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Abstract. We present a neural network collision checking heuristic,
ClearanceNet, and a planning algorithm, CN-RRT. ClearanceNet learns
to predict separation distance (minimum distance between robot and
workspace) with respect to a workspace. CN-RRT then efficiently com-
putes a motion plan by leveraging three key features of ClearanceNet.
First, CN-RRT explores the space by expanding multiple nodes at the
same time, processing batches of thousands of collision checks. Second,
CN-RRT adaptively relaxes its clearance requirements for more difficult
problems. Third, to repair errors, CN-RRT shifts its nodes in the di-
rection of ClearanceNet’s gradient and repairs any residual errors with
a traditional RRT, thus maintaining theoretical probabilistic complete-
ness guarantees. In configuration spaces with up to 30 degrees of freedom,
ClearanceNet achieves 845x speedup over traditional collision detection
methods, while CN-RRT accelerates motion planning by up to 42% over
a baseline and finds paths up to 36% more efficient. Experiments on
an 11 degree of freedom robot in a cluttered environment confirm the
method’s feasibility on real robots.

1 Introduction

Modern robots work in complex workspaces such as factory lines and warehouses.
They shelve inventory (Fig. 1), inspect parts (Fig. 2b), and perform collaborative
tasks (Fig. 2d). Within its lifetime a robot can complete hundreds of thousands
of tasks. In factories and warehouses the workspaces change in structured ways:
objects are displaced as the robot stocks the shelves, and free space depends
on other robots’ poses. However, classic motion planning takes little advantage
of this structure in changing environments and typically plans every path from
scratch. In this work, we present a learning-based method that leverages prior ex-
perience to quickly propose paths and pass them to a computationally expensive
geometry-based planner for validation and repair.

Motion planning is the problem of finding a feasible path between start and
goal poses in the robot’s workspace. Often, motion planning problems are solved
in configuration space (C), the set of possible robot poses [15] within a static
workspace. As the dimensionality of C increases, exactly solving the planning
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(a) Start pose (b) End pose

Fig. 1. Real-world validation with Fetch robot reaching into a shelf.

problem quickly becomes intractable. Sampling-based planning addresses this
issue by forming an approximate, implicit representation of C through a set of
probing random samples, connected locally by querying a collision checker.

Classical approaches to collision checking rely on computing complicated
geometries. Though there exists a rich literature on efficient computation [17, 11],
accelerating collision checking through parallelization, broad and narrow search
phases and other optimizations, the exact geometric collision check remains a
computationally expensive operation. Researchers have attempted to reduce the
number of required collision checks by certifying regions to be collision free [3] or
by using probabilistic collision checks [14] to provide a quick, approximate belief
about which regions are in collision. Regardless, collision checking remains the
primary bottleneck in sampling-based motion planning, consuming up to 90%
of total computation time [8].

We address the collision checking bottleneck and accelerate sampling-based
planning with three key insights. First, separation distance is a function of only
the poses of all mobile bodies in an environment. This leads to the idea of
learning to predict separation distance (clearance) from examples, without the
robot explicitly knowing either its own geometry or the obstacles’ during plan-
ning. This works because deep neural networks are universal approximators that
with enough data can learn any continuous function and because clearance is
a Lipschitz continuous function [15]. We therefore train a deep neural network,
ClearanceNet, to predict collision clearance for robots and workspaces with many
degrees of freedom (DoFs), using geometry for training but not for inference. The
second insight is that both sampling-based motion planning and neural network
inference are embarrassingly parallelizable [1, 2]. Leveraging neural networks’
efficiency at processing large batches, we collision check entire edges together
and expand from many RRT nodes in parallel. This batch processing leads to
a heuristic collision check two orders of magnitude faster than optimized geo-
metric methods on a single GPU. The third insight is that often it is easier to
verify and repair a partially-correct trajectory than to plan from scratch. This
is relevant because, although fast, the learned collision heuristic is approximate
and makes mistakes. Thus, building on [7], we verify and repair motion plans
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(a) Block, 14 DoF (b) R2D2, 14 DoF (c) Ducky, 7 DoF (d) Mobile, 30 DoF (e) Fetch, 11 DoF

Fig. 2. Environments: a), b) Static workspace with fixed robot bases. c) Parameter-
ized workspace - robot is fixed while obstacle placement varies. d) Mobile manipulators.
Model trained for two mobile manipulators and used to plan for three without addi-
tional training. e) Fetch robot with 7 DoF arm, torso lift and base position. Each set
of shelves has one DoF and cubes have 2 DoFs each.

using the gradient of the neural network to shift poses towards higher clearance,
then repair remaining misclassified poses with traditional RRT [16].

Using these insights, this paper makes three contributions. 1) ClearanceNet,
a neural network that estimates minimum separation distance, conditioned on
joint robot-workspace pose. ClearanceNet is trained using large-scale hyperpa-
rameter tuning that simultaneously searches for the appropriate training hy-
perparameters and trains the clearance estimator. We also provide the training
hyperparameters, which were consistent across environments and robots. 2) CN-
RRT, an adaptive and batched extension of the Fastron-RRT algorithm [7],
which leverages the efficiency of neural network inference when processing large
batches of data (up to 60 edges and 5,000 collision checks). CN-RRT adaptively
reduces the difficulty of the motion planning problem and includes a repair step
that attempts to move the path away from obstacles using ClearanceNet’s gra-
dient. 3) A configurable workspace, extended configuration space and in-depth
analysis of CN-RRT trade offs.

ClearanceNet and CN-RRT are evaluated on five environments (Fig. 2) with
convex and concave obstacles. Robots range from 7 to 30 DoFs, including multi-
ple arms with fixed bases, mobile manipulators, and a full bodied Fetch robot. We
compare the presented method with two baselines: a traditional C++ optimized
geometric collision checker (Gilbert-Johnson-Keerthi or GJK [9]) implemented
in PyBullet [6], and Fastron [7], a learned collision checker with a kernel per-
ceptron. ClearanceNet performs collision checking up to 845x faster than GJK
in sufficiently large batches, and achieves accuracy of 91-96%. CN-RRT both
completes planning faster (up to 42%) and produces up to 36% shorter paths.

2 Related Work

Several previous works used machine learning to offset the cost of collision check-
ing. Some methods learn heuristics for promising paths [4], learn a distribution
of promising regions [13], or evaluate only the most promising edges [5] based on
predicted energy costs [23]. Our approach, which learns to accelerate the actual
collision checking, can be used in conjunction with these approaches.

Other works use learning to accelerate collision checking itself by approxi-
mating C with Gaussian mixture models [12], or by classifying collisions based on
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nearby collision checks [14, 18]. Another work trains a support vector machine
offline and actively adapts it online to predict the penetration depth of rigid
bodies [19]. Our method, however, focuses specifically on learning to classify
collisions in the configuration space and ultimately certifies path validity.

In [21] a contractive autoencoder and multi-layer perceptron predict colli-
sions from latent space in a probabilistic roadmap. Our work differs in that: 1)
batching speeds up planning, 2) a repair step guarantees correctness and 3) in-
puts are configuration points instead of occupancy grids, allowing us to expand
the workspace volume without changing the neural network architecture and to
support obstacles with arbitrary geometry, beyond axis-aligned boxes. The work
most similar to ours is Fastron [7], which uses a kernel perceptron and active
learning to form a belief model of C. Because Fastron is not based on a neural
network, it cannot take advantage of the batch processing speedup. Additionally,
our method generalizes to object repositioning in the workspace without further
training. CN-RRT takes Fastron-RRT [7] as a foundation and adds whole-edge
collision checks, edge building parallelization, adaptive thresholding, and a flex-
ible repair step to guarantee probabilistic completeness.

New simulation environments are emerging for path planning that allow users
to programmatically create new workspaces by randomly placing a fixed number
of objects within a static environment [22]. Here we consider a similar setting,
where the workspace consists of fixed obstacles and obstacles that may change
positions between two motion planning problems.

3 Problem Statement

In this paper we use relaxed assumptions about robot workspace and configu-
ration space. To that end, this section introduces key definitions for workspace
configuration space, extended configuration space and our problem definition.

Definition 1. Workspace configuration space. Cw ⊂ Rdw is the set of all
possible workspace configurations for dw ≥ 0. Vector w ∈ Cw is a workspace
configuration and scalar dw is the workspace degrees of freedom. We de-
note with W(w) a workspace with configuration w.

Intuitively, a workspace configuration space corresponds to a set of related
workspaces where large portions are fixed, but there are several objects that can
move between planning problems. In a typical room, for example, the floor, ceil-
ing, tables and cabinets remain static, while the locations of chairs may change.
In the special case dw = 0, Cw = ∅, and there is only one possible workspace
corresponding to the classic static workspace W.

Definition 2. Extended configuration space. Ce is the set of all possible
robot and workspace configurations, Ce = C × Cw ⊂ Rde , de = dr + dw, where
C ⊂ Rdr is the set of all possible robot poses pr. A configuration space for a fixed
workspace configuration w is denoted by Ce(w).

The extended configuration space, a configuration space generalization, contains
dr robot controllable DoFs, and dw DoFs not controllable by the robot. Robot
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pose pr is a joint configuration for all robots in the workspace for which we
are finding a motion plan, while the workspace may contain objects that change
positions between motion planning instances. In the special case dw = 0 all DoFs
of the extended configuration space are controllable by the robot, and Ce = C.

Definition 3. Collision checking in Ce. A configuration p = (pr,w) is valid
iff robot configuration pr is valid in workspace W(w). Extended free config-
uration space, Cef ⊂ Ce is the set of all valid configurations Cef = {p =
(pr,w)| isV alid(pr,W(w)), pr ∈ C, w ∈ Cw}. The free configuration space for a
fixed w is denoted by Cf (w).

In other words, a configuration is valid in joint robot-workspace configuration
space if the robot pose is valid in this particular instance of the workspace.

Definition 4. Path planning in extended configuration space. Given ex-
tended configuration space Ce, workspace configuration w, start and end robot
poses, prs,prg, find a valid path P = [pr0, · · · ,prn], such that the path starts in
the start robot pose, ends in the end robot pose, and each point in the path is
valid: pr0 = prs, prn = prg,pri ∈ Cf (w) for i = 1, · · · , n.

Definition 5. Data batch. Let p ∈ Rde be a vector, B = [p1, · · · , pn]ᵀ be a
de × n matrix of batched data, and Cθ̂ : Rdofs → R be a neural network with de
inputs and one output. Batched inference Cθ̂ maps a batched data matrix B into
an n-dimensional vector.

Deep neural networks are optimized to efficiently process large batches of data
using low-level parallelization of matrix multiplication. Leveraging this property
of neural networks is key in our algorithm’s multi-directional RRT growth.

4 Methodology

We introduce ClearanceNet, CN: Ce → R, a learned clearance estimator, and
its use within a sampling-based motion planning algorithm, CN-RRT. Clear-
anceNet is a neural network that takes a configuration (e.g. a robot pose and
workspace configuration) and estimates the minimum clearance between robot
and workspace. CN-RRT, a batched variant of Rapidly-exploring Random Trees
(RRTs), then explores C under the supervision of ClearanceNet and certifies
(and possibly repairs) the final motion plan with exact collision checks.

4.1 ClearanceNet

Data Collection: The data collection process samples a robot pose pr and
workspace configuration w from the extended configuration space. It sets the
workspace toW(w) and robot to pr and computes the clearance d, the minimum
distance between the robot and the workspace or itself, using a geometric method
[9]. Positive values indicate the configuration point is free of collision, i.e. pr ∈
Cef (w), while negative values indicate penetration depth. The triples are then
added to a dataset: D = {(pr, w, d) | (pr,w) ∼ Ce, d ∈ R}. When the dataset is
large enough, it is partitioned into training and evaluation sets.
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Algorithm 1 CN-RRT

Input: Initial and goal robot poses: prs,prg and a workspace configuration: w.
Input: Cθ̂ : Trained clearance estimator.
Input: d∗,∆t: Monotonically decreasing vectors of CN thresholds and times to switch.
Input: Next: Number of simultaneous extensions.
Input: tmax: Timeout.
Output: P: Sequence of robot poses from prs to prg.
1: Initialize tree T with prs and current threshold index j = 1.
2: while prg not reached and telapsed < tmax do

3: Psample ← [p(1,s)
r , · · · ,p(Next,s)

r |p(i,s)
r ∼ Ce(w)]. Sample Next points from Ce(w).

4: Pexpand ← [p(1,e)
r , · · · ,p(Next,e)

r |p(i,e)
r : Nearest in T to p(i,s)

r ]. Nodes to expand.
5: P ← Discretized paths from p(i,e)

r to p(i,s)
r for each i = 1, · · · , Next

6: Find clearances c← Cθ̂(B), for the batch of points, B = {(pr,w)|pr ∈ P}.
7: Truncate each path at first clearance < d∗[j]
8: Randomly sample poses from truncated paths and add them to tree T .
9: if telapsed >∆t[j] then

10: j ← min(j + 1, length(d∗)). Estimator Cθ̂ less conservative.
11: end if
12: end while
13: P ← if (prg ∈ T ) then Extract path from tree T else [prs,prg].
14: return Algorithm 2 (P) /* Validate, and repair if necessary, path P. */

ClearanceNet Training: We train ClearanceNet from the collected dataset
D. Let Cθ : Ce → R be a neural network parameterized with weights θ that
takes a robot and a workspace configuration point (pr, w) ∈ Ce as input and
predicts the minimum clearance d in the workspace W(w). The neural network
consists of two fully connected layers, each followed by a dropout layer, and an
output layer that predicts clearance. The training minimizes the mean squared

error, θ̂ = arg minθ N
−1

∑N
i=1 ‖d(i) − Cθ(p

(i)
r ,w(i))‖2. Finding the right neu-

ral network size, dropout rates, learning rate, and minibatch size is not trivial
and often time consuming. We automate the search using a large-scale hyperpa-
rameter optimization according to Gaussian Process Bandits [20]. This process
trains a population of neural nets with different parameters and observes their
performance, then selects hyperparameters for the next generation until the hy-
perparameters are tuned. A trained ClearanceNet is denoted by Cθ̂.

Collision classifier definition: After the clearance estimator Cθ̂ is trained,
we make a collision classifier by selecting a clearance threshold d∗. A pose pr is
classified as in collision if Cθ(pr,w) < d∗, i.e. the predicted clearance is less than
the threshold. We can vary d∗ to obtain a stricter or more permissive classifier.

4.2 CN-RRT: Sampling-based planning with ClearanceNet

ClearanceNet serves as a heuristic to select promising edges in a sampling-based
planning setting. To best utilize it, we make three modifications to the Fastron-
RRT algorithm [7]. First, taking advantage of neural networks’ ability to effi-
ciently evaluate large batches of data, we present an algorithm that evaluates sev-
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eral entire edges for collisions in one large batch. Second, we introduce adaptive
thresholding to control how conservative the algorithm is. Lowering the thresh-
old reduces false positives (free space predicted to be in collision) but increases
false negatives. Last, we add a gradient-based path repair, which is possible be-
cause ClearanceNet is differentiable in configuration space. Intuitively, during
repair we move the path away from obstacles in the direction of the gradient.

Batch Node Expansion: Algorithm 1 outlines CN-RRT. The tree grows
from the start configuration, expanding until it reaches either the goal or the
time limit. During each iteration, CN-RRT selects a batch of configuration points
(Line 3) and finds their nearest neighbors in the tree (Line 4). Next, it computes
the edges between the random points and their neighbors using a local planner,
without checking for collisions (Line 5). Then ClearanceNet predicts clearances
for the entire batch that contains configuration points for all edges (Line 6).
Next, for each edge, CN-RRT finds the first node where the predicted clearance is
smaller than the allowed threshold, i.e predicted collision (Line 7). The algorithm
then adds several samples from the estimated collision-free portion of the edge
(Line 8). Each sample is added to the tree, and all are connected from the
expansion node (Line 8). This step ensures addition of nodes that are not near
collision boundaries, although it does increase the size of the tree.

Clearance Threshold Adaptation: CN-RRT has an adaptive clearance
threshold d∗ to make the algorithm more flexible (note that d∗ controls the preci-
sion of the classifier). An overly conservative classifier will unnecessarily discard
collision-free samples, but most samples classified as collision free will be truly
collision free. Many easy motion planning problems (less cluttered workspace,
start and end poses nearby, etc.) can be solved even with an overly conservative
classifier, and these will require little or no repair, but other problems require
less conservative solutions. Because we do not know ahead of time what thresh-
old is appropriate for a given problem, we give CN-RRT a list of thresholds and
time limits as input. If it finds no solution within a given time limit (Line 9),
the algorithm decreases the threshold (Line 10) to relax the classifier. This step
ensures that in subsequent iterations more nodes are added to the tree, although
they may not be truly collision free.

Gradient-based Path Repair: Because the learned collision checker is
approximate, CN-RRT may need to resolve misclassifications. It does so with
a repair step that uses the gradient of ClearanceNet. Recall that ClearanceNet
is a differentiable scalar function of robot pose pr and workspace state w that
predicts a clearance, Cθ̂(pr,w) → d. This gradient is automatically computed
to train the network. This means that for a robot pose in collision, following
the positive gradient of the clearance with respect to robot pose can increase
the clearance; initially reducing the amount of collision and eventually finding a
collision-free point. Let p(i),p(i+1) ∈ P be two consecutive configurations points
in the proposed path. Let g(i) = ∇Cθ̂(p(i)) be a gradient of the ClearanceNet

w.r.t. the point, and ∆p(i) = p(i+1) − p(i) be a vector in the direction of the
path. p(i) moves in the positive gradient direction perpendicular to ∆p(i):

p(i) ← p(i) + αq(i), q(i) = g(i) − (g(i) ·∆p(i)‖∆p(i)‖−1) (1)
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Algorithm 2 Repair

Input: Cθ̂ : Trained clearance estimator. α : step size. nex : extra steps. tmax: Timeout.
Input / Output: P: Sequence of poses from (prs,w) to (prg,w).
Output: Success: Boolean. Is the path certified valid?
1: i← 0, nshifts ← 0
2: while 0 < i < length(P) and nshifts < tmax do
3: if isValid(p(i)) then i← i+ 1; Continue.
4: while not isValid(p(i)) and nshifts < tmax do
5: Shift p(i) toward safety by α according to Eq. (1). nshifts ← nshifts + 1
6: end while
7: Shift p(i) another nex steps toward safety.
8: Add unchecked interpolation points between new p(i) and p(i−1), p(i+1).
9: i← i Now refers to new next point after p(i−1).

10: end while
11: if i == length(P) return True, P /* Whole path is certified valid. */
12: for j = i− 1; j > 0; j ← j − 1 /* Back out and repair with RRT.*/ do
13: if Fastron repair step [7] on P(j, P(length)) is successful then return True, P.
14: end for
15: return False, P /* RRT could not find a valid path */

where α is step size and q(i) is the orthogonal projection of gradient g(i) onto
the hyperplane orthogonal to the path vector ∆p(i).

Algorithm 2 describes the repair procedure. First, we check all points in the
path with classic geometry-based collision checking (Line 3). If all points are
valid the algorithm returns the unmodified path (Line 11). Otherwise for each
point p(i) in collision, we incrementally shift it towards safety according to (1)
until it is no longer in collision (Lines 4-6). Next, we interpolate between any
shifted points and repeat the process for these new points (Lines 8-9). This is
not guaranteed to be successful, so after a certain number of attempts, we revert
to Fastron’s repair step for the non-validated portions of the path. Fastron’s
repair step takes a path, assuming the start and end are valid, and returns a
repaired path that is guaranteed to be collision free w.r.t. traditional geometry-
based collision checking. First, it uses traditional collision checking to find invalid
path segments between valid point pairs. Next, it solves a series of small queries
around invalid regions using RRT. Finally, the valid path is concatenated and
returned. Our modification of the Faston repair step includes path’s start and
end points in the RRT search. The intuition behind the Fastron repair step is
that queries between closer configuration points are easier to solve. While this is
often true in practice, in general the smaller queries may be infeasible. To be able
to find a solution if one exists, we perform a series of repair steps backing out
through the portions of the path that are already certified valid (Lines 12-14).
Finally, if the repair, which includes RRT query from the original start and end
poses, fails to find a solution, we consider a query infeasible (Line 15).
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(a) Time v. batch to 150 (b) Time v. batch to 16K

Fig. 3. ClearanceNet inference time over batch size and
model. Both y-axes and the second x-axis are logarithmic.
Max speedups were 132, 261, 287, 193 and 845x respec-
tively for Block, R2D2, Mobile, Ducky and Fetch.

Fig. 4. ClearanceNet ac-
curacy over training set
size and DoFs for Block
and Fetch environments.

5 Results

Setup: We evaluate ClearanceNet and CN-RRT on five environments (Fig. 2).
Block and R2D2 contain two 7-DoF Kuka arms with fixed bases. Block contains
a floating object (Fig. 2a), R2D2 a model of R2D2 (Fig. 2b). Planning DoFs and
ClearanceNet input length are 14. Ducky contains a fixed-base 7-DoF Kuka arm
and three objects (Fig. 2c), selected to have different geometric properties, from
the uniform block to the duck with smooth curved surfaces. The workspace
is parameterized with the object locations. Thus planning is 7-DoF but the
extended configuration space dimensionality (and ClearanceNet input length) is
16; 7 for the robot pose and 3 for each movable obstacle in the scene. Mobile
consists of three mobile manipulators: Kuka arms attached to moving bases with
50 cm sides (Fig. 2d). The collision checks between the three mobile manipulators
are done as three pair-wise checks. Motion planning is 30-DoF but ClearanceNet
input length is 17 for each pair-wise check; 7 × 2 for arm joints, one for base
separation and two for base orientations. Fetch contains a Fetch robot, two sets of
shelves and cubes in a 2m×2m square. The shelves can slide and the cubes can be
at any position on the floor. Motion planning is thus 11-DoF and ClearanceNet
input length is 17.

5.1 ClearanceNet Results

Training: We generate datasets of 106 training and 104 evaluation samples for
each environment using Bullet Physics Simulation [6], which computes separa-
tion distances using the GJK distance algorithm [9]. Data collection takes 17-30
minutes per environment. The neural networks have layers with 1400 neurons.

Hyperparameters: We use Vizier [10] with Gaussian Process Bandits [20] to
search for learning hyperparameters using a total population of 1000 models.
A single network trains in one hour, while the hyperparameter search takes 24
hours on average. One set of optimized hyperparameters performs well across
the environments and robots; thus we perform the tuning only once: dropout
rate = 1%, learning rate = 1.7495x10−4, batch size = 191. The overhead for
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applying CN-RRT to new robots is less than two hours, for most of which the
robot can continue to operate as the model trains offline.

Inference Speed: Time to perform a single collision check with ClearnanceNet
decreases with batch size (Fig. 3), which we use to our advantage when building
batched RRTs. It is interesting to note that, unlike classic methods, the network’s
size and therefore inference speed do not depend on the robot and workspace,
suggesting that the method might be especially appropriate for environments
with complex geometries and high-dimensional C-Spaces.

Accuracy: Fig. 4 shows ClearanceNet’s accuracy for training set sizes up
to 106, with various DoFs frozen, for the most complicated (Fetch) and least
complicated (Block) environments. This shows the required number of samples
depends on both degrees of freedom and workspace complexity. Fig. 5 displays
ClearanceNet’s accuracy with 106 samples and summarizes classifications for
d∗ = 0. False negatives can lead to trajectories with collisions being classified as
free, requiring more repair time. False positives can lead to conservative planners
that find no paths at all; the adaptive threshold addresses this.

5.2 CN-RRT Results

Setup: We compare CN-RRT to RRT [16] with GJK collision checking [9] (GJK-
RRT), and RRT with Fastron [7] collision checking (Fastron-RRT). GJK is a
geometry-based clearance finding algorithm, while Fastron is a learned collision
checker that uses a support vector machine (kernel perceptron). Fastron-RRT
includes a repair step that falls back on GJK-RRT to validate and correct paths.

ClearanceNet is implemented with TensorFlow using the Python interface.
Bullet is implemented in C++, and we use the Python interface PyBullet. Fas-
tron is implemented in Python using Numpy. All evaluations run on an Nvidia
Tesla V100 GPU with 16 Gbs of RAM, with fixed start and goal configurations
averaged over 100 problems. Thresholds and threshold switch times are deter-
mined per-environment using Vizier [10] with Gaussian Process Bandits [20].

Success rate and planning speed: CN-RRT is more likely to find a so-
lution for a query than the comparison methods most of the time (Fig. 6). In
the Ducky environment the performance is comparable to GJK. In the Mobile
environment, which contains more robots in the evaluation than during training,
GJK solves more easier solutions faster. However, as the queries become more
difficult CN-RRT finds solutions that the comparison methods could not. In all
other environments CN-RRT consistently solves more queries faster (Table 1).

Time allocation: In all trials, failure to solve a problem counts as the
maximum time allotted. CN-RRT solves a single query faster than the baselines
for all environments except Mobile (Fig. 6). Additionally, the repair time for CN-
RRT is shorter than the build time for GJK-RRT on average, demonstrating that
repairing a path is faster than building one from scratch.

Path length: Next, we examine the quality of the paths that CN-RRT finds.
In all environments except Fetch, CN-RRT paths are shorter on average than
GJK-RRT and Fastron-RRT (Table 1). Although we do not explicitly optimize
for path length, ClearanceNet is biased toward higher-clearance paths, which are
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Table 1. Path characteristics and path-building statistics for CN-RRT and baselines
averaged over 500 queries. CN-RRT-NG is an ablated version of CN-RRT with no
gradient repair. Succ. Rate is the method’s success at finding a path within the time
limit. Collision Checks are geometric checks, whereas Col. Checks Heuristic are checks
by ClearanceNet and Fastron. The %∆ columns show percent increase or decrease
as compared to GJK-RRT. The Path Length column group considers only successful
queries, which biases it in favor of methods that solve only the shorter, easier problems.

Env. Method Succ. Compute Time Path Length Collision Col. Checks
Rate (s) (steps) Checks Heuristic
(%) µ %∆ σ µ %∆ σ µ σ µ σ

CN-RRT 97.0 2.0 -27 5.2 964 -21 398 7.4k 41.9k 19.0k 85.9k
Block CN-RRT-NG 95.6 2.4 -14 6.3 1021 -16 413 14.8k 56.4k 20.7k 121.0k

(Fig. 2a) Fastron-RRT 52.0 15.7 +475 13.9 1169 -4 484 11.8k 48.7k 43.6k 43.4k
GJK-RRT 95.2 2.7 - 6.7 1214 - 502 24.5k 67.8k - -
CN-RRT 98.8 1.6 -42 3.5 926 -26 414 0.5k 7.2k 39.6k 122.2k

R2D2 CN-RRT-NG 98.2 2.0 -31 4.5 976 -22 442 5.4k 22.9k 43.1k 171.3k
(Fig. 2b) Fastron-RRT 97.6 3.4 +19 5.0 1170 -7 497 12.9k 34.3k 3.8k 3.4k

GJK-RRT 97.6 2.8 - 5.2 1259 - 523 14.5k 31.0k - -
CN-RRT 91.0 4.3 -12 8.7 673 -36 336 18.8k 52.2k 6.8k 14.0k

Ducky CN-RRT-NG 90.4 4.8 -2 9.0 941 -11 428 26.7k 59.2k 6.8k 11.3k
(Fig. 2c) Fastron-RRT 1.0 31.3 +545 2.8 741 -30 309 0.1k 0.7k 47.4k 5.2k

GJK-RRT 89.4 4.9 - 9.2 1055 - 433 25.7k 51.3k - -
CN-RRT-NG 70.7 91.6 +2 67.3 3799 -10 1824 306.2k 265.4k 295.4k 524.6k

Mobile Fastron-RRT 0.0 180.4 +101 0.3 - - - 0.0k - 481.4k 83.3k
(Fig. 2d) GJK-RRT 63.5 89.8 - 73.4 4205 - 2099 411.1k 338.0k - -

CN-RRT-NG 70.0 416.8 -30 417.5 2857 +12 1454 436.7k 435.6k 120.7k 140.1k
Fetch Fastron-RRT 8.0 923.1 +54 266.7 1324 -48 781 24.8k 163.8k 1268.2k 423.6k

(Fig. 2e) GJK-RRT 52.0 599.2 - 426.4 2553 - 1329 617.5k 439.3k - -

likely to be shorter in relatively uncluttered environments. In the more cluttered
Fetch environment, GJK-RRT and Fastron-RRT have shorter paths on average,
although this is affected by the fact that both algorithms solved only an easier
subset of the problems CN-RRT solved.

Gradient-based repair: There are two parameters we can tune: step size
α and extra steps nex. We run a grid of experiments per-environment on a
training set of motion planning problems to determine the best values for these
parameters. For Block α = 0.15 and nex = 0. For R2D2 and Ducky, α = 0.05 and
nex = 3. Gradient-based repair is inapplicable to Mobile because the collision
checks are done pair-wise, and to Fetch because the robot is non-holonomic (the
base cannot translate sideways). For these environments we use the ablation
method CN-RRT-NG. For all other environments, gradient-based repair is an
improvement over GJK-based repair in terms of both average calculation time
and average path duration (Fig. 6 CN-RRT-NG).

On robot experiments: We validate CN-RRT by taking paths it finds and
executing them on a real Fetch robot. The start poses are randomly generated,
and the goal poses are selected to be especially challenging: they require reach-
ing into enclosed shelves (Fig. 1). For one randomly selected query, CN-RRT’s
planning time is 47 s, while the comparison methods fail to find a solution.

6 Analysis and Discussion

Probabilistic completeness: Algorithm 1 is probabilistically complete. We
can consider three cases for the Cθ̂ : 1) the classifier classifies all points as in col-
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(a) Block, 95.5% Input size: 14

(b) R2D2, 96.0% Input size: 14

(c) Ducky, 91.4% Input size: 16

(d) Mobile, 96.3% Input size: 17

(e) Fetch, 95.1% Input size: 11

Fig. 5. ClearanceNet accu-
racy. Quadrants are true
positive collision (bottom
left), true negative collision-
free (top right), false pos-
itive (bottom right), and
false negative (top left).

(a) Block, Success rate (b) Block, Time allocation

(c) R2D2, Success rate (d) R2D2, Time allocation

(e) Ducky, Success rate (f) Ducky, Time allocation

(g) Mobile, Success rate (h) Mobile, Time allocation

(i) Fetch, Success rate (j) Fetch, Time allocation

Fig. 6. Success rate over time and time per phase. The
bar graphs show average time spent in each phase: con-
structing the initial RRT (Build), repairing the path with
the network gradient (Shift), checking the path with GJK
(Validate) and replanning broken segments using GJK-
RRT (Repair). Fastron is included when its scale is com-
parable to the other methods.
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lision, 2) all points as out of collision, and 3) Cθ̂ falls somewhere in the middle.
In the first case, CN-RRT will time out and proceed with its repair loop (Algo-
rithm 2 Lines 12-14) acting from prs to prg. In the second case, the algorithm
reduces to a lazy RRT and again falls back on the repair loop. In the last case,
Algorithm 1 cheaply finds a candidate path which is passed to Algorithm 2 for
verification and possible repair. The invariant for the while loop (Algorithm 2
Lines 2-10) is that all points in path P with indices [0, .., i−1] are certified valid
with GJK. Upon exit, the algorithm either returns because the whole path is
certified valid, or it enters the repair loop. The invariant of the repair loop is that
P[0, j] is certified valid and P[j,P.length] is invalid. Our modification of Fastron
repair performs RRT with geometry-based collision checking on P[j,P.length].
Therefore if the repair step of Line 13 is successful, it returns path P[0, j] and
P[j,P.length] is valid. Otherwise, probabilistically complete RRT found no path
between P[0,P.length], and we return that the query was infeasible on Line 15
in Algorithm 2. Thus, Algorithm 1 is probabilistically complete and returns a
valid path iff RRT with geometry-based collision checking finds a path.

Neural networks as heuristics: Separation distance is a Lipschitz con-
tinuous function when the robots and obstacles are rigid bodies [15]. CN-RRT
exemplifies several benefits of choosing a neural network as a function approx-
imation of a Lipschitz continuous function. First, neural networks running on
GPUs are exceptionally efficient at processing large batches of data, and conve-
niently motion planning is well-suited for batched processing [1]. Second, neural
networks are differentiable functions, and thus the decision making manifold
(contact surface defined with threshold d∗ selection) is “well-behaved” (Lips-
chitz continuous and monotonic), allowing a simple and effective algorithm con-
servativeness tuning. Last, the differentiability of the approximator comes in
handy for recommending incremental path improvements in the direction of its
gradient. Future work can look into approximating other complex-to-compute
Lipschitz continuous measures in motion planning and exploit the same benefits
(large data batching, decision-making manifold adaptation and gradient-based
improvements) to make motion planning more efficient.

Run-time trade-off analysis: The biggest downside of neural networks as
approximators is the one-time cost of data collection and training, which may
be justified if they are used in enough queries. We explore the trade-offs between
cost of training, collision checking speed up and number of collision checks, and
answer how many queries are needed to offset the cost of training. Training
and data collection can be, and in practice often are, done offline in a process
concurrent to robot operations, without blocking a robot. Thus, the number of
queries N needed to offset neural network overhead is N > tinvest

∆t + toffline
trrt

, ∆t =
trrt − tcnrrt, where tinvest, toffline are online and offline time investment and trrt,
tcnrrt are expected query completion time for RRT and CN-RRT.

The cost of motion planning with RRTs is trrt ∼ nchecks ∗ tcheck, where
nchecks = expected number of collision checks and tcheck = time for a single
geometric collision check. The time to solve one CN-RRT query is tcnrrt ∼
nchecks ∗ ffp ∗ fbatch ∗ tcheck + ffn ∗ tcheck ∗ fpathlen, where: ffp ≥ 1 is the in-
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crease factor in collision checks due to Cθ̂ mistakenly classifying non-collisions
as collisions (i.e. the cost of false positives); ffn ≥ 1 is the increase in collision
checks due to points being misclassified as free, triggering repair (i.e. the cost
of false negatives); fpathlen << 1 is the ratio of expected path length to to-
tal number of collision checks; fbatch is computation speed up due to batching,
0 < fbatch << 1, as a ratio between time to compute a single collision check
with a neural network (in a batch) and tcheck. After substituting the above and
arranging the terms, we arrive at:

N >
tinvest/tcheck

nchecks(1− ffpfbatch − ffnfpathlen)
+
toffline/tcheck

nchecks
(2)

The cost of training consists of time for data collection (‖D‖tcheck) and time for
training (ftraintcheck), where ‖D‖ = dataset size and ftrain > 1 is the training
time expressed as a multiple of tcheck. We consider two options: a) data collection
is online and training is offline (tinvest = ‖D‖tcheck is time for data collection,
and toffline = ftraintcheck is time for training), and b) both are online (toffline =
0, tinvest = (‖D‖+ ftrain)tcheck). See Fig. 1 in the supplementary material for an
illustration. Eq. (2) yields the following conclusions:

1. Precision/recall trade off: The classifier’s false negative rate is more impor-
tant, since fpathlen >> fbatch, justifying the adaptive thresholding in Alg. 1.
Here, fpathlen in 10−2 − 10−1 range (Table 1), while fbatch ∼ 10−3 (Fig. 3).

2. Training trade-off: There is a linear dependency between training time and
data collection. Thus, it is worthwhile to look for more sample-efficient and
faster training methods. In this paper, data collection requires about 30
minutes, and training about 60 minutes for a total of 90 minutes of overhead.

3. Motion planing complexity: CN-RRT fares better at complex queries that
require many collision checks, because N is inversely proportional to nchecks.

4. Knowing N allows us to tailor the training. For small N , we can use cheap
training and inaccurate models (increasing ffp and ffn); for large N , we
can invest in longer, more precise training. This suggests future research in
active sampling and interactive training. For our environments, we estimate
trrt, tcheck, ∆t, ‖D‖ from Table 1 and Fig. 4 and derive that in the the fully
online setting N is in the thousands, with the exceptions of Fetch, which
requires fewer than 25 queries, and Mobile, which provides no savings. In
the more realistic, offline training case, the required number of queries drops
to 5 for Fetch, and less than a thousand for the simpler environments. See
Supplemental materials for the full analysis.

Sampling vs. inference complexity: Interestingly, fbatch depends only on
DoFs and not on the geometric properties of workspace objects. The topological
complexities of the configuration space are addressed through the training set.
For a good separation distance approximator, it is imperative that the training
samples are from relevant and interesting regions. This suggests future work
applying different sampling heuristics to collect high-quality training sets. Here
we use uniform random sampling, but more appropriate sampling would likely
result in better models, or require fewer samples to achieve the same accuracy.
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Limitations: The two main features missing from CN-RRT are adaptation
to moving obstacles and adaptation to new workspace objects. CN-RRT can
easily be adapted for moving obstacles; the only change required is to let the
workspace configuration w change during motion planning in Algorithm 1. The
second is less straightforward. One avenue to address this is to use domain adap-
tation and learn to extend the network for additional degrees of freedom and per-
form additional training. Another approach is to use sensor input, which provides
up-to-date information on the environment, but may also be high-dimensional.

Future work: An interesting extension would be to implement a lifelong
planner that starts as a classic planner, then over its lifetime trains a collision
checking model with data collected during planning, or generalizes between dif-
ferent robots of similar geometries. A different direction could make the gradient
repair step in a specific direction to target specific robot joints.

7 Conclusions

We presented ClearanceNet, a neural network approximator for separation dis-
tance in extended configuration space, and CN-RRT, an RRT algorithm that
exploits efficient batch processing and neural network differentiability. CN-RRT
adds multiple edges at a time, adaptively relaxes clearance requirements for dif-
ficult queries, and uses ClearanceNet’s gradient for repairs. Evaluated on five
environments, CN-RRT produces shorter paths more quickly. On-robot exper-
iments demonstrate its applicability to real robots. Finally, we analyzed the
algorithm’s trade-offs and offered ideas for future work using neural networks as
approximators for Lipschitz continuous measures in motion planning.

8 Acknowledgements

The authors thank H.T.L. Chiang for helpful discussions, L. Downs and K.
Reymann for asset creation, and anonymous reviewers for thoughful comments.

References

1. N. M. Amato and L. K. Dale. Probabilistic roadmap methods are embarrassingly
parallel. In Proceedings 1999 IEEE International Conference on Robotics and Au-
tomation (Cat. No.99CH36288C), volume 1, pages 688–694 vol.1, May 1999.

2. J. Bialkowski, S. Karaman, and E. Frazzoli. Massively parallelizing the rrt and
the rrt*. In 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 3513–3518. IEEE, 2011.

3. J. Bialkowski, M. Otte, S. Karaman, and E. Frazzoli. Efficient collision checking in
sampling-based motion planning via safety certificates. The International Journal
of Robotics Research, 35(7):767–796, 2016.

4. L. Chiang, A. Faust, S. Sugaya, and L. Tapia. Fast swept volume estimation
with deep learning. Proc. Int. Workshop on Algorithmic Foundations of Robotics
(WAFR), 2018.

5. S. Choudhury, M. Bhardwaj, S. Arora, A. Kapoor, G. Ranade, S. Scherer, and
D. Dey. Data-driven planning via imitation learning. The International Journal
of Robotics Research, 37(13-14):1632–1672, 2018.



16 J. Chase Kew et al.

6. E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for
games, robotics and machine learning. http://pybullet.org, 2016–2019.

7. N. Das and M. Yip. Learning-based proxy collision detection for robot motion
planning applications. IEEE Transactions on Robotics, pages 1–19, 2020.

8. M. Elbanhawi and M. Simic. Sampling-based robot motion planning: A review.
IEEE Access, 2:56–77, 2014.

9. E. Gilbert, D. W. Johnson, and S. Keerthi. A fast procedure for computing the
distance between objects in three-dimensional space. Robotics and Automation,
IEEE Journal of, 4:193 – 203, 05 1988.

10. D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley. Google
vizier: A service for black-box optimization. In Proc. of ACM International Con-
ference on Knowledge Discovery and Data Mining, pages 1487–1495. ACM, 2017.

11. K. E. Hoff, A. Zaferakis, M. Lin, and D. Manocha. Fast and simple 2d geometric
proximity queries using graphics hardware. In Proceedings of the 2001 Symposium
on Interactive 3D Graphics, page 145–148, New York, NY, USA, 2001. Association
for Computing Machinery.

12. J. Huh and D. D. Lee. Learning high-dimensional mixture models for fast collision
detection in rapidly-exploring random trees. In Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), pages 63–69. IEEE, 2016.

13. B. Ichter, J. Harrison, and M. Pavone. Learning sampling distributions for robot
motion planning. In 2018 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 7087–7094. IEEE, 2018.

14. S. Kumar, S. Choudhary, and S. Srinivasa. Estimating configuration space belief
from collision checks for motion planning. CoRR, abs/1901.07646, 2019.

15. S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge,
U.K., 2006. Available at http://planning.cs.uiuc.edu/.

16. S. M. LaValle and J. James J. Kuffner. Randomized kinodynamic planning. The
International Journal of Robotics Research, 20(5):378–400, 2001.

17. M. C. Lin and J. F. Canny. A fast algorithm for incremental distance calculation.
In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 1008–1014, 1991.

18. J. Pan and D. Manocha. Fast probabilistic collision checking for sampling-based
motion planning using locality-sensitive hashing. The International Journal of
Robotics Research, 35(12):1477–1496, 2016.

19. J. Pan, X. Zhang, and D. Manocha. Efficient penetration depth approximation
using active learning. ACM Transactions on Graphics, 2013.

20. N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Information-theoretic regret
bounds for gaussian process optimization in the bandit setting. IEEE Transactions
on Information Theory, 58(5):3250–3265, May 2012.

21. T. N. Tran, J. Denny, and C. Ekenna. Predicting collision detection with a two-
layer neural network. 2019.

22. F. Xia, W. B. Shen, C. Li, P. Kasimbeg, M. Tchapmi, A. Toshev, R. Mart́ın-Mart́ın,
and S. Savarese. Interactive gibson: A benchmark for interactive navigation in
cluttered environments, 2020.

23. M. Yavari, K. Gupta, and M. Mehrandezh. Lazy steering rrt*: An optimal con-
strained kinodynamic neural network based planner with no in-exploration steer-
ing. In 2019 19th International Conference on Advanced Robotics (ICAR), pages
400–407, 2019.


