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Abstract

Although randomized controlled trials are regarded as the “gold stan-
dard” for causal inference, advertisers have been hesitant to embrace them
as their primary method of experimental design and analysis due to nu-
merous technical difficulties that can arise when implementing them in
the online advertising context. To help mitigate some of these challenges
while still providing the rigor of a randomized controlled trial, Vaver and
Koehler (2011) introduced the concept of a “geo experiment.” However,
it may not always be possible to rely on randomization when designing a
geo experiment. For example, it may not be realistic to expect random-
ization to create balanced experimental groups when some of the geos are
markedly different from all of the others, or when there are only a few
geos available for experimentation. In addition, randomization may not
always be feasible given some of the specific requirements that advertisers
often must impose on their experiments in practice—such as the need to
run a smaller scale geo experiment within a given budget, or the need
to include certain geos in specific experimental groups. Consequently,
advertisers may sometimes prefer to forgo some of the benefits of ran-
domization, and in this paper we introduce a more systematic “matched
markets” approach that, subject to the advertiser’s constraints, greedily
searches for experimental group assignments that appear to satisfy some of
the critical assumptions of the “Time-Based Regression” (TBR) model for
analyzing geo experiments that was introduced in Kerman et al. (2017). If
the modeling assumptions of TBR do indeed hold, then the experimental
designs that are recommended by our matched markets approach lead to
straightforward causal estimates of the geo experiments that are run.

1 Introduction

To evaluate and optimize their marketing strategies, advertisers need to be able
to accurately measure the effectiveness of their online marketing campaigns.
Unfortunately, such measurement efforts have proven to be very challenging.
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Although they are widely employed in the online advertising industry, obser-
vational studies have been particularly difficult to analyze despite many recent
and significant improvements in observational methods—see, for instance, Im-
bens and Rubin (2015). In particular, Lewis and Rao (2015) showed that obser-
vational studies in the online advertising context are particularly susceptible to
selection bias issues due to its inherently targeted nature. Furthermore, because
they lack a proper control group, Gordon et al. (2017) empirically demonstrated
that observational studies are likely to yield biased estimates and, as a result,
and are oftentimes insufficient for measuring the causal effect of online adver-
tising when compared to randomized controlled trials.

Indeed, randomized controlled trials are generally regarded as the “gold stan-
dard” for causal inference since they minimize selection bias by randomly as-
signing the experimental units to different experimental groups. Advertisers,
however, have been hesitant to embrace randomized controlled trials as the pri-
mary method of designing and analyzing their online marketing experiments.
Perhaps the biggest reason for this slow adoption are the technical difficulties
that arise when implementing randomized controlled trials in the online ad-
vertising context—for example, issues such as cookie churn and multiple device
usage can oftentimes make it challenging to design a randomized controlled trial
that is capable of maintaining the integrity of the randomization since a non-
trivial number of individuals in the control group may inadvertently be exposed
to the treatment condition (Gordon et al., 2017).

To help mitigate some of these difficulties while still providing the rigor of a
randomized controlled trial in the online advertising context, Vaver and Koehler
(2011) introduced the concept of a “geo experiment.” In a geo experiment, a
geographic region of interest (e.g., a country) is first partitioned into a set of
smaller non-overlapping “geos” subject to several constraints:

1. The advertiser must be able to serve their ads to each individual geo with
some reasonable amount of accuracy.

2. It must be possible to track the metric(s) of interest (generally the online
advertising spend and some other response metric) at the geo level.

3. The geos must be relatively self-contained so as to minimize any contam-
ination effects that may incidentally occur (e.g., when consumers travel
across geo boundaries).

After these geos have been defined, a subset of them will then be selected for
experimentation by assigning them to the different experimental groups. This
assignment is typically done at random, where it can oftentimes be helpful to
constrain the randomization (e.g., by first stratifying the geos on some charac-
teristic) since doing so may increase the precision of the causal estimates (Vaver
and Koehler, 2011; Kerman et al., 2017).

However, it may not always be possible to rely on randomization when de-
signing a particular geo experiment. For example, it may not be realistic to
expect randomization to create balanced experimental groups when some of the
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geos are markedly different from all of the others (e.g., those containing large
cities), or when there are only a few geos available for experimentation (e.g.,
when designing a geo experiment in smaller countries). In addition, random-
ization may not always be feasible given some of the specific requirements that
advertisers often must impose on their experiments in practice—such as the
need to run a smaller scale experiment within a given budget, or the need to
include certain geos in specific experimental groups. Consequently, advertisers
may sometimes prefer to forgo some of the benefits of randomization in favor of
a more systematic way of assigning their geos to experimental groups.

In this paper, we introduce a “matched markets” approach for designing
geo experiments that allows advertisers to constrain the experimental group
assignments of their geos. In particular, we propose a hill climbing algorithm
that, subject to the advertiser’s assignment constraints, greedily searches for
experimental designs which appear to satisfy some of the critical assumptions
of the “Time-Based Regression” (TBR) model for analyzing geo experiments
that was introduced in Kerman et al. (2017). If the assumptions of the TBR
model do indeed hold, then the experimental designs that are recommended by
our matched markets approach lead to straightforward estimates of the causal
effects of the geo experiments that are run.

The rest of this paper is organized as follows. In Section 2, we provide the
necessary background by first reviewing how a geo experiment is designed, and
then by discussing how a geo experiment can be subsequently analyzed using
TBR. We then introduce our proposed matched markets approach for designing
geo experiments in Section 3, which we further motivate in Section 4 through
the use of two simulated examples and one real data example. Finally, Section 5
concludes.

2 Background

In this section, we first briefly review how a geo experiment is designed in the
online advertising context. Afterwards, we provide a short overview of the TBR
framework for analyzing geo experiments that was proposed by Kerman et al.
(2017).

2.1 Designing a Geo Experiment

Suppose that an advertiser has geos i = 1, . . . , N available for experimentation,
where the advertiser’s goal is to measure the causal effect that some modification
to their online advertising campaign (e.g., adding new targeted keywords) has
on some metric of interest (e.g., their online sales revenue). In addition to
deciding on how large of a change to make to their online advertising campaign,
the advertiser must also consider several other design parameters when setting
up their geo experiment—some of which we discuss in this section. For a more
complete description of the design and structure of a geo experiment, we refer
the reader to Vaver and Koehler (2011) and Kerman et al. (2017).
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When designing a geo experiment, the advertiser must specify the experi-
mental group assignment for each geo i, which we denote as

ai ∈ {control, treatment, unassigned} .

These assignments subsequently induce the geo experiment’s treatment, control,
and unassigned groups, which we respectively denote as

Gtrt = {i | ai = treatment} ,
Gctl = {i | ai = control} ,
Guad = {i | ai = unassigned} ,

(1)

where Gtrt and Gctl must both be nonempty for the experimental design to be
valid, and where the possibly empty set Guad contains all of the geos that will
be excluded from the experiment. As discussed in Section 1, this assignment
is typically done using some form of randomization, although other assignment
strategies are possible. However, it is important to note that different assign-
ment mechanisms offer varying levels of protection against potential confounding
variables and, as a result, may also either facilitate or preclude certain types
geo experiment analysis or conclusions.

In addition to the experimental group assignments, the advertiser must also
define the geo experiment’s pretest, intervention, and cooldown periods. Dur-
ing the pretest period, the treatment and control groups are both kept in some
common baseline state. Afterwards, in the intervention period, the campaign
modification of interest is applied to all of the geos in the treatment group.
Finally, during the cooldown period, the geos in the treatment group are re-
turned to their original baseline state (e.g., by removing any targeted keywords
that were added during the intervention period). In terms of notation, we let
T0 = {1, . . . , T0} denote the set of T0 dates belonging to the pretest period,
we let T1 = {T0 + 1, . . . , T} denote the set of T1 = T − T0 “test period” dates
belonging to either the intervention or cooldown periods, and we let T = T0∪T1

denote the set of all T dates that are under consideration for the geo experi-
ment. Note that the test period T1 includes both the intervention and cooldown
periods in order to help account for any delayed advertising effects that the
intervention may have caused.

When designing their geo experiment, it is also imperative for the advertiser
to do a power analysis ahead of time to determine whether their planned exper-
iment offers a suitable amount of statistical power. An experiment that has too
little power may result in causal estimates that have too much uncertainty to
be practically useful, while an experiment that has too much power may lead
to overspending and causal estimates that are more precise than necessary for
the advertiser to make an informed decision. A priori power calculations that
can be used to help guide the choice of acceptable geo experiment design pa-
rameters are discussed in more detail in Vaver and Koehler (2011) and Kerman
et al. (2017).

Finally, at the conclusion of the geo experiment, various methods can be
used for estimating its causal effect—such as the “Geo-Based Regression” linear
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model discussed by Vaver and Koehler (2011, 2012) or the Bayesian structural
time series “CausalImpact” model described by Brodersen et al. (2015). How-
ever, because one of the primary use cases of our proposed matched markets
approach is to facilitate the design of smaller scale geo experiments, our assumes
that the Time-Based Regression (TBR) model will be used for analysis since
it is capable of being applied to experiments with a limited number of geos
(Kerman et al., 2017).

2.2 Time-Based Regression (TBR)

Introduced in Kerman et al. (2017), TBR estimates the causal effect of a geo
experiment by predicting the counterfactual time series of the treatment group.

For some metric of interest m (e.g., online advertising spend or online sales),
let mi,t denote the observed value of m for geo i at time t. TBR begins by
separately aggregating this metric within the treatment and control groups on
each date during the geo experiment t ∈ T :

yt =
∑
i∈Gtrt

mi,t,

xt =
∑
i∈Gctl

mi,t,
(2)

where yt and xt denote the observed time series for metric m at time t for the
treatment and control groups defined by equation (1), respectively.

Following the Rubin causal model framework (Holland, 1986), for each date
t ∈ T , denote the treatment group’s potential outcomes that would have oc-

curred in the absence or presence of an intervention as y
(0)
t and y

(1)
t , respectively.

Similarly, for each date t ∈ T , let x
(0)
t and x

(1)
t denote the control group’s po-

tential outcomes that would have been observed in the absence or presence of
an intervention, respectively. One of the goals of TBR is to estimate the cumu-
lative causal effect of the intervention on the treatment group’s metric m during
the geo experiment’s test period T1. In the Rubin causal model, this quantity
can be expressed as

∆m =
∑
t∈T1

(
y

(1)
t − y

(0)
t

)
. (3)

However, for any time t, it is impossible to simultaneously observe all of
the potential outcomes. Instead, the observed data for the control group’s time

series is xt = x
(0)
t for all t ∈ T since the intervention is never applied to any of

its geos, while the observed data for the treatment group’s time series is

yt =

{
y

(0)
t if t ∈ T0

y
(1)
t if t ∈ T1

.

Therefore, to measure the cumulative causal effect of the intervention as defined
in equation (3), it is necessary to estimate the unobserved potential outcomes

y
(0)
t for each test period date t ∈ T1.
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TBR accomplishes this by positing the following linear relationship between
the treatment and control group’s time series of potential outcomes that would
have occurred in the absence of an intervention for the entire duration of the
geo experiment:

y
(0)
t = α+ βx

(0)
t + εt (t ∈ T ), (4)

where εt
iid∼ N(0, σ2). But because the potential outcomes y

(0)
t are not actually

observed for any of the test period dates t ∈ T1, TBR assumes that the model
parameters (α, β, σ) from equation (4) coincide with the parameters of the anal-
ogous linear model that is defined using just the geo experiment’s pretest period

y
(0)
t = α+ βx

(0)
t + εt (t ∈ T0), (5)

which can be estimated from the observed data since yt = y
(0)
t and xt = x

(0)
t

for all pretest period dates t ∈ T0 as the intervention had not yet taken place.
TBR then uses Bayesian inference to estimate the joint posterior distribution
of (α, β, σ) under a standard noninformative prior distribution that is uniform
on (α, β, log(σ)), which results in the posterior mean and covariance of the
conditional normal distribution of (α, β) given σ coinciding with the classical
regression point estimates and covariance matrix (Gelman et al., 2013).

TBR will then use this estimated joint posterior distributions for (α, β, σ),
the observed control time series xt, and the hypothesized linear relationship
in equation (4) to derive posterior predictive distributions for the unobserved

potential outcomes y
(0)
t for each test period date t ∈ T1. Finally, as can be seen

in equation (3), this subsequently induces a posterior distribution for ∆m which
can be used to estimate the cumulative causal effect of the intervention on the
treatment group’s metric m during the geo experiment’s test period T1.

Although the process that was just described allows advertisers to infer their
marketing change’s causal effect on a single metric m, advertisers are oftentimes
more interested in understanding the efficiency of their marketing change on
some response metric r relative to some cost metric c. Within the TBR frame-
work, this type of analysis is accommodated by following the TBR procedure
for the two different metrics of interest m ∈ {r, c}. After the posterior distri-
butions for the geo experiment’s cumulative causal effects on the response and
cost metrics have been inferred—which we denote as ∆r and ∆c, respectively—
the posterior distribution for the intervention’s cumulative incremental return
on ad spend (iROAS) during the geo experiment’s test period T1 can then be
measured through the ratio

iROAS =
∆r

∆c
,

which Kerman et al. (2017) estimate by sampling from the two posterior distri-
butions.
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3 A TBR Matched Markets Approach for De-
signing Geo Experiments

As with any type of study, advertisers must determine the extent to which they
trust the validity of the experimental design and modeling assumptions that are
being made. In particular, for randomized controlled trials, experimenters rely
on randomization because it will, on average, yield experimental groups that
are balanced on all potential confounding factors. However, for any particular
experiment, it is still possible for randomization to lead to groups that are
noticeably unbalanced and which may, in turn, result in confounded conclusions.
Indeed, there is a large literature which warns of the dangers of depending on
randomization to balance covariates (Urbach, 1985; Krause and Howard, 2003;
Rubin, 2008), as well as research which discusses the appropriate steps that
should be taken if an imbalance in the covariates is observed (Urbach, 1985;
Rubin, 2008; Bruhn and McKenzie, 2009; Morgan and Rubin, 2012).

Randomization can be especially challenging in the case of geo experiments.
For example, it may not always be realistic to expect randomization to generate
well balanced treatment and control groups in practice when there are some
geos which are markedly different from all of the others, or when there are only
a few geos available for experimentation. Moreover, randomization may not
always be feasible in a geo experiment given some of specific requirements that
advertisers often must impose on their experiments—such as the need to run a
smaller scale experiment within a given budget, or the need to include certain
geos in specific experimental groups. Consequently, in this section, we introduce
a matched markets approach as an alternative option for advertisers who may
be willing to forgo some of the benefits of randomization in favor of a more
systematic way of assigning their geos to experimental groups. In particular, we
propose a hill climbing algorithm that, subject to the advertiser’s assignment
constraints, greedily searches for experimental group assignments that appear
to lead to valid and effective TBR models relative to the pretest period. If the
assumptions of TBR do indeed hold, then the experimental designs that are
recommended by our approach lead to straightforward estimates of the causal
effects of the geo experiments that are run.

3.1 Assessing TBR Relative to the Pretest Period T0
For each geo i = 1, . . . , N that is available for experimentation, let the nonempty
set

Ai ⊆ {treatment, control, unassigned}

denote its set of possible experimental group assignments as stipulated by the
advertiser. For instance, the advertiser would specify Ai = {treatment} if
they require geo i to be in the treatment group, while they would set Ai =
{control, unassigned} if they are allowing geo i to be assigned to either the
control or unassigned group.

7



Given the set of allowable experimental group assignments Ai and the met-
ric(s) of interest during some pretest period T0 for every geo i, the goal of our
proposed matched markets approach is to recommend treatment and control
groups for which a geo experiment can be run. In particular, this will involve
explicitly specifying the group assignment ai ∈ Ai for each geo i = 1, . . . , N ,
which will then subsequently engender the experimental groups as defined in
equation (1).

Because one of the motivating uses cases for our proposed matched markets
approach is to facilitate the design of smaller scale geo experiments, we assume
that TBR will be used to analyze the geo experiment since, unlike some other
models, TBR is capable of being applied to experiments with a limited number
of geos (Kerman et al., 2017). Consequently, we would like to be able to recom-
mend experimental designs where we’d expect TBR to have the highest chance
of being valid and effective.

In particular, recall from equation (4), that TBR postulates a linear relation-
ship between the treatment and control group’s potential outcomes that would
have occurred in the absence of an intervention that holds for the entire dura-
tion of the geo experiment t ∈ T . But because the treatment group’s potential

outcomes y
(0)
t are no longer observable for the test period dates t ∈ T1 after the

intervention occurs, TBR further assumes that the parameters for its hypoth-
esized linear model coincide with the parameters for the linear model that it
estimates from just the pretest period data t ∈ T0 as defined by equation (5).
These estimated linear model parameters are then used in conjunction with the
observed control time series xt to derive posterior predictive distributions for

the unobserved potential outcome y
(0)
t on each test period date t ∈ T1.

Note, however, that the unobservable nature of the potential outcomes y
(0)
t

after the occurrence of an intervention does also complicate matters when as-
sessing some of TBR’s modeling assumptions. In particular, it is impossible to
verify whether the linear relationship that is conjectured by TBR in equation (4)
does indeed hold for the entirety of the geo experiment, which makes it diffi-
cult to assess whether TBR’s estimated linear model in equation (5) accurately

predicts the potential outcomes y
(0)
t for each test period date t ∈ T1.

But when designing a geo experiment, it is still possible to evaluate certain
aspects of TBR relative to the pretest period T0. As an example, consider the
following generalization of TBR’s estimated linear model as defined in equa-
tion (5) with time varying regression coefficients αt and βt:

y
(0)
t = αt + βtx

(0)
t + εt (t ∈ T0), (6)

where εt
iid∼ N(0, σ2). Next, suppose that we would like to test the null hy-

pothesis H0 of “no structural breaks” in the regression coefficients against the
alternative hypothesis H1 of “at least one structural break” occurring, which
can be mathematically expressed as

H0 : ∀t ∈ T , αt = α and βt = β,

H1 : ∃t ∈ T such that αt 6= α or βt 6= β
(7)
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for some constants α and β (Zeileis et al., 2002). If the null hypothesis H0 holds,
then the linear model defined in equation (6) will reduce to TBR’s estimated
linear model as given by equation (5). However, if the null hypothesis H0 is
rejected in favor of the alternative hypothesis H1, then TBR may be misspecified

and using it to predict the unobserved potential outcomes y
(0)
t for the test period

dates t ∈ T1 can be very costly—possibly resulting in unreliable inferences and
misleading conclusions (Pesaran and Timmermann, 2004).

Several classes of structural break tests have been proposed for carrying out
the hypothesis test described by equation (7). These include maximum likeli-
hood scores, F -statistics, and fluctuation tests, with certain types of tests being
more or less powerful depending on the specific pattern of deviation from the
null hypothesis—we refer the reader to Zeileis et al. (2002) and Zeileis (2005)
for a more extensive discussion of these methods. Consequently, these tests can
be employed to elicit a p-value that indicates how incompatible the data are
with the TBR’s assumption of no structural breaks—with larger p-values sug-
gesting higher degrees of compatibility between the data and the null hypothesis
(Wasserstein and Lazar, 2016).

Similarly, the p-values obtained from performing other hypothesis tests on
TBR’s estimated linear model—such as tests for normality, homoscedasticity, or
autocorrelation of the residuals—can also be used to quantify how incompatible
an experimental design’s pretest period data is with TBR. And although this
does not necessarily guarantee that the assumptions of TBR will continue to
hold for the entire duration of the geo experiment t ∈ T as posited by TBR
in equation (4), it is reasonable to think that our proposed matched markets
approach should favor designs that appear to be more compatible with the
assumptions of TBR during the pretest period T0 since we may be more inclined
to believe that these assumptions will continue to hold during the test period
T1. Furthermore, if there is already evidence that its assumptions are violated
during the pretest period T0, then TBR may already be misspecified, and using
it may result in unreliable conclusions.

However, although these p-values can indicate how consistent the data are
with some of TBR’s assumptions, they do not assess the amount of statistical
power that TBR provides. Kerman et al. (2017) discuss how various experimen-
tal design parameters (e.g., the volume of the treatment group, the correlation
between the treatment and control groups, etc.) influence the estimation pre-
cision of TBR, which they define in terms of the half-width of the estimate’s
two-sided interval as this corresponds to the smallest effect size that can be
detected at a given statistical significance level. Therefore, in addition to pre-
ferring experimental designs which appear to be more compatible with the as-
sumptions of TBR during the pretest period T0, it is reasonable to think that
our proposed matched markets approach should also favor designs that provide
more statistical power.

To help formalize these experimental design preferences, we let f(Gtrt,Gctl)
denote some objective function of the treatment and control groups to be max-
imized which quantifies the quality of TBR’s estimated linear model as defined
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by equation (5) relative to the pretest period T0 and with respect to the ad-
vertiser’s requirements. Although the precise definition of f(Gtrt,Gctl) will vary
from advertiser to advertiser and from experiment to experiment, in practice
we’ve found that taking the minimum value amongst the p-value obtained from
doing an OLS-based CUSUM structural breaks test (Ploberger and Krämer,
1992) on the estimated TBR model, the p-value obtained from doing a Breusch-
Godfrey test for autocorrelation in the estimated TBR model’s errors, and the
estimated TBR model’s R2 to be a reasonable starting point for f since this
penalizes experimental designs which appear to either be very inconsistent with
the modeling assumptions of TBR or that lead to TBR model’s that provide a
low amount of statistical power. Meanwhile, for the situations where the adver-
tiser is interested in using the TBR framework to estimate the iROAS, we’ve
found that defining separate objective functions fr and fc for the response and
cost metrics, respectively, and then setting f = min (fr, fc) to work well as a
maximin strategy.

Unfortunately, although the objective function f helps to quantify the qual-
ity of the estimated TBR model with respect to the pretest period T0, it will
typically not be tractable since the influence of an individual geo’s experimental
group assignment on equation (5) is generally not easily expressed. Depending
on the total number of geos N and the specific constraints that an advertiser im-
poses on the set of allowable experimental group assignments Ai for each geo i,
it may be possible to employ an exhaustive search to find the group assignments
that maximize f . However, this is often not feasible in practice—for example,
in a situation with N geos and no constraints placed on the set of allowable ex-
perimental group assignments Ai, this brute force approach will be O(3N ) since
each individual geo can be assigned to either the treatment, control, or unas-
signed group. Consequently, an alternative optimization strategy is required,
and we refer the reader to Michalewicz and Fogel (2004) for a comprehensive
overview of some of the possible methods that can be used.

3.2 Hill Climbing Algorithm

Although several techniques exist for optimizing an objective function f , in this
section, we propose our own variant of a hill climbing algorithm which aims to
provide advertisers with several recommended experimental designs of varying
treatment group sizes so that they can select the geo experiment that best
suits their needs. In particular, this algorithm alternates between a “matching”
routine which greedily looks for the best set of control geos given the current
set of treatment geos, and an “augmentation” routine that greedily tries to add
one new geo to the set of treatment geos given the current control group. The
procedure is repeated until the treatment set reaches its maximum allowable
size.

In addition to defining their objective function f , our proposed matched
markets hill climbing algorithm also requires the advertiser to specify their set
of allowable experimental group assignments Ai and to provide their metric(s)
of interest mi,t for each geo i = 1, . . . , N on some historical pretest period dates
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Algorithm 1: Proposed Matched Markets Hill Climbing Algorithm

Data: For each geo i = 1, . . . , N during some historical pretest period dates t ∈ T0 :
• Response metrics ri,t
• Cost metrics ci,t
• Allowable group assignments Ai

Objective function f(Gtrt,Gctl)
Positive integer K < N specifying the maximum allowable treatment group size

1 Define initial treatment and control groups

G∗trt,k0
← {i | Ai = {treatment}}

Gctl,k0
← {i | control ∈ Ai}

(8)

where k0 ←
∣∣∣G∗trt,k0

∣∣∣ is the size of the initial treatment group

2 if k0 is 0 then
3 Set G∗ctl,k0

← Gctl,k0

4 needs matching ← FALSE

5 else
6 needs matching ← TRUE

7 k ← k0
8 while k ≤ K or needs matching is TRUE do

9 if needs matching is TRUE then
10 Define the set of geos that can be reassigned to the control group:

Rctl ←
{
i 6∈ Gctl,k | control ∈ Ai, i 6∈ G∗trt,k, (optional constraints)

}
(9)

Define the set of geos that can be reassigned to the unassigned group:

Ruad ←
{
i ∈ Gctl,k | unassigned ∈ Ai, i 6∈ G∗trt,k, (optional constraints)

}
(10)

11 Define the “neighboring” control group:

G
′
ctl,k ← Gctl,k ⊕

{
arg max

i∈Rctl∪Ruad

f
(
G∗trt,k,Gctl,k ⊕ {i}

)}
(11)

where ⊕ denotes the symmetric difference set operation.

12 if f(G∗trt,k,G
′
ctl,k) > f(G∗trt,k,Gctl,k) then

13 Update the control group: Gctl,k ← G
′
ctl,k

14 else
15 Define the recommended control group: G∗ctl,k ← Gctl,k
16 needs matching ← FALSE

17 if needs matching is FALSE and k < K then
18 Define the set of geos that can be reassigned to the treatment group:

Rtrt ←
{
i 6∈ G∗trt,k | treatment ∈ Ai, (optional constraints)

}
(12)

19 Define the recommended treatment group G∗trt,k+1 by augmenting G∗trt,k:

G∗trt,k+1 ← G
∗
trt,k ∪

{
arg max
i∈Rtrt

f(G∗trt,k ∪ {i} ,G
∗
ctl,k)

}
(13)

20 Define the control group: Gctl,k+1 ← G∗ctl,k
21 k ← k + 1
22 needs matching ← TRUE

Result: A recommended treatment group G∗trt,k and its recommended “matching”

control group G∗ctl,k for each treatment group of size k = max(k0, 1) , . . . , K
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t ∈ T0. Letting k0 = |{i | Ai = {treatment}}| denote the number of geos that
the advertiser has required to be assigned to the treatment group, our proposed
algorithm also requires advertisers to specify some positive integer K ≥ k0 which
indicates the maximum number of geos in the treatment group that they are
willing to allow for their geo experiment.

Given these inputs, the goal of our proposed matched markets hill climb-
ing algorithm is to provide the advertiser with several different experimental
design choices—one for each treatment group of size k = max(k0, 1) , . . . ,K.
In particular, for each k, this will entail specifying a recommended treatment
group G∗trt,k and its recommended “matching” control group G∗ctl,k, where an
asterisk is used in the superscript to differentiate these recommended groups

from other non-recommended groups. Furthermore, note that k =
∣∣∣G∗trt,k∣∣∣ since

the recommended treatment group G∗trt,k will always, by definition, contain ex-
actly k geos. However, G∗trt,k’s corresponding matching control group G∗ctl,k will
not necessarily be of size k—that is, the subscript k for the recommended con-
trol group G∗ctl,k only indicates which recommended treatment group G∗trt,k it is
paired with.

To achieve its goal, our proposed hill climbing algorithm begins by initializing
all of the geos to the experimental groups as defined by equation (8) in line 1
of Algorithm 1. In particular, the initial recommended treatment group G∗trt,k0
contains all of the geos which the advertiser has required to be assigned to the
treatment condition, while the initial control group Gctl,k0 consists of all of the
geos which the advertiser has allowed to be assigned to the control condition.
Afterwards, our proposed matched markets hill climbing algorithm will then
repeatedly alternate between a matching routine and an augmentation routine
until the stopping rule is reached, and where lines 2-6 of Algorithm 1 determine
which routine is used first—a decision that depends on whether or not the
advertiser has required any of its geos to be in the treatment group.

In the matching routine outlined by lines 9-16 of Algorithm 1, the matching
control group G∗ctl,k for a given recommended treatment group G∗trt,k is found by
incrementally updating an existing nonrecommended control group Gctl,k until
a local optimum is reached. This is accomplished by first finding the sets Rctl
and Ruad as defined by equations (9) and (10) which contain the geos that are
eligible to be reassigned to either the control or unassigned groups, respectively.
Afterwards, as defined by equation (11), a “neighboring” control group G′ctl,k
is derived from Gctl,k by reallocating the geo whose reassignment—either from
the control group to the unassigned group, or from the unassigned group to the
control group—maximizes f when used in conjunction with the recommended
treatment group G∗trt,k. Then, as described by lines 12-13 of Algorithm 1, if

f(G∗trt,k,G
′

ctl,k) > f(G∗trt,k,Gctl,k)—that is, if G′ctl,k appears to lead to a higher
quality TBR model than Gctl,k when paired with G∗trt,k—then the algorithm

will update its definition of the control group Gctl,k to coincide with G′ctl,k,
and this updated control group will then be used in the next iteration of the
matching routine. However, if f(G∗trt,k,G

′

ctl,k) ≤ f(G∗trt,k,Gctl,k)—that is, if a
local optimum has been reached—then as lines 14-16 of Algorithm 1 indicate, the
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hill climbing algorithm will take the existing set Gctl,k to be the recommended
matching control group G∗ctl,k for its recommended treatment group G∗trt,k of size
k.

Meanwhile, the augmentation routine detailed in lines 17-22 of Algorithm 1 is
used to derive a larger recommended treatment group G∗trt,k+1 of size k+1 from
an existing recommended treatment group G∗trt,k of size k. To accomplish this,
the algorithm first finds the set of geos Rtrt that are eligible to be reassigned
to the treatment group as defined by equation (12). Afterwards, as can be
seen from equation (13), the recommended treatment group G∗trt,k+1 of size
k + 1 is then constructed by simply augmenting the recommended treatment
group G∗trt,k of size k with the geo whose reassignment to the treatment group
maximizes f when used in combination with the recommended control group
G∗ctl,k. Finally, as lines 20-22 of Algorithm 1 show, the recommended control
group G∗ctl,k is then taken to be the starting point for the subsequent matching
routine will be used to find the matching control group G∗ctl,k+1.

As indicated by line 8 of Algorithm 1, our proposed matched markets hill
climbing algorithm continues to alternate between the augmentation and match-
ing routines until it has determined a recommended treatment group G∗trt,k and
its corresponding matching control group G∗ctl,k for experimental designs with
a treatment group of size k = max(k0, 1) , . . . ,K. Moreover, each of these rec-
ommended designs will locally optimize the advertiser’s objective function f in
terms of the advertiser’s requirements, and if the assumptions of TBR do indeed
hold, then the geo experiments that are recommended by our matched markets
approach lead to straightforward causal estimates. Furthermore, as discussed in
Section 2.1, a power calculation can be done for each of these recommended ex-
perimental designs in order to obtain an estimate of each design’s experimental
cost. In particular, Kerman et al. (2017) showed that the cost of experimen-
tation tends to proportionally increase as the volume of the treatment group
increases. Therefore, because the volume in the treatment groups recommended
by our proposed hill climbing algorithm increases with k, our proposed matched
markets approach is able to provide advertisers with several geo experiment
design options of varying experimental costs.

However, in addition to any budgetary constraints that they may have, it
is also important for advertisers to consider the limitations of our proposed
matched markets approach before deciding on which of the recommended ex-
perimental design to use for their geo experiment, if any. First, it may be
more difficult to generalize the results a nonrandomized matched markets geo
experiment since the treatment group may not necessarily be representative of
the target population of interest. Second, although the recommended matched
markets designs are locally optimal with respect to the advertiser’s experimental
group assignment constraints Ai and objective function f , it is imperative that
advertisers verify the feasibility of the experimental design prior to running their
geo experiment since the local optima are not necessarily guaranteed to lead to
viable experiments—for example, it is probably not possible to recommend a
workable geo experiment if an advertiser requires New York City, Chicago, and
Los Angeles to all be in the treatment group. Finally, because our proposed
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matched markets approach assumes that TBR will be used for the analysis, we
also emphasize that the causal estimates may no longer be valid if the model-
ing assumptions of TBR do not hold throughout the entire duration of the geo
experiment.

4 Examples

In this section, we present two simulated examples and one real data example
that further motivate our proposed matched markets approach. Our first simu-
lated example demonstrates the importance of designing an experiment that is
consistent with the methodology that will be used to analyze it. Meanwhile, our
second and third examples use simulated and real data, respectively, to compare
how our proposed matched markets approach fares against randomization when
determining an appropriate control group for TBR analysis.

4.1 Example 1

As a simple but instructive example highlighting the importance of designing
an experiment that is consistent with the methodology that will be used to
analyze it, suppose that an advertiser has three geos whose metrics on the dates
t ∈ Z+ are, unbeknownst to the advertiser, generated according to the following
noiseless processes:

m1,t =
3

2
+ sin

(
πt

27
− π

4

)
,

m2,t =
1

4
(m1,t)

2
,

m3,t = 6−m1,t,

(14)

where we note that data generating processes for geos 2 and 3 are both functions
of geo 1. Plots of these three time series for t ∈ 1, . . . , 35 can be seen in the top
panel of Figure 1.

Suppose further that, with a pretest period of T0 = {1, . . . , 28}, the adver-
tiser would like to run an “A/A” geo experiment where no intervention actually
occurs during the test period T1 = {29, . . . , 35}—that is, the true cumulative
incremental effect of the intervention is ∆m = 0—and where there is only one
treatment geo and one control geo. Since they know that it can be applied to
experiments with a limited number of geos (Kerman et al., 2017), the advertiser
plans on analyzing their geo experiment using TBR. However, although the ad-
vertiser insists on geo 1 being included in the experiment as either the treatment
or control geo, they are unsure of which of the other two geos to include in their
experiment.

Matching prior to randomization is one approach that can be used to help
make this decision. That is, the advertiser could first define some distance
measure to compare the similarity between geos 1 and 2 against the similarity
between geos 1 and 3, with the more similar geo forming a “matched pair” with

14
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Figure 1: Top Panel: The time series for the three geos as defined in equa-
tion (14), where the vertical dashed line indicates the start the A/A
experiment’s test period. Middle Panels: If we pair geos 1 and 2,
then TBR’s estimated linear model will always be misspecified since
the two geos have an underlying nonlinear relationship. Consequently,
the advertiser will incorrectly infer that there is a treatment effect re-
gardless of how the two geos are allocated to the experimental groups.
Bottom Panels: If we pair geos 1 and 3, then TBR’s estimated linear
model will always be correctly specified since the two geos have an
underlying linear relationship. Therefore, the advertiser will always
be able to correctly infer that there is a null treatment effect.
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geo 1. Then, after this match has been determined, one of the geos in the pair
can be randomly allocated to the control group, leaving the other geo in the
pair to be assigned to the treatment group.

If additional information on the three geos were available and thought to
be important (e.g., consumer demographics, population size/density, customer
acquisition rates, etc.), then they could be used to calculate these similarity
scores—perhaps by using a method analogous to what was done in Ye et al.
(2016) or by using the “optimal non-bipartite matching” algorithm proposed
by Greevy et al. (2004). But recall from equations (4) and (5), that TBR
only considers the time series for the metrics of interest—it does not require
or use any other additional information. Therefore, although matching on this
additional information may help to improve the balance of the covariates, such
an approach does not necessarily help to ensure that the treatment and control
groups lead to a correctly specified TBR model.

Alternatively, because TBR posits that the treatment group’s time series is a
function of the control group’s time series, similarities in the historical behavior
of the two time series (e.g., their trends, seasonality, etc.) can possibly be used
by the advertiser to determine which geo to pair with geo 1. Many distance
measures d(x, y) have been proposed to evaluate the similarity between two
time series x and y, and Table 1 contains the results from applying some of the
more popular distance measures to this example for t ∈ T0 after the three time
series have been normalized to have zero mean and unit variance—we refer the
reader to Mori et al. (2016) for a more in-depth discussion of how these distance
measures are defined and differ from one another. Despite their differences,
however, from this table we see that all of them strongly favor creating a matched
pair between geos 1 and 2. This is perhaps not too surprising given that, from
the top panel of Figure 1, m2,t does appear to be visually more similar to m1,t

than m3,t does. But from equation (14), we know that pairing geos 1 and 2
together would lead to a misspecified TBR model since they share a nonlinear
relationship. In particular, as can be seen from the middle panels in Figure 1,
if TBR were used to evaluate the A/A geo experiment, then the advertiser
would incorrectly infer either a positive or negative incremental treatment effect
depending on whether geo 1 is assigned to treatment or control.

On the other hand, since the advertiser knows ahead of time that they will
be using TBR to analyze their geo experiment, they could define a similarity
score that explicitly specifies the need for a stable and predictive linear relation-
ship between the treatment and control time series—perhaps similar to the one
that we suggested in Section 3.1. Such a similarity score would then choose to
pair geo 3 with geo 1 since we know from equation (14) that these two geos do
share an underlying linear relationship. Consequently, as can be seen from the
bottom panels in Figure 1, if TBR were used to evaluate the A/A geo experi-
ment, then the advertiser would be able to correctly recover a null incremental
treatment effect regardless of the specific experimental groups that geos 1 and
3 are randomized to.
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Time Series Distance Measure d(m1,t,m2,t) d(m1,t,m3,t)

Euclidean 0.59 10.39
Manhattan 2.65 47.24
Pearson Correlation 0.11 2.00
Dynamic Time Warping 3.05 61.74
Fourier 2.21 38.92
Wavelet 0.58 10.36

Table 1: Results from applying some popular time series distance measures to
Example 1 after the three time series have been normalized to have
zero mean and unit variance. Lower distances, which are highlighted
in bold, indicate a higher degree of similarity. Therefore, all of the
distance measures evaluated suggest that geos 1 and 2 should form
a matched pair. However, we know from equation (14), that this
would lead to a misspecified TBR model since they have a nonlin-
ear relationship—suggesting that these distance measures may not be
appropriate when analyzing a geo experiment with TBR.

4.2 Example 2

In our second example, we use simulated data to compare how our proposed
matched markets hill climbing algorithm fares against randomization when de-
termining an appropriate control group for TBR analysis. In particular, consider
a scenario where an advertiser has geos i = 1, . . . , 6 whose metrics on each date
t ∈ Z+ are, unbeknownst to the advertiser, generated as follows:

mi,t =

{
100 + 25sin

(
πt
105

)
+ εi,t if i is odd

100 + 25sin
(
πt
105 −

π
8

)
+ εi,t if i is even

, (15)

and where εi,t
iid∼ N(0, 1). Figure 2 depicts one example data set which was

simulated according to equation (15).
Suppose further that the advertiser would like to use TBR to analyze an

A/A geo experiment with pretest period T0 = {1, . . . , 84} and test period T1 =
{85, . . . , 91}. Furthermore, although the advertiser requires exactly 2 geos in
the treatment group, they place no other constraints on the composition of the
treatment and control groups.

Randomization provides one way of allocating the geos to the treatment
and control groups. That is, the experimental groups can be determined by
randomly assigning two of the geos to the treatment group, with the remaining
four geos being assigned to the control group. But as discussed in Section 3, any
particular randomized experiment may exhibit imbalances between the treat-
ment and control groups. Specifically, for this example, we would intuitively
expect the most suitable experimental groups to be the ones containing the
same ratio of odd indexed to even indexed geos. However, consider the situa-
tion where randomization leads to a treatment group of two odd indexed geos.
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Figure 2: An example data set simulated from the data generating process de-
fined in equation (15), where the vertical dashed line indicates the
start of the A/A experiment’s test period.

Although the optimal corresponding control group in this case would appear
to be the one that consists of only the third odd indexed geo, randomization
will yield a control group containing both odd and even indexed geos coming
from both data generating processes, which would then subsequently result in
a misspecified TBR model.

To evaluate how randomization fares in this example, we simulated 1000
randomized A/A geo experiment situations. In particular, for each experimental
replication j, we randomly generated the six geos according to equation (15) and
then randomized two of the geos to the treatment group and four of the geos
to the control group. Finally, TBR was trained using the pretest period data
t ∈ T0 to obtain an estimate of the intervention’s cumulative causal effect ∆̂m,j

and a 95% interval for this estimate
[
∆̂L
m,j , ∆̂

U
m,j

]
during the test period T1.

Recall that since the advertiser is running an A/A geo experiment, the true
cumulative incremental effect of the intervention is ∆m = 0. As a result, we
can summarize the performance of randomization across all 1000 experimental
replications in terms of its root mean squared error (RMSE), its 95% interval
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Performance Measure Randomization Matched Markets

RMSE 72.312 5.563
CIHW 14.994 9.202
TypeI 0.423 0.087

Table 2: Comparison of TBR’s performance across all 1000 experimental repli-
cations when either randomization or our proposed matched markets
approach is used to determine the A/A geo experiment design in Ex-
ample 2. Specific definitions of the performance measures are given in
equation (16), with the better assignment scheme for each performance
measure highlighted in bold.

half-width size, and its Type I error rate at the 0.05 significance level as follows:

RMSE =

√√√√ 1

1000

1000∑
j=1

∆̂2
m,j ,

CIHW =
1

1000

1000∑
j=1

∆̂U
m,j − ∆̂L

m,j

2

TypeI =
1

1000

1000∑
j=1

I
(

0 6∈
[
∆̂L
m,j , ∆̂

U
m,j

])
,

(16)

and where I(·) is the indicator function. Results are shown in Table 2, where it
can be seen that TBR’s 95% intervals have a much higher than expected Type
I error rate when randomization is used to allocate the geos—suggesting that
randomization may be an inadequate method of creating an appropriate control
group for TBR in this particular example.

Consequently, an alternative method of determining experimental groups
may be preferred, and we evaluate how our proposed matched markets approach
compares to randomization in this particular example. Specifically, for each
experimental replication j, we first take its randomized treatment group as
fixed. Afterwards, we apply our hill climbing algorithm with the objective
function f suggested in Section 3.1 in order to determine which subset of its
randomized control geos to use as the randomized treatment group’s matching
control group. Afterwards, TBR was used to analyze the matched markets
A/A geo experiment, with results summarizing its performance across all 1000
experimental replications also appearing in Table 2. From this table, we see
that our proposed matched markets approach appears to be more effective at
determining a suitable control group than randomization—it achieves a lower
RMSE, and shorter 95% intervals. Furthermore, on average, it attains a Type
I error rate that is much more in line with expectations, with the situations
where our proposed matched markets approach was unable to find a satisfactory
matching control group partially responsible for this small inflation from the
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Figure 3: Time series plot of the 50 control geos that we consider in Exam-
ple 3, where the vertical dashed line indicates the start of the A/A
experiment’s test period.

nominal Type I error rate.
Finally, we note that measurement error in the control group’s time se-

ries may also be undermining TBR’s performance in both the randomized and
matched markets contexts. Therefore, if an advertiser has concerns about these
measurement errors compromising the validity of their analysis, then they may
want to consider using an “errors-in-variables” model instead, and we note that
one such model—an orthogonal regression extension of TBR—is discussed in
Kerman et al. (2017).

4.3 Example 3

For our third and final example, we now use real data to evaluate how our
proposed matched markets hill climbing algorithm fares against randomization
when determining an appropriate control group for TBR analysis. In particular,
the data set that we consider originates from a geo experiment that was executed
in the United States by one of Google’s advertisers using 50 control geos and 50
treatment geos in order to measure the effectiveness of their Google Paid Search
advertising efforts. However, for the purposes of establishing an approximate
“ground truth” of no cumulative incremental effect from an A/A test, in this
example we only consider the 50 control geos from the experiment. Time series
data for each of these 50 control geos can be seen in Figure 3.1

1To anonymize the actual geo experiment, all of its numbers have been rescaled and all of
its dates have been relabeled.

20



Performance Measure Randomization Matched Markets

RMSE 0.563 0.312
CIHW 0.629 0.554
TypeI 0.253 0.067

Table 3: Comparison of TBR’s performance across all 1000 experimental repli-
cations when either randomization or our proposed matched markets
approach is used to determine the A/A geo experiment design in Ex-
ample 3. Specific definitions of the performance measures are given in
equation (16), with the better assignment scheme for each performance
measure highlighted in bold.

Similar to what was done previously in Example 2, we simulated and evalu-
ated 1000 A/A geo experiment situations with pretest period T0 = {1, . . . , 77}
and test period T1 = {78, . . . , 84}. Specifically, for each experimental replication
j, we first simulate a randomized design by randomly assigning 25 of the geos to
the treatment group and 25 of the geos to the control group. Afterwards, within
each experimental replication j, we then simulate a matched markets design by
applying our hill climbing algorithm with the objective function f suggested in
Section 3.1 in order to determine which subset of its randomized control geos
to use as the randomized treatment group’s matching control group. Finally,
TBR was used to evaluate both of the experimental designs.

In Table 3, we summarize the 1000 experimental replications in terms of the
performance measures defined previously in equation (16). From this table we
see that TBR’s 95% intervals have a much higher than expected Type I error
rate when randomization is used to create the experimental design, while the
matched markets design achieves a Type I error rate that is more in line with
nominal expectations. Moreover, we see that the matched markets design also
leads to causal estimates that are, on average, more accurate terms of its RMSE
and more precise in terms of its interval half-width size.

5 Conclusions

Although randomized controlled trials are regarded as the gold standard for
causal inference, it may not always be feasible for an advertiser to rely on ran-
domization when designing their geo experiment. In this paper, we introduced
a TBR matched markets approach as an alternative method for advertisers who
may be willing to forgo some of the benefits of randomization in favor of a more
systematic way of assigning their geos to experimental groups. In particular,
we proposed a hill climbing algorithm that provides several geo experiment de-
sign options which locally optimize TBR’s modeling assumptions subject to the
advertiser’s constraints. Consequently, advertisers can choose to run the geo
experiment that best suits their needs, and if the assumptions of TBR do in-
deed hold, then the experimental designs that are recommended by our matched
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markets approach lead to straightforward estimates of the causal effects of the
geo experiments that are run.
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