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Abstract

As major web and cloud service providers continue to accel-
erate the demand for new data center capacity worldwide,
the importance of power oversubscription as a lever to re-
duce provisioning costs has never been greater. Building
on insights from Google-scale deployments, we design and
deploy a new architecture across hardware and software to
improve power oversubscription significantly. Our design
includes (1) a new medium voltage power plane to enable
larger power sharing domains (across tens of MW of equip-
ment) and (2) a scalable, fast, and robust power capping service
coordinating multiple priorities of workload on every node.
Over several years of production deployment, our co-design
has enabled power oversubscription of 25% or higher, saving
hundreds of millions of dollars of data center costs, while
preserving the desired availability and performance of all
workloads.
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1 Introduction

Worldwide spending on data center systems now exceeds
$200B annually [1], with a sizable fraction of this investment
going towards building out the physical infrastructure that
provides power, cooling, and space for server machines. For
example, considering only “hyperscale” data center opera-
tors (including Alibaba, Amazon, Apple, Baidu, Facebook,
Google, IBM, JD.com, Microsoft, Oracle, and Tencent), total
capital expenditures approached $120B for the year ending
in September 2019 [2]. Based on typical ratios of data cen-
ter to server equipment costs, this translates to hyperscale
operators spending tens of billions of dollars each year on
physical infrastructure [3]. These trends motivate increased
emphasis on efforts to improve the cost efficiencies of build-
ing data centers, either by reducing costs of construction or
by using built-out capacity more effectively.

One such effort, focused on increasing capacity utilization,
is power oversubscription. Leveraging the observation that
data center power consumption is typically far less than the
theoretical maximum power draw of deployed equipment
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(and shows wide variability), oversubscription allows more
IT equipment to be deployed on the same infrastructure.
Essentially, this creates new data center capacity without
additional construction, corresponding to significant cost
savings for hyperscale operators. The power oversubscrip-
tion potential (or oversubscription ratio [OSR]) is determined
by the size of the power sharing domain. Additionally, in the
infrequent cases when the load is at risk of exceeding the
power capacity limits, a software technique, power capping,
reduces power by shutting down workloads. Power capping
for low-risk power oversubscription has developed over the
last 15 years into an essential enabler of data center cost
reduction [4-14].

In this paper, we discuss how we can improve power over-
subscription significantly to achieve high data center cost
savings. Leveraging insights from studying power consump-
tion trends and workload requirements at Google-scale de-
ployments, we propose a new power oversubscription archi-
tecture co-designed across facility electrical design, power
control, and cluster management. Specifically, we make the
following key contributions:

Medium voltage power plane. First, while it has been
recognized from the early days of power capping that the
potential oversubscription ratio (OSR) increases as the size
of a data center power sharing domain increases, most ar-
chitectures for power distribution and power capping have
focused on sharing power with low voltage (~400 V or less)
at the level of racks (tens of KW) and power distribution
units (PDUs, 2-3 MW) [15]. In contrast, we propose power
sharing across tens of MWs of equipment through a new
medium voltage power plane (MVPP) (~15 kV).

In addition to a 10X larger pool for statistical multiplexing
of workloads compared to the largest PDUs today, our design
supports large variations in power density within and across
data center rows, supporting regular server racks, but also
higher-density accelerator racks (e.g., GPUs or TPUs) or
lower-density storage racks. Not only is the oversubscription
potential larger, complexity is also significantly reduced: we
focus on preventing overloads of the entire power plane
while other systems [11, 13, 16—18] must budget and control
power at multiple levels of the power hierarchy.

To the best of our knowledge, our work is the first deploy-
ment of medium voltage power sharing in hyperscale data
centers. In addition to build-out challenges (lack of design,
construction, and operational experience in the industry, lim-
ited supply chain), our design also addresses key technical
challenges around large-scale paralleling of backup genera-
tors, ensuring high availability, and the ability to dynamically
track the power flow (generator awareness).

Priority-aware power capping. Second, not all workloads
have the same availability requirements: production work-
loads are latency-sensitive and should go down rarely, but

non-production workloads are much less sensitive to perfor-
mance fluctuations and do not require stringent availabil-
ity guarantees. In contrast to prior approaches, we design
a new power capping service that incorporates generator
awareness and information about job priorities, and works
in conjunction with the MVPP for increased power oversub-
scription without compromising overall workload service-
level objectives (SLOs). Specifically, the ability to affect only
low-priority workloads on every node when power capping,
means the achievable OSR is limited only by the aggregate
power consumption of the high-priority workload.

Our cluster scheduler is able to assign tasks with differ-
ent priorities (associated with different SLOs) to any node
on the power plane. This maximizes scheduling flexibility
and reduces resource stranding, ultimately leading to higher
resource utilization. Using the node controllers of the clus-
ter scheduler, our implementation suspends tasks to reduce
power, allowing our power capping service to be effective
at reducing power on a wide range of machine types (un-
like power capping systems dependent on hardware-specific
actuators like RAPL [19, 20] and DVFS [21]). In addition,
our sharded implementation of the power capping service
requires significantly fewer CPU resources than prior ap-
proaches that calculate and monitor power budgets at multi-
ple levels of the distribution hierarchy [13].

Furthermore, the design of our power capping service can
reliably inform tens of thousands of servers to reduce power
consumption in 2-4 seconds. This is the total time required
to read power meter measurements over a network, decide
whether the value has exceeded the threshold for capping
action, notify tens of thousands of machines, and have the
majority of those machines reduce their power consumption.
To our knowledge, this is the fastest reported software-based
power controller at tens of MW scale. It allows data center
power to safely peak near electrical design limits without
triggering disruptive protections such as breaker trips.

Successful production deployment at scale. Our design
is in full production at worldwide scale, and has been suc-
cessfully deployed on multiple data center campuses, over
multiple years. We present fleetwide data that show over-
subscription ratios of 25% or more, significantly better than
the single-digit oversubscription ratios in previous genera-
tions [3]. This translates to hundreds of MWs of data center
capacity and a potential to reduce industry data center costs
by billions of dollars annually. More importantly, we can
achieve these savings without significantly impacting the
availability SLOs of our production workloads.

Overall, power capping events become very rare if the
power distribution is designed such that backup generator
capacity is the only practical electrical limit: threshold viola-
tion events happen only in the infrequent cases when peak
loads coincide with a utility power outage.
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Figure 1. Schematic of a traditional power distribution
architecture. This baseline, traditional radial architecture
provides N+1 redundancy at the PDU level. The PDU is the
choke point for power distribution and limits the oversubscrip-
tion possible in this architecture.

Together, our power plane, power capping, and scheduling
systems enable even more aggressive oversubscription that
is limited only by the maximum fraction of power associated
with the high-priority workloads that cannot be disrupted.

Thus, for instance, for a real-world scenario where high-
priority workloads never consume more than 60% of “peak
power” on a power plane, an OSR of 1/0.60 — 1 =~ 66% is
possible. In comparison, Google’s first-generation power
capping architecture achieves single-digit OSRs.

Paper organization. The rest of the paper is organized
as follows. Section 2 first provides an overview of Google’s
prior power oversubscription architecture as an example
baseline design, and discusses key terminology for power
oversubscription. Section 3 presents our new proposed ar-
chitecture with detailed discussion of the implementation of
the medium voltage power plane and the workload-aware
power capping service. Section 4 discusses the deployment
of our architecture at scale, including results showing the
increased oversubscription benefits and fast response times.
Section 5 discusses related work, and Section 6 summarizes
our conclusions.

2 Background

Below, we provide an overview of Google’s first-generation
power oversubscription architecture as an illustration of the
traditional baseline for power oversubscription. Section 2.1
describes the power distribution and cluster scheduling in

the data center, and Section 2.2 discusses the basics of power
oversubscription and its implementation.

2.1 Data center design

Data center power distribution. Figure 1 illustrates the
common “radial” power distribution architecture used in
large-scale data centers over the last decade. Power is deliv-
ered from a utility substation to a data center building at a
medium voltage (25-35 kV) and is stepped down at building
entry to another medium voltage less than 15 kV. Power
fans out radially from each medium voltage bus to multiple
power distribution units (PDUs), each supporting 2-3 MW of
IT equipment at low voltage across multiple rows of machine
racks on the data center floor.

Each PDU has a backup generator associated with it. N +1
redundancy is provided at the level of PDUs. This signifi-
cantly increases power availability without the cost of du-
plicating every generator and PDU lineup; so long as only
one PDU at a time becomes unavailable due to failure or
planned maintenance, the single redundant PDU can take
its place. The power feeds entering the building have 2N
redundancy. In the parlance of data center tier classifications
[22, 23], this architecture maps roughly onto Tier III: while
concurrent maintenance is possible, some medium voltage
component failures could lead to either an outage or pro-
longed operation of many PDUs on generators. In practice, a
leading cause of downtime in this architecture is generator
failure when utility power is unavailable. When a generator
fails, automatic switching of loads from the failed PDU to the
redundant PDU—powered by its own generator—mitigates
the risk of downtime.

Data center cluster scheduler. A typical cluster schedul-
ing system (such as Borg [24]) manages and runs hundreds of
thousands of jobs, from many thousands of different applica-
tions, across a number of clusters, each with up to thousands
of machines. As illustrated in Figure 2, the cluster generally
has a centralized master controller, which orchestrates node
control agents that run on each machine in a cluster.

It supports high availability with run-time features that
minimize fault-recovery time, and scheduling policies that
reduce the probability of correlated failures.

The cluster runs a heterogeneous workload with two basic
application tiers:

e Production tier: long-running, production services that
should rarely go down and are assumed to have a 100%
availability target in this paper. They also handle short-
lived latency-sensitive requests (a few ps to a few ms
for critical internal software infrastructure).

e Non-production tier: jobs that take from a few seconds
to a few days to complete; these are much less sensitive
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Figure 2. A simplified view of the data center cluster
management system. At a cluster level, scheduled tasks are
relayed from a distributed master controller to node controllers
running on individual machines. At a high level, tasks can be
considered to fall into two different prioritization tiers: produc-
tion and non- production.

to short-term performance fluctuations and typically
do not require specific availability guarantees.

The mix of these two workload classes varies across clus-
ters, and also varies over time: batch jobs come and go, and
many end-user-facing service jobs exhibit diurnal usage pat-
terns.

2.2 Power oversubscription

Power oversubscription is a technique proposed to improve
data center efficiency [4, 5] that is widely deployed commer-
cially (e.g., [4, 5, 11, 13]). The key intuition behind power
oversubscription is that the data center capacity is often
underutilized: actual power draw is much lower than rated
power. Spiky and variable workloads on servers leads to me-
dian (or even 95th percentile) power consumption that is
significantly lower than the peak power. Across ensembles of
servers (rows or clusters), spikes are usually not correlated,
and this statistical multiplexing leads to even greater un-
derutilization or “stranding” of power. Similar to the airline
industry overselling flight capacity, power oversubscription
allows more IT equipment to be provisioned on the same
power bus, essentially providing new data center capacity
without costly construction, therefore reducing costs (dollar-
per-watt). This fraction of additional power is called the
oversubscription ratio (OSR).

Power oversubscription “choke points”. The power
oversubscription potential in a data center is determined
by the maximum power expected at a choke point, i.e., the
point where an electrical limit will be reached first as load
increases (e.g., a circuit breaker trips). Typically, the larger
the power capacity of the choke point, the more statistical
multiplexing will occur downstream for a given set of work-
loads and equipment. More statistical multiplexing means a
reduction in the peak power at the choke point and a larger
oversubscription potential.

In the traditional baseline discussed in Section 2.1, the
capacity of the commodity backup generators associated
with the PDUs (measured in megawatts [MW]) represent
the choke point of the architecture. The other components
of the PDU - the switch, transformer, breaker, and bus - all
typically have larger capacity than the generator. Similarly,
the capacity of the upstream medium voltage distribution
is typically much larger than the combined capacity of the
PDUs, and the total capacity of the low voltage buses bring-
ing power from each PDU to the IT equipment is much
larger than the PDU capacity. Consequently, in the baseline
architecture, power oversubscription means deploying IT
equipment per PDU that exceeds its generator capacity. This
is a relatively small level of statistical multiplexing compared
to the broader datacenter.

Power oversubscription “safety valves”. While the over-
subscription ratio is typically set to a value to avoid the risk
of exceeding infrastructure limits, the statistical nature of
power variation still requires a "safety valve" to deal with
overloaded circuits. The default hardware response, load
preservation (discussed further in Section 3.3), where the gen-
erator controls disconnect some electrical loads by opening
bus breakers, will work but can be disruptive. Power capping
is an alternate software technique that rapidly reduces power
when it approaches the electrical limit of a choke point. At a
high level, power capping monitors the total power within
the domain associated with a choke point. When a speci-
fied power threshold is exceeded, power capping notifies
the node controller on every server (Figure 2) in the domain.
The node controllers react by suspending or killing jobs to
reduce power (response time in order of seconds).

This reactive suspension of workloads is both effective
and tolerable, so long as the events are rare enough to pre-
serve the applicable SLO for availability. From the point of
view of the broader scheduler, power capping looks just like
another failure mode. Figure 3 illustrates the holistic treat-
ment of power capping unavailability in conjunction with
other failure scenarios in a typical cluster. The data center
is managed as a hierarchy of different failure domains such
that a failure in one domain can impact some or all of the
domains below it. The cluster scheduler captures the key
constituents of this hierarchy of failure domains and their
dependencies.

3 New power oversubscription
architecture

Below, we discuss our new power oversubscription architec-
ture. Section 3.1 discusses the two key insights that underpin
our design. Building on these, Section 3.2 discusses our new
power delivery architecture based on an MVPP that enables
larger power capping domains, and Section 3.3 discusses
our co-designed power capping service that incorporates
generator awareness and information about job priorities to
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Figure 3. Holistic treatment of power capping along with other failure scenarios. When a small fraction of the server
machines stop responding (Event 1), and all the resources (e.g. CPU, memory, disk) associated with these machines become
unavailable. When a power capping event (Event 2) occurs, some tasks across that power domain are suspended; other jobs and
servers are not impacted. Finally, an outage of the cluster scheduler prevents scheduling of new jobs (Event 3), effectively taking

away resources from workloads.

increase OSR without compromising workload service-level
objectives (SLOs).

3.1 Two key opportunities

In the most conservative implementation of oversubscrip-
tion, the largest OSR possible without a risk of exceeding
infrastructure limits is given by:

1
OSR =

-1 (1)

Urotal

where Ur,;q; is the maximum total power utilization across
both production and non-production workloads. We define
power utilization as the ratio of actual power consumption
to the theoretical peak power due to all deployed equipment
(see Section 4.1). Depending on the deployment’s tolerance
to power budget violation events, other less conservative
implementations can replace Ur,;q; With the 95th or 99th
percentile of total power utilization. However, there are two
other insights that offer opportunities to significantly in-
crease oversubscription.

Larger power domains for increased oversubscription.
First, as discussed in Section 2.1, the choke point in the base-
line architecture is the generator capacity at the PDU. This is
a relatively small level of statistical multiplexing compared
to the broader data center, and the power oversubscription
potential is limited by the diversity of workloads running
within each PDU domain. Increasing the power capacity of
the choke point, for example, to a broader cluster level, will
correspondingly increase the statistical multiplexing and the

OSR opportunity. Thus, OSR can potentially be increased to:

1
OSRjery = — — 1 (2)
Ucluster

where Ucjysrer is the power utilization associated with a
broader scheduling domain, and typically smaller than Uppy .

Workload awareness for increased oversubscription.
Second, as discussed in Section 2.1, not all workloads have
the same availability requirements. It is therefore possible to
increase OSR aggressively by taking advantage of the weak
availability requirements for non-production workloads. High
total power utilization is tolerable as long as the residual
power associated with production workloads never exceeds
electrical limits. Thus, the greatest OSR possible with power
capping can potentially be set to:

1

UProd
where Up,o4 is the power utilization associated with produc-
tion workloads. If non-production workloads are substantial,
Upoq Will be significantly smaller than Ury;;-

OSRpew =

-1 ©)

3.2 Medium voltage power plane

Larger power domains and higher availability. Figure 4
illustrates our new power distribution architecture. Two sig-
nificant differences from the previous generation in Figure 1
are the medium voltage distribution and the generator pool-
ing. The capacity of utility feeds is significantly larger than
the size of the generator farm, essentially moving the choke
point to the generator farm. Correspondingly, in combination
with the power capping service (discussed in Section 3.3),
very large power oversubscription is possible, significantly
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Figure 4. Schematic of the medium voltage power
plane (MVPP) architecture. The design features 2N redun-
dancy upstream of the unit substations, apart from the genera-
tor farm. The generator farm has N + M redundancy. When
at least one utility source is available, the choke point is the
utility source transformer (whose limit will typically not be
reached with oversubscription). When both utility sources are
unavailable, the choke point becomes the generator farm.

improving cost per watt — even after considering the rela-
tively minor cost of oversizing other electrical components
to make the generator farm the choke point.

The new topology of this design also achieves overall
higher power availability than the baseline design for the
same cost. Single failures and maintenance operations re-
lated to the power distribution will not cause any significant
downtime. All upstream points (see labels A and B in Fig-
ure 4) now have alternate pathways for every distribution
component, essentially a 2N scheme. For example, if the
bus for Medium Voltage Distribution A goes out of service,
every unit substation can be powered via Medium Voltage
Distribution B. Similarly, during outages, this design also pro-
vides higher power availability while minimizing the costs
of generators. This is achieved by paralleling the output of
N + M generators on a single bus where M is much smaller
than N and can be tuned to meet any desired availability
target. (This paralleling needs additional hardware support
as discussed below.) Note that close to the data center floor,
unit substations power rows of IT equipment.

Given the high reliability of these components, an N +
1 redundancy scheme is used to switch from these to an

Power single utility outage / dual utility  dual utility outage +

feed maintenance outage generator failures
_____ utility limit

= ~ 0| cappin generator
[ pﬁt 9 farm
/\ :;{e S capacity
/\ - - applicable
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Figure 5. Examples of generator awareness by the
MVPP power capping (PC) system during three
episodes. (left) Single utility loss where the capping threshold
remains near the utility limit: no capping occurs; (middle) Dual
utility outage where the capping threshold is near the generator
farm capacity: no capping occurs; (right) Dual utility outage
with some generator failures: the capping threshold is near
the capacity of the remaining generators, and capping events
occur.

alternative source (not shown in the Figure) in case of failure
or maintenance.

Support for generator awareness. Our architecture sup-
ports the ability to dynamically track the power flow and
enforce the appropriate power limit every time the active
path changes. Although generator awareness is also possible
in the baseline design described in Section 2, the significant
relative difference (~33% of the generator farm capacity) be-
tween the utility feed capacity and the generator farm capac-
ity of the MVPP makes generator awareness more profound.
In practice, capping events are expected only when loads are
powered by generators due to failure of both utility feeds.
Given dual utility feed outages are rare, the expected un-
availability due to power capping is correspondingly small.

Figure 5 describes three example outage scenarios and how
the capping limits change accordingly. In the first scenario,
one of the two utility feeds to the MVPP becomes unavailable
due to either a failure or planned maintenance. Since the
remaining feed can support the MVPP on its own, the power
capping system continues to protect the limit applicable for
utility power. In the second scenario, both utility sources
become unavailable, e.g. due to a complete failure of local
utility power. The power capping system is aware that the
MVPP is receiving power from the generator farm, and it
enforces a limit associated with generator farm capacity until
utility power is restored. Finally, in the third scenario, there
is not only a complete loss of utility power but also several
generators have failed to start. In this case, the power capping
system is aware of how many generators are available and
enforces an appropriately lower power limit.

Section 3.3 discusses how generator awareness is imple-
mented in our power capping service, and Section 4 presents
data showing the effectiveness of this approach for handling



rare situations where utility power is unavailable and power
consumption exceeds generator farm capacity.

Power fungibility and reduced stranding. In addition to
enabling higher power oversubscription, the MVPP architec-
ture features progressively larger power headrooms going
from the building level to the level of individual rows. (Head-
room, in this context, is the difference between the capacity
of the power distribution infrastructure and maximum ex-
pected power.) This architecture makes power fungible across
a data center floor, with total capacity up to several tens of
MW. Consequently, the MVPP enables deployment flexibil-
ity for different kinds of IT equipment (servers, accelera-
tors, storage, etc.) while avoiding power stranding. With a
more conventional baseline power distribution architecture,
it can be difficult to avoid stranding power capacity, espe-
cially when there are large regions of low-power-density (e.g.
storage) equipment on the data center floor. The ability to
support a wide range of power densities at any location on
the data center floor has increased in importance with the ad-
vent of high-power-density hardware accelerators (e.g. TPUs
or GPUs for machine learning workloads). Another aspect
of co-design for a high availability cluster is the use of high-
bandwidth network fabrics which can also scale to several
tens of MW. This implies that both intra-cluster and inter-
cluster bandwidth can be uniformly large across a power
plane. Coupled with the additional flexibility to consume
power anywhere on the data center floor, there is more free-
dom to spatially organize IT equipment. In particular, data
storage can be physically separated from workload-intensive
machines, and this enables programming models and cluster
architectures which take advantage of close physical prox-
imity between compute nodes.

S = Source
L = Load

D = medium voltage breaker

2558

Figure 6. Reliable, fast-acting fault protection on the
medium voltage distribution bus. Medium voltage class
relays support high-speed communication between devices in
case of a fault, resulting in fast protection without complex
wiring, and enabling relatively large distances (> 100 m) be-
tween breakers.

Generator and power bus features. We developed several
hardware features to support the operation of the medium
voltage power plane. The generator paralleling discussed ear-
lier requires carefully managing constraints on waveform,
phase sequence, frequency, phase angle difference, and volt-
age differences across multiple sources [25]. For a medium

voltage plane at the scale of tens of MW, the time needed
to resolve these constraints and synchronize generators is
longer than the practical battery backup time for IT equip-
ment. We worked with generator manufacturers to optimize
the startup time of generator farms and confirm reliable syn-
chronization behavior with large-scale tests. Additionally,
to implement the generator awareness discussed earlier, we
worked with generator vendors to create an API that re-
ports how many generators are available (used by the power
capping service to adjust its thresholds accordingly).

Finally, because the MVPP involves distribution buses that
are large both in capacity and physical extent, there is a chal-
lenge to provide reliable, fast-acting hardware protection in
case of an electrical fault. In a system that distributes tens of
MW, fast protection is necessary to minimize physical dam-
age and maximize safety for people in the vicinity of a fault.
While low voltage electrical equipment often lacks reliability
and advanced protection features, both are readily available
for medium voltage equipment. In particular, Figure 6 shows
medium voltage devices that can communicate with each
other via a peer-to-peer protocol. This not only eliminates
wiring complexity but also enables near-instantaneous cir-
cuit breaker responses to isolate a fault. Each individual load
in the figure represents a unit substation powering a row of
IT equipment on the data center floor.

Software architecture. Figure 7 describes the high-level ar-
chitecture of the power capping service that reduces power
on the MVPP whenever power approaches an applicable
power limit. At a frequency of 1 Hz, a meter watcher mod-
ule continuously polls several fast-response power meters
located at the utility feeds and generator farm (correspond-
ing to the choke points in the power distribution from Sec-
tion 3.2). These measurements are fed to the power notifier
module that is tasked with aggregating readings and com-
paring measured power values with PC thresholds derived
from MVPP electrical design data.

Whenever the power capping threshold is exceeded, the
notifier contacts the machine managermodule to send remote
procedure calls (RPCs) to individual node-level schedulers
on the power plane. These in turn suspend low-priority tasks
using a SIGSTOP signal. Each node scheduler will prevent
low priority tasks from running as long as power remains
above threshold. Once power drops sufficiently, the node
scheduler will issue a SIGCONT signal, allowing tasks to re-
sume. Typically a significant portion of tasks (about a third)
die and reschedule once they receive the SIGCONT. These
tasks commonly fail to respond to application level watch-
dogs. SIGSTOP was chosen over a SIGKILL signal, to allow
a portion of tasks to survive power capping which reduces
wasted work. In addition, SIGSTOP minimizes the amount of
work required at the node level at the very moment of load
shedding (no process cleanup happens with SIGSTOP). How-
ever, there are two special cases where we prefer SIGKILL



Power Capping Service

(<2 sec)
Meter Power
$ Watcher Notifier

Machine
Manager

RPCs
<100 msecs)
Node Node e Node
Control Control Control

(<100 msecs)

Power Limit
Data

Figure 7. Simplified block diagram for the power cap-
ping service. A watcher module polls fast-response power
meters at choke points. The notifier module checks aggregated
power with thresholds, and the machine manager sends RPCs
to individual nodes suspending non-production tasks.

over SIGSTOP signal. We have found that accelerators may
continue crunching data and consume power several seconds
after we suspend the host task. Sending a SIGKILL signal
instead flushes the data queues between host and accelera-
tor, idles the accelerator, and reduces power faster. We also
choose to use a SIGKILL signal for cloud virtual machines.
SIGSTOP and SIGCONT signals are used for virtual machine
management and there were concerns about being able to
distinguish the different use cases.

For the traditional baseline design, we have historically
deployed one master-elected power capping job instance per
PDU. For the much larger MVPP domain, we shard the power
capping service such that each instance is responsible for
notifying roughly 2 MW worth of node schedulers. The lim-
ited fan-out of this design helps achieve fast response times
and also bounds the resources needed per job. We provision
roughly 1 CPU and 1 GB of memory per power capping
instance which is orders of magnitude less overhead than
other power capping implementations in the literature [13].

3.3 Power Capping Service

Fast response times. The end-to-end response time for
power reduction is bounded to < 4 s, with an average case
of < 2 s. Limiting the notification fan-out with the sharded
design bounds the notification time to be a small portion
of the overall response time budget. Given that reaching
all the machines in the domain takes less than 100 ms and
suspending tasks in the node also happens in less than 100
ms, most of the time is spent waiting on meter telemetry.
Although our industry-standard power meters are capable
of measuring power at sub-second granularity, they report
power values over the network reliably only once per second.
As a result, we expect in the worst case a one second delay
in reporting from the meter. Given that the power capping

service also polls the meters once per second, we conserva-
tively budget for a total of 2 s round trip latency for reading
power meters.

The notification from the power capping jobs to the indi-
vidual machine level controllers takes milliseconds. To obtain
this optimized delay, we pre-allocate the memory for RPC
stubs and maintain warm TCP connections from the power
capping controller to all the node-level controllers in the
domain. The latency of the node-level controller from the
arrival of the remote procedure call until the power drops is
only tens of milliseconds.

On average, the expected response time is well below
2 s. However, we budget overall 4 s to account for network
tail latencies. The fast response times allow the capping
threshold to be just slightly lower than the power limit we
protect (see "Robustness" below), with little risk of power
exceeding the limit before power capping reacts. Note that
we can tolerate machines that are slow to, or do not, respond.
Since we suspend all low-priority jobs and typically shed
much more power than we need, these stragglers do not
matter.

Generator awareness of power limit. As discussed in
Section 3.2, the MVPP architecture supports generator aware-
ness. The power capping service reads power meters de-
ployed at the MVPP level (A in Figure 4) and determines
the active power source. The protected power limit is the
utility feed capacity whenever utility power is the active
source, and it is the available generator farm capacity if the
generator farm is the active source. If some generators fail
to start or synchronize to their common bus, the power limit
will be dynamically adjusted to match the capacity of the
successfully synchronized generators. The power capping
service uses the hardware API discussed earlier to determine
generator availability and get the capacity of the responsive
generators.

Generator load demand response. For greater efficiency

and reliability, it is desirable to run a smaller number of
generators near full capacity than all generators at low ca-
pacity. Load demand response dynamically adjusts the num-
ber of running generators to better match the actual load.
The challenge is this: a power capping event could cause
generators to idle, which in turn reduces the threshold to
activate power capping; however, after we have already shed
non-production workload, subsequent power capping may
be ineffective, and we could potentially lose the entire power
plane due to generator overload. To avoid this situation, we
implemented a load demand algorithm which maintains a
conservative buffer of generator farm capacity above de-
mand.

Robustness. Our MVPP power capping implementation
emphasizes robustness. First, we use accurate and dual -
redundant meters at the electrical distribution choke points.
This is a simpler and safer strategy than trying to infer power
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Figure 8. (a) Automated analysis pipeline to capture historical power utilization values and estimate oversubscrip-
tion potential. Measured historical power meter data is divided by modeled total peak power to generate power utilization series.
(b) Example simulation of power capping events at a given OSR. Historical power data can be scaled to simulate power
capping events at hypothetical OSRs, and impact of production workloads.

from many machine-level measurements that are not aligned
in time.

This strategy also minimizes the compute and network
resources required to monitor choke points. In the event of
a dual utility outage, no meter readings are available for a
period of tens of seconds while generators are starting and
preparing to accept load. During this time, the IT equipment
draws power from local batteries. Since dual utility outages
are rare, our power capping service can afford to proactively
shed low-priority load while generators are starting to ensure
that generators are not overloaded.

We trigger capping at 98% of the power limit that we seek
to protect. The 2% buffer accounts for possible increases in
power consumption within our typical response time (see
"Fast response times" above). In contrast to the approach
followed in [11], we do not implement any hysteresis to
avoid power oscillations. Instead, we allow tasks to resume
gradually over time. Given that a significant portion of low
priority tasks are aborted before they can resume, rapid
power oscillations are unlikely.

Fail-safe load preservation. Load preservation is a gener-
ator control mechanism used as a fail-safe backup for non-
production load shedding. When power capping fails to re-
duce power sufficiently and the generator farm becomes
overloaded, generator controls rapidly disconnect some elec-
trical loads in order to preserve the remaining loads. This
can be done by opening row-level bus breakers, for example.
In our implementation, individual buses (data center rows)
are assigned a priority ranking, and the rows are discon-
nected in an overload emergency according to their ranking.
It is highly desirable to activate power capping before load
preservation kicks in, because the former affects only non-
production workload while the latter disrupts all workloads.
We achieve this in practice by activating power capping
based on a power threshold and load preservation based
on generator frequency falling below an “underfrequency”

limit. The thresholds are chosen such that power capping
will always act before load preservation.

4 Deployment at scale in Google

In this section, we discuss the deployment of our new power
oversubscription architecture at Google scale. We first de-
scribe our software pipeline to monitor power and deter-
mine OSR thresholds (Section 4.1). We then present results
demonstrating the benefits of the larger power domain and
awareness of SLOs fleetwide as well as in individual clusters
(Sections 4.2 and 4.3).

4.1 Continuous Power Estimation

We have built a software pipeline to facilitate continuous
power utilization analysis in order to determine safe levels
of oversubscription for different workload mixes. We focus
on deriving two primitives through this pipeline: (a) total
power utilization and (b) production power utilization at the
choke point of the power architecture, which is the PDU or
MVPP. Total power utilization can be translated to a rate of
power capping events at a given OSR (see Equation 1), while
production power utilization tells us whether sufficient load
can be shed at a specific OSR (see Equation 3).

Estimation of deployed power. At one end of the pipeline
(Figure 8), estimates of peak power, the worst-case consumed
power of connected equipment, are calculated for each choke
point. Peak power is the denominator for both total power
utilization and production power utilization. We derive peak
power from:

e Records of deployed hardware configurations

e Machine peak power values. Worst case machine power
is determined experimentally during the qualification
process for the new hardware platforms by running
Google benchmarks and stress tests.

e Peak power values for non-machine loads on the data
center floor (e.g. cooling and networking equipment)



Measurement of consumed power. On another branch
of the pipeline, a state-of-the-art monitoring infrastructure
records actual consumed power every ~2 seconds at different
levels of the power distribution hierarchy, including levels
labeled A and C in Figure 4. Both the raw power measure-
ments and the summarized time series data are held in a
distributed data store to accelerate data retrieval.

To get total power utilization, we normalize measured
consumed power with the estimated deployed peak power
(see Figure 8a). Using Equation 1, the power utilization time
series can be analyzed to determine the maximum possible
OSR for an MVPP or PDU before power capping events are
expected. We can also use the time series to estimate the
total duration of capping events as a function of OSR, which
yields an approximate probability for power capping without
"generator awareness" (see Section 3.2).

Modeling of generator failures for refined probability
estimates. We assess the impact of generator awareness
through a Monte Carlo simulation which estimates the cap-
ping rates and the resultant impact to non-production tier
availability based on utility downtime and frequency. The
System Average Interruption Frequency Index (SAIFI) and
System Average Interruption Duration Index (SAIDI) are
good approximations for average utility outage duration and
frequency in the US. This data can be obtained from the US
Energy Information Administration [26]. Because of gener-
ator awareness, the probability of capping is dramatically
reduced.

Estimation of production power. We define production
power as the power consumption attributable to the pro-
duction workload tier. This is the power consumption we
expect to remain after power capping eliminates the non-
production workload. Production power cannot be directly
measured. Instead we reduce machine-level CPU utilization
by the known utilization of non-production tasks and esti-
mate each machine’s production power from machine-level
power models that interpolate idle and peak machine power
according to CPU utilization. This approach builds on the
methodology described in [4, 5]. To get production power
utilization we normalize production power again with es-
timated deployed power. Using Equation 2, the production
power utilization time series can be analyzed to determine
the maximum possible OSR for an MVPP or PDU before the
production power would exceed the critical limit that the
capping mechanism protects. For the PDU-based designs,
the limit is the generator capacity, while for the MVPP-based
designs, the limit and baseline for oversubscription is the
non-redundant generator farm capacity.
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Figure 9. A comparison of the cumulative distribution
functions (CDFs) of power utilization for clusters and
PDUs. Each CDF represents an average over many single-
cluster workload mixes. The max power utilization observed at
the cluster level is 85%, corresponding to an OSR potential of
~17%.

4.2 Benefits at scale

To characterize the benefits from our approach at scale, we
present data collected over a period of 1.5 years, from Jan-
uary 2018 to June 2019, for a statistically significant set of
clusters in PDU-based data centers as well as clusters in two
MVPP data centers. The empirical power utilization distribu-
tions reported below are based on 1-hour maximum values
from the estimated time series. We also filter out PDUs and
MVPPs with peak power less than 80% of electrical limits,
since we have observed that clusters at the beginning of
their life cycle demonstrate lower total power utilization and
higher production power utilization, and they are not rep-
resentative of fully-deployed clusters where power capping
matters. (This happens because it takes more time for batch
workloads to be migrated by users into new clusters as com-
pared to production workloads.) We are making a sample
of these power utilization traces available to the research
community [27].

Larger power domains. We start by examining the rela-
tionship between workload domain sizes (PDUs and clusters)
and power utilization distributions in aggregate. Note that a
cluster domain in our fleet consists of at least a small group
of PDUs, and an MVPP includes more than 10X the number
machines as a single PDU. On a fleetwide average basis, the
power utilization of a cluster has a smaller variance than
that of a constituent PDU. Although the average power uti-
lization does not change when the size of the power domain
increases, the tail behavior does. At high percentiles, the dif-
ference between PDU- and cluster-level utilization increases,
roughly 2% at 99.9%-ile and 10% at the maximum. (Figure
9). The additional statistical multiplexing at larger power
domains leads to an increase in OSR potential without power
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Figure 10. Total power utilization distributions as a
function of k independent scheduling domains, 1 <
k < 15. The distributions were calculated by Monte Carlo
aggregation of many combinations of empirical, cluster-level
power utilization distributions, taken k clusters at a time. This
illustrates the significant narrowing of the power utilization
distribution, corresponding to an increase in OSR potential, as
more independent workloads are combined on a power plane.

capping (Equation 1). Based on the maximum cluster power
utilization observed in the fleet (85%), increasing the domain
size (from PDUs to MVPP) should enable an OSR of at least
17%.

Multiple scheduling domains. An orthogonal optimiza-
tion that further increases OSR is to place multiple schedul-
ing domains on an MVPP. We have previously illustrated the
1:1 mapping of a single cluster scheduler to a power plane in
Figure 3. However, we can also choose to deploy multiple in-
dependent cluster schedulers on the same power plane. The
cluster scheduling domain in that case covers a unique set of
machines against which jobs can be co-scheduled within that
domain. Typically, the smaller the scale of a scheduling do-
main (where scale refers to the set of machines the scheduler
governs), the higher the likelihood of stranded resources for
the machines. Incidentally, the large size of MVPP allows us
the ability to carve out multiple scheduling domains where
each can scale to minimize stranded resources while also
taking advantage of statistical multiplexing of power at the
MVPP to achieve higher OSR. In Figure 10, we present the ef-
fect of increasing the number (k) of independent scheduling
domains on the total power utilization of the power plane.
A power utilization distribution is generated for each value
of k by convolving empirical power utilization distributions
from many random combinations of k clusters. The standard
deviation of the power utilization distribution is proportional
to 1/Vk, as expected from the central limit theorem. As a
result, for a desired long-term average non-production tier
availability, indicated by the power utilization percentile,
we can estimate the expected increase in OSR potential. For
example, going from one scheduling domain to two enables
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Figure 11. Expected fraction of time that the non-
production tier will be capped while on generator.
Markers correspond to individual clusters fully deployed on
a power plane to the indicated power oversubscription (OSR).
The boxes indicate first and third quartiles of the distribution
of clusters.

roughly 5% additional OSR when we cap at the 99%-ile power
utilization.

Generator and SLO awareness. To further increase OSR,
we combine the impact of the larger MVPP power domain
with generator awareness. In accordance with our cluster
scheduling availability requirements, only non-production
workloads are prevented from running during a power cap-
ping event. In order to characterize the impact on non -
production tier unavailability as a function of OSR, we ran
a time-domain Monte Carlo simulation for a single-cluster
MVPP at different OSR values using the historical power
utilization time series of actual clusters. The simulation em-
ployed conservative assumptions about maintenance and
failure rates as well as the utility power outage frequency
and duration mentioned in Section 4.1. Over centuries of
simulated time, we probabilistically generated all three types
of events depicted in Figure 5. From the results, we estimated
the fraction of generator time where non-production work-
loads cannot run due to power capping in a given cluster
(see Figure 11). The plot shows the range of non-production
workload unavailability across clusters as a function of OSR
value while running on generators. Note that the time spent
running on generators is small to begin with, since utility
outages occur for at most a few hours per year in typical
data center locations. Generator awareness ensures that the
impact of power capping on even the non-production work-
loads on an MVPP is rare and limited in duration.

While most clusters would see impact to non-production
workload for at most a few percent of the generator run
time at OSR = 30%, we have conservatively limited the initial
OSR of MVPPs to 25% based on the largest production power
utilization (~ 80%) observed in any single cluster domain
to date. This choice minimizes the risk of not being able to
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Figure 12. CDF of potential OSR values derived per
cluster in our fleet according to the worst (99.99%-ile)
production power utilization observed. These results in-
dicate that we can safely oversubscribe any existing workload
mix by 25% while ensuring that power will be lower than the
actual limit we are trying to protect: the generator farm capac-
ity of the MVPP. OSR values are related to production power
utilization by Equation 3. For example, the smallest 99.99%-ile
production power utilization observed for a cluster is 50.7%,
correponding to the largest potential OSR: 1/50.7% — 1 = 97%.

sufficiently reduce power in a utility outage. If in the future,
we observe a production power utilization larger than 80%
in any cluster domain, we can decide to reduce the OSR of
any single-cluster MVPP based on a risk assessment that
comprehends the production power utilization trend of that
MVPP.

The distribution of worst production power observed per
cluster in our fleet is depicted in Figure 12. Unless higher
levels of production power utilization are achieved in the
future, we can be confident of avoiding the situation where
power capping cannot sufficiently reduce power in a utility
outage. As more confidence is gained both in our power uti-
lization predictions and in our power capping system, we can
consider even more aggressive oversubscription, approach-
ing the limit implied by the maximum observed production
power utilization in the affected clusters.

4.3 Specific cluster measurements

We also present example data from production MVPP data
centers. These illustrate the impact of aggregation across
scheduling domains on power utilization. In addition, we
measured the time response of the MVPP power capping
service.

Power utilization of single and dual-scheduling do-
mains. Figure 13 shows empirical results based on the par-
tial deployment of MVPPs involving one and two scheduling
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Figure 13. Power utilization of single and dual sched-
uling domains. Top: CDFs of total power utilization (“total
util”) and the production power utilization (“production util”)
of two different MVPPs over one year. Bottom: Probability dis-
tribution functions (PDFs) corresponding to the total power
utilization CDFs.

domains, respectively. In this case, MVPP1 supported a sin-
gle cluster and was deployed to a peak power of 20 MW
during the analysis period. MVPP2 provided power for two
independent clusters and was deployed to a total peak power
of 22 MW. Standard deviations of the power utilization for
MVPP1 and MVPP2 are 0.050 and 0.048, respectively.

We have observed that the medians and the form of the
distributions are determined by the workload mixes on the
respective power planes. Based on the empirical data the
highest observed production power utilization for MVPP1
is 65% and MVPP2 is 59%, which is consistent with the expec-
tation that power planes with more scheduling domains will
generally have higher OSR potential (see Figure 13). Also, for
a single scheduling domain like MVPP1, these results con-
firm the ability to safely oversubscribe by at least 25% and
potentially by as much as 66% for this particular workload.

Response time measurements. A power versus time trace
for a sample MVPP power capping event is shown in Figure
14. As described in Section 3.3, the power capping service



12 MW e
. n—
Q 11.5 MW

3 —n

<}

(o}

o |11 MW

(=

=

= [o5MW

10 MW

9.5 MW _1_‘—

2:32:35PM | 2:32:40 PM  2:32:45PM  2:32:50 PM 2:32:55 PM| 2:33:00 PM
Time

Figure 14. Measured power on a partially-deployed
production MVPP during a power capping test.The
power capping event was induced by temporarily lowering the
power capping threshold. In about 2s, the MVPP power drops
by 15%, reflecting the relative proportion of non-production
workload.

shards the power plane into ~ 2 MW chunks, and a ser-
vice instance is responsible for notifying node schedulers
within a single chunk. This notification fan-out, combined
with fast meter telemetry and our design choice to suspend
all non-production workload simultaneously, allows power
capping to achieve the largest possible power reduction in a
few seconds.

5 Related Work

To the best of our knowledge, our work is the first to discuss
improved data center power oversubscription through a co-
designed architecture using a medium voltage power plane
and a power capping service that is aware of both generators
and workload SLOs.

Like our power plane co-design, Facebook’s Dynamo [11]
is a production hyperscale power management system. More
recently, IBM proposed and evaluated CapMaestro [13] as a
solution for public clouds that comprehends workload prior-
ities. Our work differs from these in several ways. Instead
of measuring and budgeting power at multiple levels of the
power hierarchy, we focus on capping a novel medium volt-
age power plane. Also, regardless of OSR, our power capping
events do not affect the performance of high-priority work-
loads. Our system is able to schedule tasks of any priority
on any machine; both Dynamo and CapMaestro depend on
segregation of different priorities onto different machines.
Together, these differences allow our architecture to achieve
significantly higher levels of oversubscription (more than
25%) compared to previous generations. Also, our power
capping service starts and stops tasks by sending platform-
agnostic signals to the node controllers of our cluster sched-
uler. Dynamo uses RAPL, and CapMaestro uses the Intel
Node Manager, both of which are available only for Intel
platforms.

Other researchers have investigated a variety of node-level
and multi-level control systems to throttle power and en-
able oversubscription while minimizing performance impact,
e.g. [4, 6, 8, 16, 28-30]. Summarizing many of the available
options, [31] discussed interactions between controls at dif-
ferent levels (server, rack, group of racks) with different
objectives (energy efficiency, capping, performance) and ac-
tuators (p-states, turning machines off, admission control,
power budget management). We also note [32] as an example
of recent power management work for supercomputers.

Although some medium voltage components are used for
data center power distribution [33, 34], we believe we are
the first to tackle the fault protection, backup generation,
and other operational challenges associated with using a
medium voltage power plane in a hyperscale data center
context. A separate body of work discusses tapping into
stored energy to enable higher oversubscription [35-37]. We
could add battery capacity to a medium voltage power plane
to enhance its OSR potential, but it is unclear whether the
cost savings achieved for other infrastructure would exceed
the battery costs. Similarly Fu et al. [38] discuss how control
algorithms can be used to leverage the current-time curves
of circuit breakers for additional oversubscription. Since the
variance in the time response of generators and breakers
is difficult to know, we have taken the more conservative
approach of capping power as quickly as possible whenever
a threshold is reached.

Finally, we note there have been substantial contributions
on data center resource management at scale (e.g. [39, 40])
that should be considered complementary to the hyperscale
power management work summarized here.

6 Summary

With the rapid growth of cloud computing, demand for phys-
ical data center infrastructure continues to rise. Furthermore,
new types of data center hardware (like machine learning
accelerators) demand more power in the same space. To
meet these demands at sustainable cost, large-scale service
providers must find ways to improve infrastructure utiliza-
tion while maintaining high availability for the most critical
workloads. Power oversubscription will continue to be one of
the most important ways. This paper describes a co-designed
power delivery, power control, and cluster scheduling solu-
tion that enables OSR values of more than 25%, a significant
increase relative to what has been previously reported for
hyperscale data centers.

We introduced a novel medium voltage power plane archi-
tecture for power distribution and discussed how it achieves
higher availability than the traditional baseline architecture
at comparable cost. Our design pools tens of MW under a
choke point, enhancing OSR potential via statistical multi-
plexing of loads and scheduling domains. We co-designed



our medium-voltage power plane with a fast and robust
power capping service that can coordinate multiple work-
load priorities. Because the applicable electrical limits are
significantly larger with utility power than with generator
power, the probability of power capping remains low even at
high OSR. Since the events are rare, we can cap by a method
that is both simple and reliable: we use our scheduler to re-
actively suspend low-priority workloads on the power plane.
Thus, power is maintained at safe levels without violating
the SLOs of either high- or low-priority workloads. We have
constructed multiple data centers with our proposed architec-
ture, serving large-scale production workloads over multiple
years. Our measured power utilization distributions verify
the expected oversubscription potential, and the fast power
control response times. We are also releasing Google power
usage data relevant to this paper with the goal of encour-
aging the broader community to pursue further research in
this area.

The co-design in this paper is one example of optimizing
across the data center technology stack to achieve significant
cost efficiencies. We believe this approach can be extended
further. By tailoring the OSR of a power plane to its work-
load and by further leveraging the stratification of workload
according to multiple performance and availability SLOs,
even larger infrastructure cost reductions will be possible.
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