
Fast Deep Swept Volume Estimator
Journal Title
XX(X):1–16
c©The Author(s) 0000

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Hao-Tien Lewis Chiang1,2, John E. G. Baxter1, Satomi Sugaya1, Mohammad R. Yousefi1,
Aleksandra Faust2, Lydia Tapia1

Abstract
Despite decades of research on efficient swept volume computation for robotics, computing the exact swept volume is
intractable and approximate swept volume algorithms have been computationally prohibitive for applications such as
motion and task planning. In this work, we employ Deep Neural Networks (DNNs) for fast swept volume estimation.
Since swept volume is a property of robot kinematics, a DNN can be trained off-line once in a supervised manner and
deployed in any environment. The trained DNN is fast during on-line swept volume geometry or size inferences. Results
show that DNNs can accurately and rapidly estimate swept volumes caused by rotational, translational and prismatic
joint motions. Sampling-based planners using the learned distance are up to 5x more efficient and identify paths with
smaller swept volumes on simulated and physical robots. Results also show that swept volume geometry estimation
with a DNN is over 98.9% accurate and 1200x faster than an octree-based swept volume algorithm.

Keywords
Swept Volume, Motion Planning, Deep Learning

1 Introduction

Some of the earliest work in robotic motion planning noted
the importance of swept volume computation since swept
volume, SV(c1, c2), is the physical volume displaced by an
object moving along a trajectory between two configurations,
c1 and c2 (Figure 1a). For example, early motion planning
work in configuration space (c-space) proposed to use swept
volume to construct c-space obstacle surfaces (Lozano-Perez
1990). Moreover, core components of modern sampling-
based motion planning, i.e., distance measures between high
Degree Of Freedom (DOF) configurations and continuous
collision detection, can also benefit significantly from
the use of swept volumes (Kuffner 2004; Xavier 1997).
In fact, the size of swept volume, or swept volume
measure (|SV(c1, c2)|) was identified as the ideal distance
measure, since it can reflect the collision probability between
configurations ∗. As a result, using the swept volume as the
distance measure reduces the number of unsuccessful local
planning attempts. (Kuffner 2004). Lastly, swept volumes
can be used as an efficient bridge between task and motion
planning (Gaschler et al. 2013; Kaelbling and Lozano-Pérez
2010).

Unfortunately, exact swept volume computation is
generally intractable due to the complex non-linear relation
between the configuration pair (for start and end poses)
and corresponding geometry. As a result, most algorithms
focus on generating approximations (Kim et al. 2004),
such as occupation grid-based, convex polyhedra-based and
boundary-based methods (Kim et al. 2004; Himmelstein
et al. 2010; Von Dziegielewski et al. 2015; Gaschler
et al. 2013; Campen and Kobbelt 2010; Abrams and Allen
2000). Worse, despite more than four decades of study,
approximate swept volume algorithms can still be inadequate

for applications such as motion planning due to being overly
conservative or having high computational costs (Gaschler
et al. 2013; Ekenna et al. 2015).

To provide fast swept volume estimation, we propose
using Deep Neural Networks (DNNs) to approximate swept
volumes (Figure 1b). Trained off-line with swept volume
examples for a given robot in an obstacle-free space,
the DNN captures the complex and nonlinear relationship
between trajectories in the robot’s configuration space. As a
result, DNNs significantly reduce computation costs during
on-line swept volume estimations. Successful learning of
swept volume is feasible since DNNs can approximate any
continuous bounded function (Hornik 1991) and we show
that swept volume possesses these properties in a finite
configuration space.

The primary contributions are as follows. First, we
develop techniques for using fast swept volume measure
(|SV(c1, c2)|) estimation with DNN as a distance measure to
improve sampling-based motion planner performance. Sec-
ond, we briefly demonstrate that swept volume geometries
(SV(c1, c2)) can be accurately and efficiently estimated by
DNNs. This paper extends our previous work (Chiang et al.
2018) through the following additional contributions. First,

1University of New Mexico, USA
2Robotics at Google, USA

Corresponding author:
Lydia Tapia, Computer Science, University of New Mexico, Albuquerque,
New Mexico, USA
∗|SV(c1, c2)| is a measure that has been traditionally used as a proxy
for preferring paths that displace the least volume. When obstacles are
uniformly randomly located and without any priors, paths with the smallest
|SV(c1, c2)| have the least probability of collision.

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

c1 c2

Start Configuration End Configuration
Swept Volume

SV(c1, c2)

(a) Illustration of swept volume

Input

…

Deep Neural Net Output

c1

c2

…

Start Configuration

End Configuration

fSVdnn(c1, c2)

OR
|fSVdnn(c1, c2)|

(b) Fast swept volume estimation with deep neural nets

Figure 1. (a) Illustration of swept volume and (b) fast swept
volume estimation with DNNs. In this work, we assume the
trajectory connecting c1 and c2 is a straight line in the
configuration space unless otherwise specified.

we comprehensively evaluate the accuracy of DNN distance
measure learning on 7 robots, encompassing rigid body, pris-
matic and revolute joints and closed-loop kinematic chain
motion.

Next, we tested the learned distance measure on sampling-
based planners, PRM (Kavraki et al. 1996), RRT (LaValle
and Kuffner 2001) and RRT-Connect (Kuffner and LaValle
2000), in four simulated motion planning scenarios and one
scenario on a physical Baxter robot. Lastly, we discuss
the trade-offs between distance measures and demonstrate
accurate swept volume geometry estimation. This paper
might also be of interest to the larger robotics, computational
geometry and computer graphics communities, particularly
in the area of applying machine learning techniques to high
degree of freedom systems.

Experimental results indicate that DNN can accurately
and rapidly estimate |SV(c1, c2)| across all 7 robots tested.
Planners that use the learned distance measure are: 1) up
to five times more likely to identify a collision-free path
on a fixed time budget and 2) able to return paths with a
smaller swept volume. These advantages are consistent for
all robots tested and are particularly significant for more
complex robots with a highly articulated body.

Results also indicate that swept volume geometry
estimation of a 7 DOF manipulator is over 98.9% accurate
and up to 1200x faster than a state of the art swept volume
algorithm.

2 Related Work
Modern approximate swept volume algorithms can be
roughly classified as occupation grid-based, convex
polyhedra-based, and boundary-based. Occupation grid-
based approaches decompose the workspace, e.g., into

voxels, in order to record the robot’s occupation in the
workspace as it executes a trajectory (Himmelstein et al.
2010; Von Dziegielewski et al. 2015). The resulting
approximation has a resolution-tunable accuracy and is
conservative, which can be critical for applications such as
collision avoidance (Perrin et al. 2012).

Convex polyhedra-based methods approximate robot
bodies as the union of simple convex hulls using algorithms
such as (Mamou and Ghorbel 2009). As the robot moves
between configurations, additional convex hulls are inserted
at a fixed angular interval and the swept volume is the union
of all convex hulls (Gaschler et al. 2013). The boundary-
based methods extract the boundary surface (Campen and
Kobbelt 2010; Kim et al. 2004; Abrams and Allen 2000).
Despite more than four decades of study, swept volume
computation is still too slow to be used on-line by sampling-
based motion planners (Kuffner 2004; Ekenna et al. 2015).

Swept volume has been used in motion planning in
various ways. In (Perrin et al. 2012), swept volumes of
enumerated step patterns of a bipedal robot are computed off-
line and queried on-line by an RRT-based planner to speed
up collision detection for robot footstep planning. Similarly,
in this paper we compute swept volume approximations
off-line. However, our learned estimators can generalize to
unseen configuration pairs. Swept volume has also been
used directly as a distance measure in (Ekenna et al.
2015). However, due to the exceedingly high swept volume
computation cost, the performance is reported to be orders of
magnitude worse than weighted Euclidean distance measure.

A distance metric that accurately predicts a local planner’s
success rate is critical for sampling-based motion planners
(Elbanhawi and Simic 2014). On the other hand, distance
metric calculations also need to be fast since they are one
of the most numerous sampling-based planner operations
(Amato et al. 1998). Carefully tuned weighted Euclidean
distance metrics have been empirically shown to outperform
other metrics (Amato et al. 1998). This conclusion is echoed
in (Völz and Graichen 2016) where the swept volume
is approximated by tuning a weighted Euclidean distance
measure. However, a weighted Euclidean distance metric
may not be expressive enough to approximate swept volume
as swept volumes are nonlinear, i.e., each joint DOF affects
one another in an articulated body.

Machine learning has been used to learn distance
measures for kinodynamic robots (Palmieri and Arras 2015;
Wolfslag et al. 2018). In such systems, the design goal
of distance metrics is often quite different from planning
in configuration space due to the constrained reachability.
Good distance metrics typically approximate the minimum
time to reach between states (Palmieri and Arras 2015). For
example, regression learning algorithms are trained off-line
in (Palmieri and Arras 2015) to approximate the time to
reach between states. The training data is generated by a
near-optimal controller for unicycle robots. An RRT-based
planner then uses the learned distance metric during on-
line planning. A similar method replaces the near-optimal
controller with an indirect controller to learn both the time
to reach and control inputs (Wolfslag et al. 2018). These
methods differ from ours, in that our method identifies
neighboring configurations that are likely to succeed in
the connect or extend operations due to expected distance

Prepared using sagej.cls

Hao-Tien Lewis Chiang et al. 3

of a trajectory, while distance metrics in (Wolfslag et al.
2018; Palmieri and Arras 2015) approximate minimum time
to reach. Another example of integration between deep
machine learning and sampling-based planning is PRM-RL
(Faust et al. 2018). Similar to our method, it uses an off-line,
once-per robot training to connect PRM nodes that are most
likely to succeed. Unlike our learned distance estimators,
PRM-RL learns the local planner for a physical robot moving
via sensor information. Therefore, nodes that are most likely
to succeed are connected.

3 Problem Formulation
In this paper, unless otherwise specified, we define the swept
volume, SV , for a trajectory in configuration space as

SV(c1, c2) = ∪t∈[0,1]V((1− t)c1 + tc2), (1)

where c1, c2 ∈ Rdf are the start and end configurations of
a robot with df DOF, and V(c) is the workspace occupied
by the robot in configuration c. We consider the trajectory
between c1 and c2 to be a straight line in configuration
space unless otherwise specified. SV(c1, c2) can be highly
complex and nonlinear due to rotational DOFs, especially in
cases where the robot has an articulated body.

Our goal is to train a swept volume measure estimator
Dsv

dnn(c1, c2|θ) that approximates the swept volume measure
|SV(c1, c2)| by finding parameters θ that minimizes loss L:

θ̃ = arg min
θ
L
(
Dsv

dnn(c1, c2|θ), |SV(c1, c2)|
)
. (2)

In addition, as a proof of concept, we also demonstrate learn-
ing of a swept volume geometry estimator SVdnn(c1, c2) that
approximates SV(c1, c2).

4 Methods
In this section, we describe how to train the swept volume
measure estimator with DNNs (Dsv

dnn) and techniques to use
it as a distance measure for sampling-based motion planning.
The estimator models are trained off-line in two steps. First,
|SV| training dataset generation is described in Section 4.1.
Next, using the dataset, we train DNNs in Section 4.2. To
overcome the hurdles of utilizing the learned estimator as a
distance measure for sampling-based planning, such as the
lack of metric space properties and efficiency, we learn
an additional weighted Euclidean distance measure, Dsv

we
(Section 4.3). It is then used as a filter in a hierarchical
neighbor selector that selects the most promising nodes in
sampling-based planning (Section 4.4).

4.1 Training Dataset Generation
The training data of size n is composed of (X,Y), where
X = [x1, · · · ,xn]>, Y = [y1, · · · , yn]>. Each training
sample xi = [c1,i c2,i] consists of the start and end points
uniform-randomly sampled from the configuration space.
The ground truth labels,Y , match the swept volume measure
|SV(c1, c2)| between two corresponding configurations with
respect to the straight line trajectory in c-space. Since the
swept volume only relates to the kinematics of the robot
and is independent to the environments it operates in, we
do not consider obstacles during the generation of training

data. Ideally, the labels should be computed with (1), but
computing the exact swept volume is intractable. Instead, we
approximate the labels with an octree-based swept volume
algorithm (Von Dziegielewski et al. 2015).

To approximate the swept volume, the robot trajectory is
represented by Nlerp intermediate states in c-space. The jth

intermediate configuration is

cj,i =

(
1− j

Nlerp

)
c1,i +

j

Nlerp
c2,i, j = 1, · · · , Nlerp.

(3)

Next, the forward kinematics of the robot maps each cj,i to
the workspace occupancy of the robot,

Gj(x, y, z) =

{
1, robot overlaps with (x, y, z) ∈ V(cj,i)

0, otherwise.
,

(4)

where x, y, z are the positional coordinates in the 3D
workspace, and V(cj,i) is the workspace volume occupied
by cj,i. The swept volume between c1,i and c2,i can be
approximated by taking the union of all Gj ,

S̃V(c1, c2) =
⋃

j=1,··· ,Nlerp

Gj(x, y, z). (5)

The occupancy and the union operation are approximated by
an octree decomposition of workspace up to a resolution,
∆, in order to speed up computation compared to a uniform
voxel grid of the same resolution.

One undesirable property of using |S̃V(c1, c2)| as a
distance measure for sampling-based planning is that
|S̃V(c1, c2)| is non-zero even when c1 ≈ c2. It roughly
equals to the volume of the robot in configuration c1. As a
result, |S̃V(c1, c2)| is biased by the volume at c1. This bias
is particularly significant for robots with prismatic joints,
where configurations change the size of robot volume. To
address this, we subtract the start and end robot workspace
occupation from S̃V(c1, c2),

S̃V0(c1, c2) = S̃V(c1, c2) \ G1(x, y, z) \ GNlerp(x, y, z),
(6)

where \ represents the set minus operation. As a result,
|S̃V0(c, c)| = 0, ∀c. Finally, the ith swept volume measure
ground truth label is

yi = |S̃V0(c1, c2)|. (7)

4.2 Deep Swept Volume Measure Estimator,
Dsv

dnn

We use a deep neural network to learn a non-linear swept
volume measure model, Dsv

dnn. Dsv
dnn((c1, c2)|θ) is a fully-

connected feed-forward DNN parameterized by θ. The
inputs, outputs, and the architecture of theDsv

dnn are described
in Figure 2. The inputs are 2df input neurons, corresponding
to c1 and c2.The Nhidden hidden layers consist of ReLu
(Hahnloser et al. 2000) neurons. Finally, the output is
a neuron estimating the swept volume measure between
two configuration points and outputs zero if the network

Prepared using sagej.cls

4 Journal Title XX(X)

Input	Layer

…

…

Hidden	Layers Output	Layer

c1

c2

k

…

…

DSV
dnn(c1, c2)

Figure 2. Deep swept volume measure estimator Dsv
dnn(c1, c2)

neural network architecture used to estimate |S̃V0(c1, c2)|. c1
and c2 are the start and end configurations of the trajectory,
respectively. The inputs are 2df . The activation function of the
first and last layers are identities. The input layer is connected to
the Nhidden hidden layers each with Ni ReLU neurons. The
output layer has one neuron corresponding to the swept volume
measure estimate.

prediction is negative. Stochastic gradient descent backprop
finds the weights and biases (θ) w.r.t. the L2 loss and the
training dataset

θ∗ =

arg min
θ

n∑

i=1

(
Dsv

dnn((c1,i, c2,i)|θ)− |S̃V0(c1,i, c2,i)|
)2
.

(8)

The network is trained once per robot.

4.3 Weighted Euclidean Distance Estimator,
Dsv

we

(c1 � c2)

Sq

Sq

…

w � DSV
we (c1, c2)

Figure 3. Weighted Euclidean distance estimator, Dsv
we(c1, c2),

is a shallow neural net that estimates |S̃V0(c1, c2)|. c1 and c2
are the start and end configurations of the trajectory,
respectively. The input, c1 − c2, is fed to df neurons (one per
DOF) with a square activation function, i.e., f(x) = x2. The
output is the square-root of absolute value of the weighted sum
of activation.

To utilize Dsv
we efficiently in sampling-based motion

planning, we first introduce the weighted Euclidean distance

measure, dw(c1, c2) =
√∑df

j=1 wj(c1,j − c2,j)2, which is
one of the most commonly used distance measures for
sampling-based motion planners (Amato et al. 1998). It
often requires manual tuning of the weight vector w =
[w1, w2, ..., wdf] ∈ Rdf . One way to find the weights
that best reflect the swept volume measure between two
configurations, w∗, is to structure the operation as a shallow

network, Dsv
we, that models the weighted Euclidean distance

measure and approximates the swept volume measure |S̃V0|,

Dsv
we((c1, c2)|w∗) = dw∗(c1, c2).

The details of the network are depicted in Figure 3.
Dsv

we allows us to use a stochastic gradient descent-based
optimizer with variable learning rate (Kingma and Ba 2014)
to find w∗ that minimizes the L2 loss w.r.t. the training
dataset,

w∗ = argminw

n∑

i=1

(
Dsv

we((c1,i, c2,i)|w)− |S̃V0(c1,i, c2,i|)
)2
.

(9)
The network is also trained once per robot, and like the

analytical representation of the network,Dsv
we, forms a metric

space when the weights are positive.

4.4 Swept Volume-based Hierarchical
Neighbor Search, HNSsv

Another hurdle of using |S̃V0| as a distance measure for
sampling-based planning is that |S̃V0| does not form a
metric space as it does not satisfy the triangle inequality.
This prevents utilization of efficient nearest neighbor data
structures such as GNAT (Brin 1995) that can greatly
speedup sampling-based planners (LaValle 2006).

To address this issue, we propose Swept Volume-based
Hierarchical Neighbor Search (HNSsv), that combines the
trained swept volume measure estimators introduced above
(Dsv

dnn and Dsv
we) to be used for neighbor selection within

sampling-based planning. This hierarchical combination
efficiently selects neighbors with low swept volume measure,
by first filtering all candidates using the extremely fast
learned Dsv

we and then selects the nearest neighbors from this
smaller subset with Dsv

dnn. Note that previous hierarchical
nearest neighbor selection methods, such as (McMahon et al.
2012), combine Euclidean distance measure and random
node selection. Rather, HNSsv is tuned for swept volume
estimation. In this paper, we implement HNSsv by using
the k-closest neighbor selection method at each level, but
other neighbor connection strategies can be used, such as a
distance cutoff (Karaman and Frazzoli 2011).

The HNSsv algorithm first identifies kc candidate nearest
neighbors of configuration c using Dsv

we, i.e., the output of
the weighted Euclidean distance estimator. This step can
be done efficiently by employing efficient nearest neighbor
data structures. Next, HNSsv uses the Dsv

dnn (output of the
deep swept volume measure estimator) to choose the final
knn < kc nearest neighbors among the candidates.

The hierarchical combination of the estimators within
neighbor selection has several benefits. First, it enables the
use of any efficient nearest neighbor data structure. Second, it
greatly reduces the number ofDsv

dnn queries, which are slower
than computing the weighted Euclidean distance. Finally, it
selects neighbors with small swept volume measure.

Since HNSsv uses DNN to estimate |S̃V0|, it is difficult
to guarantee asymptotic-optimality for planners such as
RRT* Karaman and Frazzoli (2011). However, we can
maintain the asymptotic-optimality of these planners by
simply alternating between HNSsv and traditional connection

Prepared using sagej.cls

Hao-Tien Lewis Chiang et al. 5

strategies based on the Euclidean distance measure in a
probabilistic manner. This strategy is similar to the one
proposed in Ichter et al. (2018).

5 Continuity of Swept Volume Measure
DNN is a universal approximator for any bounded
continuous function (Hornik 1991). In this section we
formalize the proposition that swept volume measure is
Lipschitz continuous and bounded along a continuous
trajectory in finite c-space, justifying using DNNs as
approxmators.

Proposition 1. |SV(c1, c2)| along a continuous trajectory
between two configuration points c1, c2 in c-space is
Lipschitz continuous, i.e.

||SV(c1, c2)| − |SV(c3, c4)|| ≤ K‖(c1, c2)− (c3, c4)‖,
(10)

where K is a positive constant.

The proof of the proposition is in the Appendix (Section
12.1), and here we provide the intuition behind it. It is known
that the swept volume measure of a rigid body undergoing
rotation and translation motion is Lipschitz continuous
(Schymura 2014). For a non-deformable robot, each rigid
body linkage undergoes rotation and translation motion as
the robot moves between two configurations. Hence, the
swept volume of each linkage is Lipschitz continuous. Since
the union of the swept volume of each linkage is smaller than
the sum, the swept volume continuity property extends to the
whole robot.

6 Evaluation
In this section, we evaluate the deep swept volume measure
estimator (Dsv

dnn). Accuracy of the estimator is assessed
on seven robots, including a 15 DOF planar manipulator
(15 DOF Manipulator), a free-floating rigid body (Rigid
Body), a fixed-based Kuka manipulator (Kuka), a robot with
closed-loop kinematic chain (Closed-loop), a robot with both
revolute and prismatic joints (Prismatic), a Youbot mobile
manipulator (Youbot) and a parallel robot (Parallel). Pictures
of these robots are in Figure 4. We train a Dsv

we model and a
Dsv

dnn model to learn |S̃V0| for each robot. To demonstrate
applications for motion planning, we compare PRMs and
RRTs that use our estimator (through HNSsv) to ones that
use Euclidean DE and weighted Euclidean Dsv

we distance,
the most widely used distance measures for sampling-based
planners (Palmieri and Arras 2015; Amato et al. 1998).

We highlight important settings used in our evaluation
below and provide full details in the Appendix (Section
12.2). The seven DNNs used to learn |S̃V0| of each
robot share the same hyper-parameters and training dataset
construction parameters. The dataset has one hundred
thousand training samples per robot. We generate additional
ten thousand evaluation samples in the same manner, but are
unseen by the estimators. In order to satisfy the closed-loop
kinematic constraint for the Closed-loop robot, the c-space
trajectory between the start and end configurations during
training data generation is computed by a DLS-based inverse
kinematic technique (Wampler 1986) w.r.t. a straight line
end-effector motion. We use PRM and RRT implemented

in OMPL (Şucan et al. 2012). PRM with HNSsv identifies
knn = 5 nearest neighbors among kc = 10 candidates to
connect to, while RRT with HNSsv finds kc = 5 candidates in
order to identify the nearest configuration in the tree. Figure
5 shows the start and goal configurations of the three robots
used for planning in four environments. To demonstrate
one learned model used for multiple planning scenarios,
the Kuka manipulator is evaluated in two pick-and-place
inspired tasks: Retrieve (Figure 5(e, f)) and Shuffle
(Figure 5(g, h)) with complex environments.

6.1 Learning Results
Table 1 shows the weights of Dsv

we for various robots. As
expected, these weights indicate that revolute joints near the
base typically impact |S̃V0| more. The weights of the Rigid
Body and Youbot indicate that the translational DOFs have
a higher impact on |S̃V0| than rotational degrees. Finally,
there’s no clear pattern for the weights of prismatic joints
or joints of the Closed-loop robot. This is likely due to
|S̃V0(c1, c2)| of these two robots being too complex to be
described by the simple weighted Euclidean distance model.

15 DOF
Manipulator

[214, 97, 80, 73, 60, 43, 31, 28, 23, 19,
8, 5, 9, 7, 5]

Rigid Body [120, 140, 140] for x, y, z and [86, 110,
82, 88] for quaternions

Kuka [1506, 2371, 181, 482, 1, 170, 30]
Closed-loop [262, 1525, 7060, 11892, 542, 84,

3571, 8394, 3161]
Prismatic [9759, 5284, 3752, 2759] for revolute

joints and [5946, 6057, 5908, 5923] for
prismatic joints

Youbot [1718, 1735, 29] for x, y, yaw and [9,
41, 18, 5, 0.9] for manipulator joints

Parallel [2624, 13252, 59373, 14660, 8948]
for leg 1, [6337, 13327, 62128, 8408,
9301] for leg 2, [6431, 13359, 65603,
8431, 9105] for leg 3

Table 1. Weights rounded to integer of weighted Euclidean
distance ,Dsv

we, for robots tested.

Figure 6(a)-(g) shows the evaluation L2 loss of Dsv
dnn

and Dsv
we at each epoch while Figure 6(h) shows the final

epoch loss mean and standard deviation. It is clear that five
learning instances (each with a different network random
initialization) converges for both Dsv

we and Dsv
dnn, but Dsv

dnn has
a much smaller final loss than Dsv

we across all robots. This
means that Dsv

dnn learns to approximate |S̃V0| much better
than Dsv

we. In addition, the standard deviation of the loss
(represented by the shade) are small for both Dsv

we and Dsv
dnn

across all robots. This indicates that learning is robust against
random network initialization seeds.

Figure 4 shows the histogram of DE, Dsv
we and Dsv

dnn for
the evaluation data compared to the ground truth |S̃V0| (gray
shade). Note that in order to compare to |S̃V0|, we scale
the value of DE such that the average matches the average
|S̃V0| of the evaluation data. We also explored the distance
measure performance by comparing |S̃V0| against each
distance measure in a scatter plot (Figure 7). Both Figures

Prepared using sagej.cls

6 Journal Title XX(X)

Robot DE Dsv
we Dsv

dnn

15 DOF Manipulator 0 2500 5000 7500 10000
E

0

500

1000

1500

Oc
cu
ra
nc
es

0 2500 5000 7500 10000
SV
we

0

250

500

750

1000

Oc
cu
ra
nc
es

0 2000 4000 6000 8000 10000
SV
dnn

0

200

400

Oc
cu
ra
nc
es

Rigid Body

0 500 1000 1500 2000
E

0

200

400

600

Oc
cu
ra
nc
es

0 500 1000 1500 2000
SV
we

0

200

400

Oc
cu
ra
nc
es

0 500 1000 1500 2000
SV
dnn

0

200

400

Oc
cu
ra
nc
es

Kuka

0 500 1000
E

0

200

400

600

800

1000

Oc
cu
ra
nc
es

0 500 1000
SV
we

0

200

400

600

Oc
cu
ra
nc
es

0 500 1000
SV
dnn

0

100

200

300

400

Oc
cu
ra
nc
es

Closed-loop

0 1000 2000 3000
E

0

200

400

600

Oc
cu
ra
nc
es

0 1000 2000 3000
SV
we

0

200

400

600

Oc
cu
ra
nc
es

0 1000 2000 3000
SV
dnn

0

200

400

600

Oc
cu
ra
nc
es

Prismatic 0 2000 4000 6000 8000
E

0

200

400

600

Oc
cu
ra
nc
es

0 2000 4000 6000 8000
SV
we

0

200

400

600

Oc
cu
ra
nc
es

0 2000 4000 6000 8000
SV
dnn

0

100

200

300

400

Oc
cu
ra
nc
es

Youbot

0 500 1000 1500
E

0

200

400

600

Oc
cu
ra
nc
es

0 500 1000 1500
SV
we

0

100

200

300

400

Oc
cu
ra
nc
es

0 500 1000 1500
SV
dnn

0

100

200

300

400

Oc
cu
ra
nc
es

Parallel 0 50 100 150 200 250
E

0

100

200

300

400

500

Oc
cu
ra
nc
es

0 50 100 150 200 250
SV
we

0

200

400

Oc
cu
ra
nc
es

0 50 100 150 200 250
SV
dnn

0

200

400

Oc
cu
ra
nc
es

Figure 4. Pictures of robots tested and corresponding histograms of DE, Dsv
we and Dsv

dnn. The gray shade is the histogram of ground
truth (|S̃V0|). The start and end end-effector positions are sampled in the yellow region for the Closed-loop robot. For the Prismatic
robot, the yellow links are connected to black linkages via prismatic joints.

Prepared using sagej.cls

Hao-Tien Lewis Chiang et al. 7

(a)
(c)

(e) (g)

(b)
(d)

(f) (h)

Figure 5. Start (top row) and goal (bottom row) configurations of the 15 DOF planar manipulator (a, b), free-floating Rigid Body (c,
d) and Kuka LBR iiwa 14 R820 manipulator in Retrieve task(e, f) Shuffle task (g, h).

0 100 200 300 400 500
Epoch

0

1

2

3

4

5

Lo
ss

 (L
ite

r2)

1e4

SV
dnn

we

(a) 15 DOF Manipulator

0 100 200 300 400 500
Epoch

0

1

2

3

4

5

Lo
ss

 (L
ite

r2)

1e4
SV
dnn

we

(b) Rigid Body

0 100 200 300 400 500
Epoch

0

1

2

3

4

5

Lo
ss

 (L
ite

r2)

1e4
SV
dnn

we

(c) Kuka

0 100 200 300 400 500
Epoch

0

1

2

3

Lo
ss

 (L
ite

r2)

1e3
SV
dnn

we

(d) Closed-Loop

0 100 200 300 400 500
Epoch

0

2

4

6

Lo
ss

 (L
ite

r2)

1e4
SV
dnn

we

(e) Prismatic

0 100 200 300 400 500
Epoch

0.0

0.5

1.0

1.5
Lo

ss
 (L

ite
r2)

1e3
SV
dnn

we

(f) Youbot

0 100 200 300 400 500
Epoch

0

200

400

600

Lo
ss

 (L
ite

rs
2)

SV
dnn

we

(g) Parallel

15 DOF
Manipulator

Rigid
Body

Kuka
Manipulator

Closed
-loop

Prismatic Youbot Parallel

Dsv
dnn mean 514.0 1583.7 324.2 146.1 26.9 7.8 4.1
Dsv

dnn std 54.7 175.9 12.6 8.5 2.1 1.0 0.7
Dsv

we mean 34067.6 9536.4 13443.5 1686.6 11069.6 71.0 141.0
Dsv

we std 0.6 0.4 14.4 0.0 7.8 0.1 0.04

(h) Final epoch loss (Liters2) mean and standard deviation

Figure 6. Learning curves of Dsv
dnn and Dsv

we. The shade represents the standard deviation of the loss across five training instances
each with a different random network initialization.

4 and 7 show that Dsv
dnn approximates |S̃V0| well across all

robots. This can be seen by the striking similarities in the
Dsv

dnn column in Figure 4. In addition, Dsv
dnn (black squares in

Figure 7) closely tracks |S̃V0| along the diagonal, indicating
good correlation across robot motions with various amounts
of |S̃V0|. Note that Dsv

dnn performs well even for the robot
with closed-loop kinematic chains (Close-loop and Parallel).
This is impressive since unlike other robots, the non-linear

c-space trajectory between c1, c2 is identified by solving
inverse kinematics to satisfy the close-loop constraints.

In contrast to Dsv
dnn, DE (red circles in Figure 7) only

correlate to |S̃V0| well on the Rigid Body. Similarly, Dsv
we

(blue diamonds in Figure 7) correlates well on only on Rigid
Body and Youbot. As demonstrated in Table 1, the |S̃V0| of
these robots are both dominated by the translational DOFs.
Note that DE and Dsv

we are the most commonly used distance

Prepared using sagej.cls

8 Journal Title XX(X)

(a) 15 DOF Manipulator (b) Rigid Body (c) Kuka

(d) Closed-loop (e) Prismatic (f) Youbot

0 50 100 150 200 250
| ̃0|

0

50

100

150

200

250

Es
tim

at
ed

 D
ist

an
ce

E

SV
we

SV
dnn

(g) Parallel

Figure 7. Scatter plots of |S̃V0| and the distance estimated by DE (red circles), Dsv
we (blue squares) and the DNN (Dsv

dnn) (black
diamonds) for robots tested.

measure for sampling-based motion planning, yet, when the
robot has revolute joints, these measures do not correlate
well to the volume swept by the robot, which reflects
the collision probability between configurations. This is
particularly significant for high DOF robots due to revolute
joints in articulated bodies impacting each other non-linearly.
In addition, the simpleDsv

we has limited expressive capability.
Thus, it is not surprising that it failed to capture the non-
linear impact of prismatic joints or the non-linear c-space
trajectories imposed by the closed-loop kinematics constraint
(Figure 7e and 7d). As a result, the advantage overDE on the
Closed-loop and Prismatic robots is negligible despite that
the weights of Dsv

we are tuned to approximate |S̃V0|.

Similar trends can be found in Table 2, which shows the L1
norm of the error ratio for various distance metrics and robots

w.r.t. the evaluation dataset. The average error ratio ofDsv
dnn is

between 2.2% and 8.1% across all robots tested. In contrast,
the average error ratio is 4.38 to 29.75 times larger forDE and
2.44 to 22.46 times larger forDsv

we. We empirically found that
the error increases dramatically when DNNs are trained on
c1 − c2 as the input instead of (c1, c2). This is expected as
|SV(c1, c2)| is a complex, nonlinear function and a mapping
function between c1 − c2 and |SV(c1, c2)| may not exist.

We further explored the DNNs’ prediction errors of swept
volume. The errors are typically very small. Predictions
with large errors, e.g., those with more than twice the true
volume, occur rarely. For example, less than 1% of the
evaluation samples for all robots exhibited this large error: at
a minimum, only 0.01% for Rigid Body and at a maximum,
0.23% for Closed-Loop. This can be expected as an artifact
of the employed training data, as these errors typically only

Prepared using sagej.cls

Hao-Tien Lewis Chiang et al. 9

15 DOF Manipu-
lator

Rigid Body Kuka Manipula-
tor

Closed
-loop

Prismatic Youbot Parallel

DE 76.9% 19.7% 60.7% 66.2% 83.3% 33.0% 11.6%
Dsv

we 70.7% 11.0% 29.9% 13.3% 62.9% 29.5% 10.6%
Dsv

dnn 8.1% 4.5% 3.7% 3.8% 2.8% 7.3% 2.2%

Table 2. L1 norm of error ratio ((D − |S̃V0|)/|S̃V0|) for the deep swept volume measure estimator (Dsv
dnn) and comparison. The

measure with the lowest error ratio is highlighted for each robot.

occur for very small motions which are typically under-
sampled. While these prediction errors could be problematic
for some fine motion applications, we do note that sampling-
based motion planning has been shown to be highly robust
to some noise in the neighbor predictions, even potentially
enhancing planning quality (McMahon et al. 2012).

6.2 Planning Results
We evaluate the performance impact of the deep swept
volume measure estimator (through HNSsv) on PRM and
RRT. The planning environments are shown in Figure 5. The
planner performance is shown in Figure 8, where the top row
shows the cumulative success rate of identifying a collision-
free motion plan as a function of time for PRM and RRT
using the DE (red), Dsv

we (blue) and HNSsv (black) distance
measures in various environments. Across all environments
and planners, using HNSsv is more likely to find a solution
within the time budget. The gain in success rate at 200s
(max planning time allowed) is between 1.27x to 5x (over
DE) and 1.08x to 2.14x (over Dsv

we). In addition, the bottom
row of Figure 8 shows that paths identified by HNSsv have
a smaller swept volume measure. Comparing across robots,
results demonstrate that the advantage of HNSsv is much less
prominent for the Rigid Body robot. This is expected since
DE and Dsv

we both approximate |S̃V0| reasonably well for
this robot. HNSsv shows a similar performance gain for both
the 3D Kuka and the 2D 15 DOF manipulators. In the RRT
case, HNSsv also enhances planning by identifying solutions
with lower swept volume measures and identifying solutions
where other distance measures failed. For example, Figure
8a shows that the 15 DOF manipulator in a narrow corridor
is very difficult for RRT as neither DE nor Dsv

we found a
solution in 20 runs. In contrast, RRTs using HNSsv were
able to identify a solution in 2 runs, likely due to the goal
bias mechanism of RRT which can significantly increase
the performance of RRT (LaValle and Kuffner 2001). In the
planning scenario shown in Figure 5 (a, b), the start and goal
have the same joint angles except for the joint at the base.
This meansDE between the start and goal is relatively small.
However, the robot must curl towards the base and then
extend in order to reach the goal. These curled configurations
require a large DE change from the goal configuration and
therefore are unlikely to be selected by an RRT using goal
bias. As a result, the goal bias is ineffective for the Euclidean-
based metrics as it mostly selects configurations near the
start. In contrast, HNSsv does not have this problem since
the |S̃V0| between the start and goal is larger than the |S̃V0|
between any curled configuration and the goal.

7 Physical Robot Experiment
In this section, we demonstrate our method on a physical
Baxter robot. The Baxter robot’s task is to pick up a red cube

in the left compartment and place it in the compartment on
the right (Figure 9). Since we only use the right arm for this
task, the Baxter robot is modeled as a fixed-based 7 DOF
manipulator, where each DOF corresponds to a joint in the
right arm.

The correlation between the deep swept volume measure
estimator Dsv

dnn and |S̃V0| compared to DE and Dsv
we is shown

in Figure 10. The general trend is very similar to Kuka
(Figure 7c), where only Dsv

dnn approximates |S̃V0| well. This
is not surprising as Kuka and Baxter are both fixed-based 7
DOF manipulators.

The performance of various distance measures with the
RRT-Connect planner is shown in Figure 10b and 10c.
We chose RRT-Connect since the bi-directional tree-growth
provides a significant speed-up in the tested environment,
where the start and goal end-effector positions are inside
narrow compartments. The planning performance is also
similar to Kuka in two ways. First, using HNSsv is more
likely to find a solution within the time budget than DE or
Dsv

we (Figure 10b). Next, paths identified by HNSsv have on
average, 1.5x smaller (67%) swept volume measure than DE
and 1.3x (77%) smaller than Dsv

we (Figure 10c). A run of
the path execution and the difference in path swept volume
measure between DE and Dsv

dnn is included in the enclosed
video.

8 Discussion
This section further investigates the advantage and trade-offs
of the deep swept volume measure estimator compared to
other distance measures (Section 8.1). We also investigate
aspects of the estimator that may impact planning
performance, such as the DNN and training data size
(Section 8.2), and the estimator’s ability to generalize to
planning environments larger than the one it is trained on
(Section 8.3).

8.1 Distance Measure Trade-Offs
In Section 6, the advantages of HNSsv are clear, particularly
when DE or Dsv

we cannot capture |S̃V0| well, i.e., when the
robot has a highly articulated body. Here we investigate
the advantages further by empirically evaluating the
computational cost and the quality of returned nearest
neighbors for each distance measure.

The computation time required by distance measures is
shown in Table 3. Recall that Dsv

we and Dsv
dnn are trained

once per robot (columns 3 and 4) and utilized one hundred
thousand training samples (column 2). After training, the
computation time for a single inference to Dsv

dnn is at or just
under 175µs (column 6). Comparing a single inference to
time required to generate |S̃V0| for each robot shows that
Dsv

dnn inference is 3500 to 5000 times faster than state of the
art |S̃V| computation. In addition, the computation time of

Prepared using sagej.cls

10 Journal Title XX(X)

0 50 100 150 200
Computation Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e
Su

cc
es

s R
at

e PRM E
PRM SV

we
PRM HNSsv
RRT E
RRT SV

we
RRT HNSsv

(a) 15 DOF

0 50 100 150 200
Computation Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Su
cc

es
s R

at
e

(b) Rigid Body

0 50 100 150 200
Computation Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Su
cc

es
s R

at
e

(c) Kuka Retrieve

0 50 100 150 200
Computation Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Su
cc

es
s R

at
e

(d) Kuka Shuffle

PRM:
E

PRM:
SV
we

PRM:
HNSsv

RRT:
E

RRT:
SV
we

RRT:
HNSsv

0

50

100

150

Pa
th

 L
en

gt
h

(L
ite

rs
)

(e) 15 DOF Manipulator

PRM:
E

PRM:
SV
we

PRM:
HNSsv

RRT:
E

RRT:
SV
we

RRT:
HNSsv

0

2000

4000

6000

Pa
th

 L
en

gt
h

(L
ite

rs
)

(f) Rigid Body

PRM:
E

PRM:
SV
we

PRM:
HNSsv

RRT:
E

RRT:
SV
we

RRT:
HNSsv

0

500

1000

1500

2000

Pa
th

 L
en

gt
h

(L
ite

rs
)

(g) Kuka Retrieve

PRM:
E

PRM:
SV
we

PRM:
HNSsv

RRT:
E

RRT:
SV
we

RRT:
HNSsv

0

500

1000

1500

2000

Pa
th

 L
en

gt
h

(L
ite

rs
)

(h) Kuka Shuffle

Figure 8. The cumulative success rate of identifying a path (top row) and path length (in units of |S̃V|) of successful runs (bottom
row) for PRM (dotted lines) and RRT (solid lines). The color of bars and curves represents various distance measures (red: DE,
blue: Dsv

we, black: Dsv
dnn (our method)). The path length data is not available for RRTs using DE or DWE for the 15 DOF Manipulator

since there were zero successful runs.

(a) Start (b) Goal

Figure 9. Start and goal configurations of the physical Baxter robot.

(a)

0 50 100 150 200
Computation Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Su
cc

es
s R

at
e

RRT-C E
RRT-C SV

we
RRT-C HNS

(b)

RRT-C:
E

RRT-C:
SV
we

RRT-C:
HNS

0

250

500

750

1000

1250

Pa
th

 L
en

gt
h

(L
ite

rs
)

(c)

Figure 10. (a) Scatter plot of |S̃V0| and the distance estimated by DE (red circles), Dsv
we (blue squares) and the DNN (Dsv

dnn) (black
diamonds) for Baxter. (b) The cumulative success rate of identifying a path and (c) path length (in units of |S̃V|) of successful runs
for RRT-Connect.

Training Distance Measure Call
Data Dsv

we Dsv
dnn Compute Compute Compute

Robot Generation Training Training Dsv
we Dsv

dnn S̃V
15 DOF Manipulator 31hr 630.02s 4360.03s 0.081µs 175.1µs 8.85s
Rigid Body 2hr 601.53s 4001.53s 0.053µs 164.3µs 0.58s
Kuka Manipulator 14hr 629.33s 4023.35s 0.055µs 164.3µs 4.06s

Table 3. Computation time of various operations broken down by training (Training) and a single usage as done as a primitive
operation in motion planning (Distance Measure Call).

Prepared using sagej.cls

Hao-Tien Lewis Chiang et al. 11

Dsv
dnn is only slightly affected by the DOF of the robot and

is independent of the robot’s 3D model complexity. On the
other hand, computingDsv

we (column 5) is about 2000 to 3000
times faster than queryingDsv

dnn. These results suggest HNSsv
can reduce computation time as it identifies candidate nearest
neighbors using the fast Dsv

we and efficient data-structures
before the slower, more accurate, Dsv

dnn.
From Section 6, it is clear that nearest neighboring

configurations selected w.r.t. DE and Dsv
we are very different

from ones selected by HNSsv. However, little is known
about the quality of neighboring configurations returned
by the distance measures. We evaluate this by comparing
neighbors returned by each measure to those returned by
|S̃V0|. Since a full comparison during a planning run
would be computationally prohibitive, we randomly sample
100 starting configurations (c1) and 100 potential neighbor
configurations (c2) for each robot. For each c1, five nearest
configurations among c2 are identified using DE, Dsv

we,
Dsv

dnn and HNSsv (kc = 10). Then, these configurations
are compared to the configurations selected by |S̃V0|.
Table 4 captures the quantity and quality differences in
the returned neighbor configurations. First, the percentage
of configurations returned by each measure that do not
match those returned by |S̃V0| are shown. Next, the
quality of the returned configurations for each measure is
demonstrated by tallying the additional volume swept by
the returned neighbors over the baseline provided by the
configurations returned by |S̃V0|. These values demonstrate
that DE selects very different neighboring configurations
than |S̃V0|, in one example incurring a 171% increase in
swept volume. In contrast, Dsv

we, with weights optimized to
mimic |S̃V0|, chooses neighboring configurations with up to
7% increase in additional volume swept for the L-shaped
and Kuka manipulator robot. However, the simple weights
face difficulty capturing the highly nonlinear |S̃V0| of the
15 DOF manipulator well, resulting in a 166% increase
in volume swept. In contrast, HNSsv chooses neighboring
configurations closest to |S̃V0|, and the additional volume
swept is much lower than any other Euclidean-based
measure, i.e., 2.7x (37%) to 3.5x (28%) smaller than Dsv

we.
As expected, Dsv

dnn selects neighboring configurations closest
to |S̃V0| for all robots tested. However, computing Dsv

dnn is
much slower than HNSsv, and efficient nearest neighbor data
structures cannot be used since Dsv

dnn does not form a metric
space.

To further investigate the trade-offs between HNSsv and
Dsv

dnn, we compare motion planners using Dsv
dnn directly as

a distance measure against HNSsv and other baselines. The
magenta curves and bars in Figure 11a and 11b show the
performance of Dsv

dnn for the Kuka robot in the Shuffle
task. In the RRT case (solid lines), Dsv

dnn outperforms DE
and Dsv

we and performs similarly to HNSsv. On the other
hand, in the PRM case, Dsv

dnn performs similarly to DE
and performs much worse than HNSsv. This is likely due
to PRM making more Dsv

dnn queries (about 450,000 on
average) than RRT (about 150,000) in this planning scenario.
Therefore, despite the selection of neighbors with small
|S̃V0| by Dsv

dnn, the longer computation time negatively
impacts planner performance under a fixed time budget.
Paths identified byDsv

dnn generally have smaller swept volume

measure compared to HNSsv and baselines, especially in the
PRM case. This is expected as planners using Dsv

dnn selects
neighbors with smaller |S̃V0| to connect.

Overall, HNSsv offers the best balance between path
quality and planning efficiency compared to DE, Dsv

we
and Dsv

dnn. HNSsv achieves this through the hierarchical
combination of fast Dsv

we, efficient nearest neighbor data-
structure and accurate Dsv

dnn queries.

8.2 Network and Training Data Size
We also investigate the learning performance of DNNs as
impacted by the number of neurons in the hidden layer and
the quantity of training samples. Figure 12 shows the L2 loss
over the evaluation dataset as a function of training epochs
as impacted by combinations of training sample and DNN
sizes. It is clear that networks trained with 25,000 training
samples (1/4 the original quantity of samples, shown as
dashed lines) have higher loss across all robots and exhibit
over-fitting as the loss increases after the initial decrease.
When trained with the full training dataset (solid curves),
large networks (networks with 1024 and 512 neurons in the
first hidden layer) perform similarly across all robots while
small networks demonstrate a larger loss for Kuka and Rigid
Body robots. These results indicate that a large network and
training dataset size are important to accurately approximate
|S̃V0|.

8.3 Generalization of Translational DOFs
Recall that the deep swept volume measure estimator is
trained by |S̃V0(c1, c2)| samples generated in a finite-sized
environment, yet, motion planning often occurs in large
environments. As a result, the translational DOFs of the
start and end configurations queried during motion planning
may differ significantly from ones the network was trained
on. We investigate this in Figure 13 by evaluating the
network in environments that are 2X (blue), and 4X (cyan)
larger in all translational dimensions than the environment
it was trained on (red). We only evaluate Rigid Body and
Youbot since other robots do not have translational DOF.
For both robots, the DNN generalizes well to the 2X
environment, as seen by the clustering along the diagonal
line. The accuracy of the estimator is reduced slightly as
the spread around the diagonal is larger. For the 4X case,
the DNN still performs well but the accuracy is slightly
reduced further. This is expected as DNNs are function
approximators designed to achieve statistical generalization
among the training dataset (Goodfellow et al. 2016). Since
Dsv

dnn generalize well, we expect the impact on planner
performance to be small when usingDsv

dnn (through HNSsv) in
large environments. This ability to generalize is also reflected
by the superior performance of HNSsv in the Rigid Body
planning experiment, where the environment is 11x bigger
than the training environment (Figure 5c and 8d).

9 Deep Swept Volume Geometry Estimator
In this section, we demonstrate as a proof of concept
that DNNs can also estimate the swept volume geometry
(S̃V) accurately. This enables applications such as bridging
between task and motion planning (Gaschler et al. 2013;

Prepared using sagej.cls

12 Journal Title XX(X)

Percent of Non-Matching Neighbors Percent Additional Volume Swept
Robot DE Dsv

we Dsv
dnn HNSsv DE Dsv

we Dsv
dnn HNSsv

15 DOF 87% 80% 32% 65% 180% 160% 14% 61%
Rigid Body 65% 22% 11% 11% 38% 7% 2% 2%
Kuka 87% 33% 12% 15% 56% 8% 1% 2%

Table 4. Comparison of neighboring configurations selected by various distance measures as compared to those selected by
|S̃V0|. The Percent of Non-Matching Neighbors columns demonstrate the quantity of neighboring configurations that do not match
those selected by |S̃V0|. The Additional Swept Volume columns capture the amount of additional volume swept measure by the
neighboring configurations selected by the measures as over that of the |S̃V0| configurations. The best measure of each robot is
highlighted.

0 50 100 150 200
Computation Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Su
cc

es
s R

at
e

PRM:
E

PRM:
SV
we

PRM:
SV
dnn

PRM:
HNS

RRT:
E

RRT:
SV
we

RRT:
SV
dnn

RRT:
HNS

0

500

1000

1500

2000

Pa
th

 L
en

gt
h

(L
ite

rs
)

Figure 11. (a) Cumulative success rate of identifying a path for PRM (dotted lines) and RRT (solid lines). (b) Path length (in units of
|S̃V0|) of successful runs evaluated on the Kuka manipulator in the Shuffle task. The color of bars and curves represents various
distance measure (red: DE, blue: Dsv

we, magenta: Dsv
dnn and black: HNSsv).

(a) 15 DOF Manipulator (b) Rigid Body (c) Kuka

Figure 12. The L2 evaluation loss of DNNs with varied numbers of neurons in the hidden layer as shown in the legend (solid
curves) across the (a) 15 DOF manipulator, (b) Rigid Body and (c) Kuka manipulator. The dashed curves show the same network
trained with 25,000 training samples (1/4 of the full sample size).

Kaelbling and Lozano-Pérez 2010). We highlight the
important setup details here and leave the specifics in the
Appendix (Section 12.3).

The training data is generated in the same method as
described in Section 4.2 except for one modification. Instead
of using |S̃V0(c1, c2)| as the ground truth label, we use
S̃V(c1, c2) (Eq. 5) approximated by a uniform workspace
occupation grid (voxels) with resolution ∆′. The deep swept
volume geometry estimator is also a deep neural network
with feed-forward fully-connected neurons. The input of the
network is the start and end configurations and the output
is the probability of occupation for each voxel. The network
training is also the same, with the exception of the loss is
replaced by the L2 loss of all Nvoxels voxels across n training
samples

Lgeometry =

n∑

i=1

Nvoxels∑

j=1

(
S̃V ′dnn,j(c1,i, c2,i)− S̃Vj(c1,i, c2,i)

)2
,

(11)

where S̃V ′dnn,j(c1,i, c2,i) is the network output for the voxel
j, and Nvoxels is the number of voxels used to approximate
S̃V . Lastly, to estimate the swept volume geometry, we
convert the network output of each voxel to boolean by a
threshold 0 < Θ < 1

S̃Vdnn,j(c1,i, c2,i) =

{
1, S̃V ′dnn,j(c1,i, c2,i) > Θ

0, otherwise.
, (12)

We evaluate the deep swept volume geometry estimator
(S̃Vdnn) on the Kuka robot. Figure 14 shows an example
of S̃V (ground truth, right), S̃Vdnn (estimated, middle) and
the difference (left). The striking similarity between S̃V and
S̃Vdnn indicates that swept volume geometries can be learned
accurately by DNN. Erroneous predictions (false positive
and false negatives) occur mostly near the surface of S̃V .
This is further supported by Figure 15, which shows the
Euclidean distance of erroneously predicted voxels to the
surface of S̃V . Over 99% of erroneously predicted voxels
have an Euclidean distance less than or equal to

√
2 voxels.

Prepared using sagej.cls

Hao-Tien Lewis Chiang et al. 13

(a) Rigid Body Dsv
dnn (b) Youbot Dsv

dnn

Figure 13. Scatter plots of |S̃V0| and the distance estimated by DNN (Dsv
dnn). The DNNs are trained in a small environment and

evaluated in environments that are the same (red), 2x (blue), and 4x (cyan) larger in all translational dimensions.

Figure 14. Example start and end configurations of Kuka (left) and the resulting ground truth swept volume geometry S̃V (middle,
blue), the estimated swept volume geometry S̃Vdnn (middle, red) and the difference (right, false negatives are in blue and false
positives in red). The yellow box shows the extent of the 20x20x20 voxel grid. 60 voxels were estimated erroneously and while 7940
voxels were estimated correctly.

This indicates that most prediction errors are adjacent to the
surface of S̃V . This is a desired property when the estimator
is used to bridge between task and motion planning since the
shape of the estimated swept volume remains similar to S̃V .

Prediction On Prediction Off
Ground Truth On 3.84% 0.57%
Ground Truth Off 0.66% 94.98%
Accuracy: 0.988 Precision: 0.872 Recall: 0.863

Table 5. Confusion matrix, accuracy, precision and recall of the
deep swept volume geometry estimator (S̃Vdnn) with the
threshold value of 0.4. ”On” represents the swept volume
occupies a voxel.

Next we quantify the estimator accuracy in Table 5, which
shows the confusion matrix, accuracy, precision and recall
of the estimator with Θ = 0.4 over the evaluation dataset.
The estimator has a very high accuracy (98.8%) and correctly

0 1 2 3 4 5

Distance to the Surface

0%

25%

50%

75%

100%

%
 o

f
E

rr
o

n
e

o
u

s
ly

 P
re

d
ic

te
d

 V
o

x
e

ls

Figure 15. Histogram of Euclidean distance to the surface of
S̃V for all voxels erroneously estimated by S̃Vdnn (false positive
and false negative). The distance unit is the voxel width (0.1m).

Prepared using sagej.cls

14 Journal Title XX(X)

estimated that more than 95% of the voxels are unoccupied
on average. The estimator also has a low false positive and
false negative rate, as captured by the high 86.3% recall and
87.1% precision. Note that statistics in Table 5 are functions
of the threshold Θ given a fixed network S̃V ′dnn. We chose
Θ = 0.4 that maximizes the F1 score (2Precision×RecallPrecision+Recall) of
0.8675 in order to balance between precision and recall.

S̃Vdnn
Batch 100

S̃Vdnn
Batch 10

S̃Vdnn
Batch 1

S̃V

0.72±0.04 3.47±0.14 9.72±0.75 891.21±95.44
Table 6. Computation time (ms) of estimating S̃V represented
by a 20x20x20 voxel grid for various batch sizes (number of S̃V
estimates per DNN inference) compared to an octree-based
method (S̃V). The units are in ms.

We investigate the computation time of the estimator
in various batch sizes, i.e., number of S̃V estimates per
network inference (Table 6). It is clear that our estimator
is much faster than computing S̃V using an octree-based
swept volume algorithm. Specifically, the batch 1 column
shows that the computation time to make one S̃V estimate
is 92x faster than the octree-based method. Furthermore,
when swept volume geometry calls can be batched together,
the overhead of initializing the network is further reduced,
making it over 250x to 1200x faster (batch 10 and batch 100
columns).

10 Conclusion
The ability of DNNs to approximate any continuous
bounded function makes them especially well suited to
estimate swept volumes. We demonstrated this ability
comprehensively on systems such as Rigid Body, closed-
loop kinematic chains and manipulators with rotation,
prismatic or translation motions. We developed techniques
and demonstrate that DNNs estimating the size of swept
volume can significantly speed up sampling-based motion
planning and improve solution quality in both physical and
simulated environments. This advantage was investigated
further by exploring the trade-offs between distance
measures. Lastly, as a proof of concept, we also demonstrate
that the geometry of swept volumes can also be accurately
predicted by DNNs. In future work, we plan to use the deep
swept volume geometry estimator as a bridge between task
and motion planning.

11 Acknowledgement
The authors thank Dr. Andrew Ferdinand, Shakeeb Ahmed
and Prof. Rafael Fierro for their help with physical
robot experiments. Tapia, Chiang, and Sugaya are partially
supported by the National Science Foundation under Grant
Numbers IIS-1528047 and IIS-1553266. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation. Tapia,
Sugaya, and Yousefi are partially supported by the Air Force
Research Laboratory (AFRL) under agreement number
FA9453-18-2-0022. The U.S. Government is authorized to

reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.

12 Appendix

12.1 Proof of Proposition 1
Consider the c-space of a non-deformable robot R with
df DOF, operating in 3-dimensional workspace. The robot
consists of n-joints connecting total of n+ 1 rigid body
linkage. Motion of each joint i = 1, . . . , n can rotate or
translate all the successive linkage, i.e., i+ 1, · · · , n+ 1
linkage, as a rigid body. For example, in the case of
rotation with respect to ith link, a spherical joint rotates the
linkage along up to the three rotational DoF, yaw, pitch and
roll, denoted by ρi, θi, ψi, respectively. In another example,
in the case of translation, a prismatic joint translates the
linkage along the axis of ith link, ui. Each joint motion
consists of a single or combination of up to these four DOF
motions. Under these assumptions a configuration point in
the c-space can be a df = 6 + 4n dimensional vector, c =
(x, y, z, ρ, θ, ψ, u1, ρ1, θ1, ψ1, · · · , un, ρn, θn, ψn), where
the first six DOF are the Cartesian coordinates, x, y, z, and
the rotational DOF, ρ, θ, ψ, of the first link (the base of a
robot) in the global coordinate frame. This c-space is general
and can fully describe free-floating rigid and articulated
bodies. Keeping the notation consistent with the main text,
let us denote the jth configuration in c-space of a n-jointed
robotR by

cnj = (x(j), y(j), z(j), ρ(j), θ(j), ψ(j),

u
(j)
1 , ρ

(j)
1 , θ

(j)
1 , ψ

(j)
1 , . . . , u(j)n , ρ(j)n , θ(j)n , ψ(j)

n), (13)

where we may write cj = cnj for short.

Proof. To show that the Lipschitz continuity extends to the
cases where the robot changes shape due to ith joint rotations
or translation, we use mathematical induction by the linkage.

(Base Case: i = 1) |SV(c1, c2)| of a rigid body with
respect to translation and rotation is Lipschitz continuous per
Schymura (2014).

(IH Case: i = 2, . . . , n− 1) Assume that the size of swept
volume for the linkage is Lipschitz continuous w.r.t. the
rotation and translation of all the joints.

(Step Case: i = n) We need to show that (10) holds, for
(c1, c2), (c3, c4) ∈ R(6+4n) ⊗ R(6+4n). To do this, let us
consider the motions of the first i = i+ 1, . . . , n linkage and
the last i = n+ 1 link separately. Denote the start (j = 1, 3)
and goal (j = 2, 4) configurations for the former by

cn−1j = (x(j), y(j), z(j), ρ(j), θ(j), ψ(j)

u
(j)
1 , ρ

(j)
1 , θ

(j)
1 , ψ

(j)
1 , . . . , u

(j)
n−1, ρ

(j)
n−1, θ

(j)
n−1, ψ

(j)
n−1),
(14)

and those of the latter by

c0j={1,3} = (x(j)n , y(j)n , z(j)n , u(j)n , ρ(j)n , θ(j)n , ψ(j)
n), (15)

c0j={2,4} = c0j={1,3} + ∆c0j={1,3}, (16)

where
∆c0j = (∆x

(j)
n ,∆y

(j)
n ,∆z

(j)
n ,∆u

(j)
n ∆ρ

(j)
n ,∆θ

(j)
n ,∆ψ

(j)
n).

The coordinate variables with subscript n, xn, yn, zn, are

Prepared using sagej.cls

Hao-Tien Lewis Chiang et al. 15

the coordinates of the end of the nth linkage in the global
coordinate frame. Let c3 = c1 + ∆c1, c4 = c2 + ∆c2.
Then, we can decompose the |SV| into (since the union is
smaller than equal to the sum)

‖|SV(cn1 , c
n
2)| − |SV(cn3 , c

n
4)|‖ (17)

≤ ‖|SV(cn−11 , cn−12)| − |SV(cn−13 , cn−14)|‖
+ ‖|SV(c01, c

0
2)| − |SV(c03, c

0
4)|‖ (18)

≤ Kn−1‖∆cn−11 + ∆cn−12 ‖+Kn‖∆c01 + ∆c02‖ (19)

≤ K‖∆cn−11 + ∆cn−12 + ∆c01 + ∆c02‖ (20)
≤ K‖∆cn1 + ∆cn2‖, (21)

where Kn−1 and Kn are positive real constants, and K =
max(Kn−1,Kn). The first term of equation (18) satisfies
(IH) and the second one satisfies conditions of Schymura
(2014). The translation factor (affecting x, y, z) in the second
term is the result of the rotational/translational motion of the
nth linkage.

12.2 Robot Details
The 15 DOF planar manipulator has a fixed round base and
15 rigid cuboid bodies connected by 15 joints. The length
of the bodies are [0.8, 0.2, 0.1, 0.3, 0.4, 0.5, 0.1, 0.3, 0.4,
0.5, 0.1, 0.1, 0.4, 0.1, 0.1]m long and 0.1m wide while the
corridors are 1.5m wide. The square obstacle in the corridor
increases the planning difficulty and is 0.1m in width. The 15
joint angles describe a configuration of the robot. Training
sample configurations are uniform-randomly sampled from
[-π, π] for the base joint and [-π/2, π/2] for all other joints.

The L-shaped free-floating rigid body is sized at 0.4m,
0.6m, 0.1m (width, height, depth). During training, the
translation DOFs are limited to a 1.5m box. There are
also 100 randomly placed rectangular obstacles of size
0.4m, 1.1m, 0.1m in an environment of size 6m, 2.5m,
2.5m. Training sample configurations are uniform-randomly
sampled from [-1.5, 1.5]m for the position axes. The
planning environment is 11x larger than the learning
environment. To ensure uniform sampling for rotation, we
sample from [-π, π] for yaw, pitch and row and then convert
them to quaternions.

The Kuka LBR iiwa 14 R820 fixed-based manipulator has
7 joints that form a configuration. The primary difference
of this robot from the 15 DOF planar manipulator is that
the Kuka manipulator is 3D, which gives rise to much more
complex swept volume geometries.

The Closed-loop robot has 10 joints connecting 8 linkages
that are 0.5m long and 0.1m wide. The two base joints
(marked as black cylinder in Figure 4) are fixed. The Y-
shaped end-effector is rigid, and the tip of the effector
(green) undergoes linear motion between the start (magenta)
and end (blue). The start and end end-effector positions
are sampled uniform-randomly in the yellow region. Invalid
swept volume samples are rejected, this includes start and
end positions with no valid inverse kinematic solution or
solutions that result in self-collision. The 10 joint angles
form a configuration. The Dsv

we weights listed in Table 1
correspond to joints in the clock-wise order starting from the
upper base joint.

The Prismatic robot has 4 revolute DOFs and 4 prismatic
DOFs. The black and yellow links are 0.5m long and 0.1m

wide. The prismatic joints allow yellow links to retract
inside black links up to 0.5 m. The revolute joint angle and
prismatic joint length form a configuration.

The Youbot mobile manipulator is manufactured by the
Kuka company. The mechanical wheels allow the robot to
translate in any direction on the horizontal plane. The 5 joint
angles of the manipulator along with the x-y position and
yaw of the robot form a configuration. During training, the
translation DOFs are limited to a 1.5m square.

The Parallel robot has 15 joints articulating three two-link
legs connecting a fixed base (bottom hexagonal platform)
to an end-effector (top hexagonal platform) with varying
position and orientation. The legs each have three orthogonal
joints on the fixed base and two orthogonal joints at the leg
knee, a twist joint on the knee was not included because it is
unaffected by inverse kinematics. The 15 joint angles form
a configuration. The start and end end-effector position and
orientation are sampled uniformly-randomly. Invalid swept
volume samples are rejected, meaning that the start or end
configuration has no valid inverse kinematic solution.

12.3 Implementation Details

In Sections 6 to 8, the DNNs used to learn |S̃V0| share
the same hyper-parameters. These include: the number of
neurons in the hidden layers = [1024, 512, 256], learning rate
= 0.1, training batch size = 100 and the number of training
epochs = 500 (the number of times the network utilizes
the entire training dataset during training). A stochastic
gradient descent-based optimizer is used by both the single
layer networks and the DNNs. One hundred intermediate
configurations are generated to compute |S̃V0|. The octree
used to compute swept volume measure (|S̃V0|) has a
resolution of ∆ = 0.025m. The DNNs are trained with
Tensorflow 1.6 on an Intel i7-6820HQ at 2.7GHz with
16GB of RAM. The training data generation is implemented
within the open-source V-REP robot simulator platform.
The performance of the network was evaluated by an
evaluation dataset with ten thousand samples. This dataset
was generated in the same fashion as the training data, but it
was previously unseen by the network.

In Section 9, the DNN hyper-parameters include: the
number of hidden neurons with ReLu activation = [500,
1000, 2000, 4000], learning rate = 0.0001, training batch
size = 100 and the training terminates after 139 epochs. The
output layer has 8000 neurons, representing the probability
of occupation of each voxel. A stochastic gradient descend-
based optimizer is used. The voxel grid used to approximate
the swept volume geometry (S̃V(c1, c2)) has a resolution ∆′

= 0.1m and has 20x20x20 voxels in total. Ninety thousand
training and ten thousand evaluation samples were generated.
The computation time of the estimator is evaluated by
averaging over 10,000 estimates with various batch sizes.
The DNNs are also trained with Tensorflow 1.13 on the same
computer. The training data was also generated using V-REP.

In Sections 6.2 and 7, motion planning and |S̃V0|
computation time experiments were conducted using OMPL
in C++ on the same computer. Parameters of RRT other than
ones mentioned in main paper are set to the default values
in OMPL. This means an extend step size of 0.2 times the

Prepared using sagej.cls

16 Journal Title XX(X)

maximum Euclidean distance of any pair of points in C-
space and a goal bias of 0.05. The V-REP platform is used
to simulate the robot and collision detection. All planning
was repeated 20 times.

References

Abrams S and Allen PK (2000) Computing swept volumes. The
Journal of Visualization and Computer Animation 11(2): 69–
82.

Amato NM, Bayazit OB, Dale LK, Jones C and Vallejo D
(1998) Choosing good distance metrics and local planners for
probabilistic roadmap methods. In: Proc. IEEE Int. Conf.
Robot. Autom. (ICRA). pp. 630–637.

Brin S (1995) Near neighbor search in large metric spaces. In: Proc.
of Int. Conf. on Very Large Data Bases. pp. 574–584.

Campen M and Kobbelt L (2010) Polygonal boundary evaluation of
Minkowski sums and swept volumes. In: Computer Graphics
Forum, volume 29. pp. 1613–1622.

Chiang HTL, Faust A, Sugaya S and Tapia L (2018) Fast swept
volume estimation with deep learning. In: Morales M, Tapia
L, Sanchez-Ante G and Hutchinson S (eds.) Algorithmic
Foundations of Robotics XIII. Springer, p. In print.

Ekenna C, Uwacu D, Thomas S and Amato NM (2015) Improved
roadmap connection via local learning for sampling based
planners. In: Proc. IEEE Int. Conf. on Intel. Robot. Sys. (IROS).
pp. 3227–3234.

Elbanhawi M and Simic M (2014) Sampling-based robot motion
planning: A review. IEEE Access 2: 56–77.

Faust A, Oslund K, Ramirez O, Francis A, Tapia L, Fiser M and
Davidson J (2018) PRM-RL: Long-range robotic navigation
tasks by combining reinforcement learning and sampling-based
planning. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA). pp.
5113–5120.

Gaschler A, Petrick R, Kröger T, Khatib O and Knoll A (2013)
Robot task and motion planning with sets of convex polyhedra.
In: Proc. Robotics: Sci. Sys. (RSS).

Goodfellow I, Bengio Y and Courville A (2016) Deep learning.
MIT press.

Hahnloser RH, Sarpeshkar R, Mahowald MA, Douglas RJ and
Seung HS (2000) Digital selection and analogue amplification
coexist in a cortex-inspired silicon circuit. Nature 405(6789):
947–951.

Himmelstein JC, Ferre E and Laumond JP (2010) Swept volume
approximation of polygon soups. IEEE Trans. on Autom. Sci.
and Eng. 7(1): 177–183.

Hornik K (1991) Approximation capabilities of multilayer
feedforward networks. Neural Networks 4(2): 251–257.

Ichter B, Harrison J and Pavone M (2018) Learning sampling
distributions for robot motion planning. In: Proc. IEEE Int.
Conf. Robot. Autom. (ICRA). pp. 7087–7094.

Kaelbling LP and Lozano-Pérez T (2010) Hierarchical planning in
the now. In: Proc. Int. Conf. Artif. Intel. pp. 33–42.

Karaman S and Frazzoli E (2011) Sampling-based algorithms for
optimal motion planning. Int. J. Robot. Res. 30(7): 846–894.

Kavraki LE, Svestka P, Latombe JC and Overmars MH (1996)
Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE Trans. Robot. 12(4): 566–580.

Kim YJ, Varadhan G, Lin MC and Manocha D (2004) Fast
swept volume approximation of complex polyhedral models.

Computer-Aided Design 36(11): 1013–1027.
Kingma D and Ba J (2014) Adam: A method for stochastic opti-

mization. International Conference on Learning Representa-
tions .

Kuffner JJ (2004) Effective sampling and distance metrics for 3D
rigid body path planning. In: Proc. IEEE Int. Conf. Robot.
Autom. (ICRA). pp. 3993–3998.

Kuffner JJ and LaValle SM (2000) RRT-Connect: An efficient
approach to single-query path planning. In: Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), volume 2. pp. 995–1001.

LaValle SM (2006) Planning algorithms. Cambridge university
press.

LaValle SM and Kuffner JJ (2001) Randomized kinodynamic
planning. Int. J. Robot. Res. 20(5): 378–400.

Lozano-Perez T (1990) Spatial planning: A configuration space
approach. In: Auto. Robot Vehicles. pp. 259–271.

Mamou K and Ghorbel F (2009) A simple and efficient approach
for 3D mesh approximate convex decomposition. In: Int. Conf.
on Image Processing (ICIP). IEEE, pp. 3501–3504.

McMahon T, Jacobs S, Boyd B, Tapia L and Amato NM (2012)
Local randomization in neighbor selection improves PRM
roadmap quality. In: Proc. IEEE Int. Conf. on Intel. Robot.
Sys. (IROS). pp. 4441–4448.

Palmieri L and Arras KO (2015) Distance metric learning for RRT-
based motion planning with constant-time inference. In: Proc.
IEEE Int. Conf. Robot. Autom. (ICRA). pp. 637–643.

Perrin N, Stasse O, Baudouin L, Lamiraux F and Yoshida E (2012)
Fast humanoid robot collision-free footstep planning using
swept volume approximations. IEEE Trans. Robot. 28(2): 427–
439.

Schymura D (2014) An upper bound on the volume of the
symmetric difference of a body and a congruent copy.
Advances in Geometry 14(2): 287–298.

Şucan IA, Moll M and Kavraki LE (2012) The Open Motion
Planning Library. IEEE Robot. Automat. Mag. 19(4): 72–82.

Völz A and Graichen K (2016) Distance metrics for path planning
with dynamic roadmaps. In: Proc. Int. Symp. on Robotics. pp.
126–132.

Von Dziegielewski A, Hemmer M and Schömer E (2015) High
precision conservative surface mesh generation for swept
volumes. IEEE Trans. on Autom. Sci. and Eng. 12(1): 183–
191.

Wampler CW (1986) Manipulator inverse kinematic solutions
based on vector formulations and damped least-squares
methods. Trans. on Sys., Man, and Cybern. 16(1): 93–101.

Wolfslag WJ, Bharatheesha M, Moerland TM and Wisse M
(2018) RRT-CoLearn: towards kinodynamic planning without
numerical trajectory optimization. Robot. and Automat. Lett.
3(3): 1655–1662.

Xavier PG (1997) Fast swept-volume distance for robust collision
detection. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
volume 2. IEEE, pp. 1162–1169.

Prepared using sagej.cls

	Introduction
	Related Work
	Problem Formulation
	Methods
	Training Dataset Generation
	Deep Swept Volume Measure Estimator, Dsvdnn
	Weighted Euclidean Distance Estimator, Dsvwe
	Swept Volume-based Hierarchical Neighbor Search, HNSsv

	Continuity of Swept Volume Measure
	Evaluation
	Learning Results
	Planning Results

	Physical Robot Experiment
	Discussion
	Distance Measure Trade-Offs
	Network and Training Data Size
	Generalization of Translational DOFs

	Deep Swept Volume Geometry Estimator
	Conclusion
	Acknowledgement
	Appendix
	Proof of Proposition 1
	Robot Details
	Implementation Details

