks
— Teasing
Belittling
— Inappropriate jokes about a Google employee(s)
— Humiliation
— Attempts to demoralize
e Poor quality review

Note, that we implemented part 4 in a different form so we can anonymously collect these responses.

Predicting Developers’ Negative Feelings about Code Review ICSE ’20, May 23-29, 2020, Seoul, South Korea

Requesting a change without justification
Withholding of necessary information
— Lots of automated warnings in comments
- Freezing out, ignoring, or excluding
o Very slow reviews
— Long wait for review to start
— Excessive review delays
o Threat to professional status
— Intimation of disciplinary procedures
— Intimation of negative perf repercussions
e Other [text box]

B.2 Survey questions and undesirable response options for analysis

uestion Text Response Options
P P
Undesirable behaviors are bolded

Given the importance and initial quality of this [CR], the amount of Substantially less than was necessary
change requested by reviewers was: A little less than was necessary
The right amount
A little more than was necessary
Substantially more than was necessary
Don’t know

The reviewers [accepted]: Quite a bit before the [CR] was of sufficient quality
A little before the [CR] was of sufficient quality
When the [CR] was of sufficient quality
A little after the [CR] was of sufficient quality
Quite a bit after the [CR] was of sufficient quality
Don’t know

[Own CR Authors/Reviewers] Setting aside inherent difficulties in None
coding, how frustrating was it for you to get this [CR] through review? A little
A moderate amount
[Third Party] Setting aside inherent difficulties in coding, how A lot
frustrating did it seem for the author to get this [CR] through review? Don’t know

How much interpersonal conflict was there between the author and None

reviewer(s) in this [CR]? A little
A moderate amount
A lot
Don’t know

[Authors only] When I received feedback about this [CR], I felt posi- Strongly disagree
tively about submitting a similar change in the future. Somewhat disagree
Neither agree or disagree
Somewhat agree
Strongly agree
Don’t remember

ICSE ’20, May 23-29, 2020, Seoul, South Korea C.D. Egelman, E. Murphy-Hill, E. Kammer, M.M. Hodges, C. Green, C. Jaspan, J. Lin

B.3 Sampling Plan Details

As we were validating 3 candidate metrics plus any combinations of these metrics at a CR-level and we wanted multiple perspectives on
these CRs (author, reviewer, third party), we developed a stratified sampling plan to ensure we would have an adequate sample of each metric
type and combination for analysis. Any CR might be flagged (or not) as involving pushback on each of the three metrics we were evaluating.
Thus, CRs can fall into any one of 8 "categories” with respect to the metrics, as detailed in Table X, below. We selected CRs to cover all the
combinations and we assigned CRs to participants to ensure our data set included authors, reviewers, and uninvolved third party developers.

CR Criteria Number of
surveyed CRs
0 Flags 250
1 Flag: Long shepherding time 200
1 Flag: Long reviewing time 200
1 Flag: Long # rounds of review 200
2 Flags: Long shepherding time & long reviewing time 100
2 Flags: Long shepherding time & long # rounds 100
2 Flags: Long review time & long # rounds 100
3 Flags: Long shepherding time & long reviewing time & long # rounds 100

Next, we translated the CR-level data we wanted into what this would look like for the 2,500 survey invitations:

Invitation Number of Authors Reviewers Third party CRs

Criteria invitations

Both CRs unflagged 250 125 unflagged CR 125unflagged CRre- 250 unflagged CRs
authors viewers

Own CR unflagged, 250 125 unflagged CR 125unflagged CRre- 250 probable push-

other CR probable authors viewers back CRs

pushback

Own CR probable 250 125 probable push- 125 probable push- 250 unflagged CRs

pushback, other CR back CR authors back CR reviewers

unflagged

Both CRs probable 1750 875 probable push- 875 probable push- 1750 probable push-

pushback back CR authors back CR reviewers back CRs

Finally, we developed an algorithm to ensure each CR identified for its own authors and reviewers was distributed as a third party to CR
to developers who were not involved in that CR. Note that each CR was distributed twice as a third party CR.

Candidate CRs: Any developer in Google across all product areas. New employees are okay. Limiting to CRs ended and submitted in the 3
months prior to 2018-11-12 which avoided any CRs from the Thanksgiving week.

Predicting Developers’ Negative Feelings about Code Review ICSE ’20, May 23-29, 2020, Seoul, South Korea

C REGRESSION RESULTS
C.1 Code Review Attributes

Table 1

Dependent variable:

Frustration Conflict Approval Excessive Change Feel Negative Any Pushback 2+ Pushback
Withheld Requested for Future CRs Feelings
(1) () (©) (4) (5) (6) (7)

Size: S 1.626 2.072 1.765 3.032 4.723 2.611 2.168

p =0.434 p =0.240 p=0314 p=0.173 p = 0.050** p =0.013* p = 0.205
Size: M 2.383 1.831 1.854 2.978 2.647 2.227 2.427

p =0.137 p =0.320 p = 0.254 p=0171 p = 0.229 p = 0.035"* p=0.132
Size: L 2.609 2.542 2.117 4.753 1.305 2.460 3.049

p=0.108 p=0.128 p =0.180 p = 0.050** p =0.769 p = 0.022"* p = 0.062*
Size: XL 1.886 4.280 1.815 4.557 2.091 2912 3.935

p=0.491 p=0.081* p = 0.500 p=0.146 p=0563 p = 0.068" p = 0.094*
Needs Readability 1.681 1.135 1.408 1.063 1.316 1.388 0.966

p=0.133 p =0.730 p =0.327 p=0.884 p = 0.548 p=0.172 p=0.921
Readability Review 0.901 0.373 0.784 1.441 0.00000 0.836 0.699

p = 0.846 p = 0.202 p=0.678 p=0551 p = 0.988 p = 0.652 p =0.583
New Employee 1.594 0.920 1.257 0.929 1.120 1.060 1.391

p=0.191 p = 0.844 p=0551 p=0.879 p = 0.824 p = 0.832 p = 0.397
Num. Reviewers: 2 0.830 1.594 1.042 1.056 0.512 1.181 1.031

p = 0.580 p = 0.202 p =0.901 p=0.891 p=0.149 p = 0.470 p = 0.929
Num. Reviewers: 3 1.341 1.918 0.554 0.821 0.668 1.031 1.144

p =0.465 p=0.144 p =0.260 p=0.720 p =0.503 p=0922 p=0.756
Num. Reviewers: 4+ 0.745 1.354 1.835 0.611 1.135 1.712 0.461

p=0712 p =0.706 p=0325 p = 0.649 p =0.908 p = 0.265 p = 0.465
Author Level: 2 1.442 1.350 1.437 1.277 0.306 1.230 1.182

p = 0.289 p = 0.394 p = 0.309 p = 0.565 p = 0.026™* p =0.389 p =0.635
Author Level: 3 0.974 0.279 0.945 0.900 0.654 0.676 0.724

p = 0.952 p = 0.030** p = 0.896 p =0.836 p = 0.395 p=0.184 p = 0.460
Author Level: 4 1.122 0.264 1.058 0.805 0.517 0.602 0.493

p=0.868 p=0213 p=0935 p=0793 p=0.426 p =0.305 p=0374
Author Level: 5+ 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

p=0984 p=0984 p =0.984 p = 0.990 p = 0.996 p =0.983 p =0.984
Constant 0.033 0.037 0.043 0.019 0.043 0.114 0.042

p =0.000"** p=0.00000** p=0.00000"* p = 0.00000*** p = 0.0001*** p =0.000"* p=0.00000"*

Observations 606 606 606 606 606 611 611
Log Likelihood —182.199 —155.920 —179.090 —135.045 —108.964 —314.064 —174.660
Akaike Inf. Crit. 394.399 341.840 388.180 300.090 247.927 658.127 379.320

Note: *p<0.1; **p<0.05; ***p<0.01

ICSE ’20, May 23-29, 2020, Seoul, South Korea C.D. Egelman, E. Murphy-Hill, E. Kammer, M.M. Hodges, C. Green, C. Jaspan, J. Lin

C.2 Robustness of metrics to confounding factors

Table 2

Dependent variable:

Frustration Conflict Approval Excessive Change Feel Negative Any Pushback 2+ Pushback
Withheld Requested for Future CRs Feelings
(1) @) ®) “)) () ™)
Long Shepherding 9.859 26,574,897.000 2.019 7.002 0.869 3.464 10.097
p = 0.039** p=0.987 p=0315 p =0.084* p=0.864 p = 0.009"** p =0.037*
Long Reviewing 7.993 12,554,240.000 1.887 5.577 2.529 2.994 6.974
p = 0.060 p =0.987 p=0348 p=0.125 p=0.181 p=0.019** p = 0.082*
Long Rounds 6.679 29,180,621.000 3.744 8.667 2.551 4.123 13.736
p = 0.096* p=0.987 p = 0.046** p = 0.054* p = 0.200 p = 0.003*** p=0.018"*
Long Reviewing, 21.484 65,854,764.000 6.804 13.377 3.002 5.555 38.696
Rounds p = 0.008*** p =0.986 p = 0.008*** p = 0.028™* p=0.219 p = 0.002*** p = 0.002%**
Long Shepherding, 41.353 61,590,205.000 3.315 4.159 2.437 6.164 27.119
Rounds p = 0.001*** p =0.986 p=0.114 p = 0269 p=0315 p = 0.0005*** p = 0.004***
Long Shepherding, 7.379 6,619,864.000 0.646 3.891 0.00000 1.984 0.00000
Reviewing p = 0.099* p=0.988 p =10.709 p =0.292 p =0.992 p =0.241 p =0.988
Long Shepherding, 45.395 103,009,703.000 14.301 19.532 3.741 12.733 64.655
Reviewing, Rounds p = 0.001"** p =0.986 p = 0.0003*** p =0.011** p=0.132 p = 0.00001*** p = 0.0003***
Size: S 1.287 1.532 1.591 2.197 4.412 2.146 1.658
p=0.702 p=0518 p=0428 p=0.346 p = 0.067* p = 0.059* p=0431
Size: M 1.385 1.026 1.460 1.840 2.151 1.557 1.427
p = 0.600 p =0.969 p = 0.509 p = 0458 p=0.361 p=0.267 p=0.567
Size: L 1.080 1.079 1.068 2.247 0.972 1.318 1.212
p = 0.906 p =0.908 p=0916 p=0332 p=0976 p=0518 p=0.768
Size: XL 0.793 2.011 0.961 2.034 2.073 1.648 1.808
p=03816 p=0448 p = 0.967 p=0518 p = 0587 p=0431 p=0516
Needs Readability 1.226 0.862 1.103 0.946 1.276 1.177 0.676
p=0.584 p =0.705 p =079 p = 0.900 p =0.620 p =0.521 p=0313
Readability Review 1.101 0.419 0.845 1.481 0.00000 0.875 0.803
p=0.3865 p=0273 p=0784 p=0532 p = 0.992 p=0745 p=0.749
New Employee 1.312 0.777 1.049 0.790 1.109 0.921 1.125
p = 0.464 p = 0564 p = 0.907 p=0.637 p=03844 p=0772 p=0773
Num. Reviewers: 2 0.557 0.989 0.769 0.821 0.380 0.882 0.631
p=0.105 p=0.977 p=0454 p=0628 p = 0.047** p=0.610 p =0.203
Num. Reviewers: 3 0.775 0.951 0.306 0.552 0.446 0.648 0.532
p = 0.560 p=0918 p=0.033* p = 0.305 p=0213 p=0.19% p=0.176
Num. Reviewers: 4+ 0.466 0.600 0.803 0.307 0.633 0.971 0.170
p=0362 p=0.544 p=0.739 p=0.285 p=0.682 p=0.954 p=0.104
Author Level: 2 1.333 1.368 1.508 1.300 0.270 1.222 1.111
p=0419 p=0386 p=0.269 p=0.545 p =0.016** p = 0.420 p=0.775
Author Level: 3 1.032 0.309 0.988 0.918 0.604 0.686 0.753
p=0943 p = 0.049** p=0978 p=0.869 p=0332 p=0215 p=0.536
Author Level: 4 1.473 0.384 1.293 0.981 0.471 0.691 0.594
p = 0.592 p=0381 p =0.720 p=0983 p = 0380 p=0470 p=0530
Author Level: 5+ 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
p=0.985 p =0.998 p=00985 p =0.990 p=0.997 p=0.983 p =0.99%
Constant 0.007 0.000 0.026 0.006 0.035 0.058 0.009
p = 0.00001*** p=0.985 p = 0.00000*** p = 0.00002*** p = 0.0001*** p=0.000"** p=0.00002"**
Observations 606 606 606 606 606 611 611
Log Likelihood —164.532 —139.097 —165.804 —128.557 —103.490 —298.041 —152.277
Akaike Inf. Crit. 373.065 322.195 375.607 301.115 250.980 640.082 348.554

Note: *p<0.1; **p<0.05; ***p<0.01

Predicting Developers’ Negative Feelings about Code Review

C.3 Third-party evaluators detect pushback similar to authors

Table 3

ICSE ’20, May 23-29, 2020, Seoul, South Korea

Dependent variable:

Frustration Conflict Approval Excessive Change ~ Any Pushback 2+ Pushback
Withheld Requested Feelings
1) @) ®3) @)) (©)
Long Shepherding 2.809 1.809 3.664 4.084 3.177 1.491
p = 0.055* p = 0304 p = 0.066* p=0.220 p = 0.004*** p = 0.550
Long Reviewing 1.601 2.454 5.290 5.765 3.478 2.232
p = 0.402 p=0.102 p=0.013* p=0114 p = 0.002*** p=0.19%
Long Rounds 1.805 1.416 2.321 8.313 2.702 1.341
p=0326 p = 0.580 p=0.264 p = 0.057* p =0.019* p=0.670
Long Reviewing, 4.765 2.083 1.937 14.295 4.511 2.586
Rounds p = 0.010*** p=0.276 p = 0455 p =0.019** p = 0.001*** p=0.187
Long Shepherding, 4.032 2.458 4.936 1.854 4.440 1.903
Rounds p = 0.022%* p=0.161 p = 0.038* p=0.674 p = 0.001%** p=0.386
Long Shepherding, 0.888 0.837 7.045 10.927 3.062 1.385
Reviewing p=0.878 p = 0.820 p = 0.008*** p = 0.035"* p =0.014** p = 0.669
Long Shepherding, 8.304 3.478 4.628 28.029 8.255 5.935
Reviewing, Rounds p = 0.0003*** p = 0.047** p = 0.051* p = 0.003*** p =0.00001*** p = 0.007***
Size: S 0.865 3.175 0.903 1.118 1.127 1.850
p=0771 p = 0.082* p = 0.840 p=0.882 p=0724 p=0322
Size: M 1.268 3.995 0.869 1.829 1.397 2.205
p = 0.603 p = 0.032"* p=0768 p=0371 p=0291 p=0.182
Size: L 1.166 4.738 1.134 1.563 1.488 2.744
p=0758 p = 0.020** p =0.802 p=0535 p=0.239 p=0.104
Size: XL 3.011 3.549 0.771 2.456 2.092 3.743
p = 0.074* p =0.150 p=0733 p=0.292 p =0.106 p = 0.083*
Needs Readability 0.963 0.902 1.018 1.171 1.063 0.777
p =0.901 p=0731 p=0958 p = 0.670 p=0.766 p=0448
Readability Review 1.035 0.758 0.937 0.853 0.984 0.856
p=0.942 p = 0.592 p =0.903 p=0.774 p =0.961 p=0772
New Employee 0.985 0.711 0.681 0.829 0.780 0.807
p = 0.969 p = 0.404 p=0.370 p = 0.665 p=0.326 p = 0.626
Num. Reviewers: 2 0.833 1.252 1.136 0.775 0.976 1.266
p=0557 p=0475 p=0.710 p=0517 p = 0.906 p = 0.495
Num. Reviewers: 3 0.620 0.960 1.142 0.671 0.722 0.977
p=0258 p=0926 p=0.781 p=0424 p=0254 p = 0.960
Num. Reviewers: 4+ 1.211 1.391 4.162 2.344 2.144 3.130
p =0.720 p =0.585 p = 0.007*** p =0.120 p = 0.039** p = 0.029**
Author Level: 2 2.065 1.354 1.025 1.048 1.169 2.147
p = 0.027** p=0352 p=0.941 p=0.89% p =0.453 p = 0.033**
Author Level: 3 1.829 1.083 0.720 0.626 0.953 1.134
p=0114 p=0837 p = 0.430 p=0342 p=0.847 p=0.779
Author Level: 4 1.105 0.866 0.570 0.688 0.734 0.787
p=0.886 p=0.831 p=0476 p = 0.652 p=0.498 p=0768
Author Level: 5+ 0.00000 0.00000 2.441 0.00000 1.033 0.00000
p=0.987 p=0.986 p=0435 p=0.986 p=0977 p=0.987
Constant 0.018 0.009 0.017 0.005 0.041 0.008
p=0000"* p=0000"* p-=0.000""* p = 0.00001*** p=0000"* p=0.000%*
Observations 1,082 1,083 1,084 1,086 1,182 1,182
Log Likelihood ~249.203 -237.277 ~215.768 ~171.095 -470.425 ~213.961
Akaike Inf. Crit. 542.405 518.555 475.536 386.191 984.850 471.921

Note:

*p<0.1; *p<0.05; **p<0.01

