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Abstract

We introduce Predictive State Propensity Subclassification (PSPS), a novel estima-
tion method for undertaking causal inference from observational studies. PSPS combines
propensity and outcome models into one encompassing probabilistic framework, which
can be jointly estimated using maximum likelihood or Bayesian inference. The method-
ology applies to both discrete and continuous treatments and can estimate unit-level and
population-level average treatment effects. We give a detailed overview on the Tensor-
Flow implementation for likelihood optimization and show via large-scale simulations
that it outperforms several state of the art methods – both in terms of bias for average
treatment effects (ATEs) and root mean square error (RMSE) for unit-level treatment ef-
fects (UTEs). Finally we illustrate the methodology and algorithms on standard datasets
in the causal inference literature.

1 Introduction

In this work we are developing a novel framework for estimating the effect of an intervention

on a measurable outcome of interest. For example, medical researchers are interested in finding

out the effect on blood pressure of a new medication or advertisers would like to estimate the

effect an advertisement may have on the chance of purchasing the advertised product. In an

ideal world a randomized experiment would be run to help estimate these effects.

Randomization ensures balance in expectation on important confounders – variables that

effect both the treatment assignment and outcome metric – across the different treatment arms

allowing for unbiased estimates of the quantity of interest (the causal effect). Randomized

experiments, however, are not always feasible. Time, cost, legal, or ethical reasons are among
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many of the reasons that may prevent a randomized experiment from taking place. In that case

the decision maker has to rely on observational data – otherwise known as a natural experiment

– to try and estimate the causal effects.

The lack of randomization leading to covariate imbalances between the treatment arms in

natural experiments make identification and estimation of causal effects difficult. In a random-

ized experiment an experimenter may block or stratify on certain covariates in order to en-

sure they are balanced between different treatment assignments for a particular randomization

(Bernstein, 1927). Causal inference methods for natural experiments do not have the benefit

of randomization and use other means to help mitigate the imbalances. As such they are often

viewed as tools to help fix broken randomized experiments (Rubin, 2008).

The identification of causal effects and the assumptions needed to link potential outcomes

under different treatments to the observed data is well established and will not be examined

here in detail (Rubin, 2005). Although we too will make these assumptions the focus will be

on creating an estimator with good performance that adjusts for the observed imbalances on

the distribution of covariates between different levels of treatment. The idea being that the

estimator is trying to re-create balance between different treatment levels that did not occur

due to the lack of randomization.

Existing methods that aim to do this are often based on either matching methods (Stuart,

2010) or inverse propensity score weighting coupled with some outcome modeling. The latter

include entropy balancing (Hainmueller, 2012) and the double robust estimator (Chan et al.,

2010) among others. Cochran (1968) proposed subclassification, which addresses covariate

imbalance by creating strata of observations such that within each strata there is approximate

covariate balance between treated and control units.

In this work we introduce Predictive State Propensity Subclassification (PSPS), a novel

causal inference method leveraging recent advances in multi-task learning (Ruder, 2017). PSPS

follows the Rubin Causal Model (RCM) framework (Imbens and Rubin, 2010) and is in the

same vein as matching, inverse-propensity score weighting and traditional subclassification

that aim to fix the broken design of the experiment. The key contribution of our work is to

incorporate predictive state smoothing (PRESS) (Goerg, 2017, 2018) for the propensity model,

which yields a principled data-driven way to obtain the strata or blocks used in traditional

approaches based on pre-treatment covariates.

This paper is organized as follows: Section 2 introduces PSPS with details on parameter es-

timation via maximum likelihood and particular emphasis on the trade-off between optimizing

propensity and outcome models. Section 3 describes how to obtain treatment effect estimates

from a trained PSPS model. In Section 4 we show via simulations of standard datasets in the

literature (Kang and Schafer, 2007, Dehejia and Wahba, 1999, Radcliffe, 2007) that PSPS has
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excellent statistical properties, with practically zero bias and low variance compared to several

state-of-the-art causal inference methods. Section 5 summarizes the proposed methodology

and empirical findings.

2 Methodology

For the remainder of this work, let T be the treatment variable, Y the observed outcome, and

X is a collection of pre-treatment covariates. The dimensionality and variable type of T , Y and

X are left intentionally vague as the core underlying concepts we present hold for multivariate

outcomes and multi-level or continuous treatments.

Under a randomized-block experiment P(T | X) is known by construction and the proper-

ties of randomization meet the ignorable treatment assignment (Rosenbaum and Rubin, 1983)

allowing for the identification and estimation of causal effects. In a natural experiment the dis-

tribution of the treatment assignment is typically not known and as such the ignorable treatment

assignment is usually made on a leap of faith after adjusting for any observed imbalances.

To deal with potential self-selection bias and imbalances between treated and control units,

Rosenbaum and Rubin (1985) proposed subclassification on the propensity score, which strati-

fies units by a coarsened value of the fitted propensity scores ̂P(T | X), – usually accomplished

by binning; it is also often accompanied by a model-based adjustment to deal with any re-

maining imbalances. The idea being that observations within each bin have approximately the

same propensity score and thus are more robust to any misspecification in the outcome models

of each bin. The (predicted) outcome value for treated and controls can then be compared

within each strata to estimate the effect of treatment. As separate outcome models or adjust-

ments are made in each strata this approach typically relies less on extrapolation and modeling

assumptions.

One common problem with this approach is that there are little to no guidelines on how to

actually create the subclasses and most rely on heuristics. Common approaches are to a) bin

on quantiles of the propensity score, b) have equally sized bins, or c) try to at least make the

largest bin size moderately small. Imbens and Rubin (2015) propose creating bins following a

recursive algorithm which tests whether propensity score means are equal between treated and

control via a t-test. If the test statistic is above some pre-specified threshold then the strata is

split at the median and the process is repeated on the sub-strata. This continues until the test

statistic is not significant or the pre-specified minimum number of treated and controls are met.

The end result, however, is inevitably an ad-hoc approach.
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2.1 Predictive State Propensity Subclassification (PSPS)

PSPS follows the same experimental design as traditional subclassification with the exception

of how subclasses are created and how subsequent analyses take place. The core causal as-

sumptions such as ignorability of the treatment assignment are the same. We rely on these

established results (Imbens and Rubin, 2015) and move straight to the model on the observed

data bypassing the setup of potential outcomes and application of relevant assumptions that are

necessary in order to identify and estimate causal effects.

Statistically, treatment assignment and application are confounded. In essence all causal

methods aim to break this confounding between assignment and the application effect of treat-

ment on the outcome. In PSPS this dual role of treatment is made explicit by decomposing the

joint distribution

p(Y,T | X) = pθY (Y | T,X) · pθT (T | X)

= pθY (Y | Tapply,X) · pθT (Tassign | X),
(1)

where θY and θT parameterize the conditional distributions of Y and T , respectively. Eq. (1)

makes it explicit that T plays two roles: i) once as the output of a propensity model (treatment

assignment, Tassign), and ii) as an input to an outcome model (treatment application, Tapply).

Since assignment and application are confounded we modulate the model on the observed

outcome Y | Tapply,X with the fact that there was self-selection to treatment, Tassign | X. This

distinction also further helps to illustrate that at the most granular level we are truly interested

in

pθY (Yi | Tapply = ti,X = xi), (2)

that is the effect of applying treatment t on unit i with observed pre-treatment covariates xi.

2.2 Predictive States

PSPS puts the goal of constructing these subclasses front and center and estimates the optimal

stratification directly from the observed data. It relies on Predictive State Smoothing (PRESS)

(Goerg, 2017, 2018) to estimate minimal sufficient subclasses. PRESS models the conditional

predictive distribution p(T | X) as a mixture over J latent predictive states, {s1(X), . . . ,sJ(X)}
(Figure 1a). Each state represents an equivalence classes over distribution space such that

observations with the same conditional distribution are in the same predictive state. That is Xi1

and Xi2 have the same state s j if and only if

p(T | Xi1)≡ p(T | Xi2) =: p(T | s j). (3)
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Intermediate 
Layers

S1 S2 ... SJ

Tassign

X

(a) Propensity score model using predictive
state smoothing (PRESS) with J states.

X

S1 S2 ... SJ

Tassign Y

Features 
(X, Tapply)

Propensity 
NN

...Outcome 
NN 1

Outcome 
NN 2

Outcome 
NN J
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(b) PSPS as a multi-input multi-output neural network. Note that Tapply ≡
Tassign ≡ T but the dual role in (1) is made explit here.

Figure 1: Overview of the components of a PSPS model: propensity model, P(T | X), an
outcome model in a given state, P(Y |X,S = S j), and the full joint model P(Y,T |X), where X
are covariates, T is the treatment, and Y is the outcome.

The key insight here is that predictive states are exactly the strata {s1, . . . ,sJ} that would have

ideally been blocked on when assigning treatment: knowing the predictive state of observation

i – which is unobserved in a natural experiment –would be sufficient to knowing the propensity

score distribution of all observations in that state.

The states are also minimal sufficient statistics for prediction with the property that they
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make T conditionally independent of X given s j.1 For the propensity model this yields

p(T | X) =
J

∑
i=1

p(S = s j | X) · p(T | S = s j,X) (4)

=
J

∑
i=1

w j(X) · p(T | S = s j) (5)

where (5) follows from the construction of predictive states as T and X become conditionally

independent given s j.

Let w j(X) := p(S = s j | X) denote the probability that X belongs to state s j. We use the

weight-vector notation w = (w1, . . . ,wJ) as the representation of the state space mapping; by

definition ∑
J
j=1 w j = 1 and w j ≥ 0. It is easy to see that any two observations i1 and i2 – with

potentially different covariates Xi1 and Xi2 – that are mapped to the same predictive state with

same probabilities, i.e., wi1 = wi2 , necessarily have the same distribution of treatment since

p(Ti | Xi) =
J

∑
j=1

wi, j · p(Ti | s j). (6)

Put in other words, if i1 and i2 have different observed covariate values, xi1 and xi2 , but are in

the same state, s j, then they have the same propensity score:

P(Ti | X = xi1 ,S = s j) = P(Ti | S j) = P(Tj | X = xi2 ,S = s j). (7)

This is exactly the goal of the original subclassification method by Imbens and Rubin

(2015): group observations that have similar propensity scores.

Another way of thinking about it is that each state is a matched group where we are match-

ing on an optimal distance between units i1 and i2 with covariates Xi1 and Xi2 measured as the

distance between propensity scores P(Ti1 | Xi1) and P(Ti2 | Xi2).

After constructing the subclasses, PSPS follows the traditional subclassification philosophy

of fitting an outcome model in each subclass (Figure 1b). This has the effect of adjusting for

covariates if the PRESS propensity model is misspecified. Even when it is correctly specified,

more accurate outcome models can further reduce the variability in causal effect estimates

(Rosenbaum, 2002).

1We refer to the original PRESS papers for details.
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2.3 Combining Outcome Models Across Predictive States

To replicate the behavior of estimating the causal effect within each subclass we use the pre-

dictive states from the propensity model to factorize the conditional outcome distribution,

P(Y | X,T ). In particular, by averaging over predictive states the first term in (1) becomes

p(Yi | Ti,Xi) =
J

∑
j=1

p(S = s j | Xi,Ti)× p(Yi | Ti,Xi,S = s j) (8)

=
J

∑
j=1

p(Ti | S = s j)

p(Ti | Xi)
·P(S = s j | Xi)× p

θ
( j)
Y
(Yi | Ti,Xi), (9)

=
J

∑
j=1

(ρi, j ·wi, j)× p
θ
( j)
Y
(Yi | Ti,Xi) (10)

where the lift ratio ρi, j ∈ [0,∞) quantifies how much the state predictive distribution, p(Ti | s j),

differs from the point prediction of the propensity score for feature xi, p(Ti | Xi = xi), and

θ
( j)
Y parameterizes the outcome model in state j. Since ρi, j ·wi, j = P(S = s j |,Xi,Ti) is a

proper probability distribution for each i, the decomposition in (10) is in fact a mixture over

state-conditional outcome models, p(Y | X,T ), where model j contributes with weight vi, j :=

ρi, j ·wi, j to the final estimate for unit i. That means observation i is only partially contributing to

state j and also explains why, in general, outcome model parameter estimates will be different

for every state.2

Note that if each unit i is mapped exactly to one state with probability 1 (i.e., a deterministic

mapping), then also ρi, j = 1 for exactly one j and 0 otherwise. In that case,

p(Yi | Ti,Xi) =
J

∑
j=1

p
θ
( j)
Y
(Yi | Ti,Xi,S = s j)1(S = s j)Xi

, (11)

which is equivalent to the traditional procedure of binning propensity scores and fitting an

outcome model in each bin.

2.4 Parameter Estimation via Multi-Task Learning

Since PSPS is a fully probabilistic framework we can use maximum likelihood estimators

(MLE) or Bayesian methods for inference. For the scope of this work we focus on MLE and

leave Bayesian inference for future work.
2In general, each state could be equipped with a different model class, e.g., a Random Forest in state j1, a linear

model in state j2, and a deep net in j3. In practice, however, they are usually of the same model family – with
different (estimated) parameters per state.
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Decomposing the joint distribution in (1) makes parameter estimation much more tractable

as it allows us to specify propensity model and outcome models separately, yet combine them

in a joint log-likelihood function as

`(θY ,θT ;Y,X,T ) = `(θY ;Y,X,T )+ `(θT ;X,T ), (12)

where `(τ;Z) := log pτ(Z) is the log-likelihood of τ for data Z. This decomposition naturally

leads to framing parameter estimation using a multi-task learning problem (Ruder, 2017) with

a negative log-likelihood loss in a multi-output neural net:

L(Y,T,Ŷ (θY ,θT ), T̂ (θT )) = L(Y,Ŷ (θY ,θT ))+L(T, T̂ (θT )),

joint loss = outcome model loss+propensity model loss,
(13)

where T̂ (θT ) is the predicted probability of treatment (propensity score) and Ŷ (θY ,θT ) is the

predicted outcome. Therefore, the MLE can be obtained by solving

̂(θY ,θT )MLE = arg min
θY ,θT

L(Y,T,Ŷ (θY ,θT ), T̂ (θT )) . (14)

2.5 Separation of Design and Analysis

In observational studies, practitioners often face a choice between only fitting an outcome

model (P(Y | T,X)) or a two-step procedure of fitting a propensity model first (P(T | X)) and

an adjusted/weighted outcome model later. We now show that PSPS includes both approaches

as special cases.

First note that the log-likelihood decomposition in (12) can be seen as trying to find an

optimal outcome model, but with a penalty for bad propensity models. Taking this view, it is

natural to introduce a penalty parameter, λ ∈ [0,∞],

L(Y,Ŷ (θY ,θT ))+λ ·L(T, T̂ (θT )), (15)

which reduces to the original joint model in (13) when λ = 1. This has a nice interpretation in

that we are just fitting a single outcome model Y | T,X, with a penalty L(T, T̂ (θT )) that adjusts

for imbalances in the covariate distribution between treated and controls. This is also aligned

with recent work in the deep learning literature on representation learning for causal inference

(Johansson et al., 2016).

When λ = 0 the second term vanishes from (15) and the optimizer only focuses on out-

come models, weighted by a random mixture of predictive state weights from each state, which

– in expectation – is just a simple overall outcome model. On the other extreme, for λ →∞ op-
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timizing (15) approximates the standard two-step approach that separates design and analysis

stages of an experiment: since λ → ∞ the optimization first tries to obtain optimal propensity

score, and only then it will further tune the outcome model parameters to improve total loss (at

the given optimal propensity score loss).

2.6 Parameter Estimation

In this section we describe estimation for randomized or natural experiments with binary treat-

ment and a continuous univariate outcome. It is this model that we evaluate through various

simulation studies in Section 4.

For binary treatment the negative log-likelihood for observation i equals

L(Ti, T̂i(θT )) =−
[
Ti · log(T̂i(θT ))+(1−Ti) · log(1− T̂i(θT ))

]
. (16)

For univariate continuous outcomes a Normal log-likelihood, N(y | x,σ2
ε ), is a natural can-

didate leading to a weighted sum of outcome losses for each state:

L(Yi,Ŷi(θY );θT ,Xi) =− log(σε)+
1

2σ2
ε

J

∑
j=1

vi, j(Xi,θT ) · (Yi− Ŷi(θY, j))
2, (17)

where J is the number of propensity states, vi, j(Xi,θT ) is the probability of unit i belonging

to state j, Ŷi(θY ) is the outcome model prediction for Yi, and θY = σε ∪{θ j | j = 1, . . . ,J} are

all free parameters of the outcome model, with σε ∈ θY as the unknown standard deviation of

residual, Yi− Ŷi. The total loss across N observations equals

N

∑
i=1

L(Yi,Ŷi(θY );θT ,Xi)−
N

∑
i=1

[
Ti · log(T̂i(θT ;Xi))+(1−Ti) · log(1− T̂i(θT ;Xi))

]
. (18)

It is important to point out that the PRESS propensity model parameters, θT , do not only

enter the loss via the propensity model loss, but also affect the outcome loss through the weight-

ing over the J states, vi, j(Xi,θT ).

The estimation procedure to optimize (18) can be described as follows:

1. Train PRESS model T ∼ X with J predictive states.

2. Map observation i to their state with probability wi, j = p̂(s j | Xi); compute adjusted

weights by further conditioning on T , vi, j = p̂(s j | Xi,Ti).

3. In each state, s j, j = 1, . . . ,J fit an outcome model for Y | X,T , where observation i is

weighted by vi, j from 2. The outcome models could be a neural net, a regression, or even

Google 9



3 ESTIMATING CAUSAL EFFECTS

just the sample mean of the response; Y |X,T = 1 and Y |X,T = 0 can also be modeled

separately.

Note though that since the entire PSPS model can be expressed as a single computational

graph using standard neural network architectures, we can estimate all parameters and pre-

dictive states jointly rather than relying on the – statistically and computationally – inefficient

iterative procedure above.

3 Estimating Causal Effects

Once the predictive state mapping and all outcome models have been estimated, PSPS pro-

vides unit-level treatment effect (UTE) estimates as the aggregation of UTE within each state,

weighted by the size of each state relative to the entire sample:

∆̂i =
J

∑
j=1

v̂i, j · ∆̂i( j)

=
J

∑
j=1

P(s j | ti,xi; θ̂T ) ·
(
E(y | xi, ti = 1; θ̂ j)−E(y | xi, ti = 0; θ̂ j)

)
,

(19)

where ∆̂i( j) is the estimated treatment effect for unit i from outcome model j. The overall

UTE estimate is a weighted average, where the weights are determined by the probability of

unit i being in state j given treatment and pre-treatment covariates.

Estimates for sample, population and conditional treatment effects can be obtained by sim-

ply aggregating over the appropriate (sub-)sample of observations. For example,

∆̂ATE =
1
N

N

∑
i=1

∆̂i (20)

and

∆̂ATT =
1

∑
N
i=1 Ti

N

∑
i=1

Ti∆̂i . (21)

3.1 Deterministic Assignment to States

Without any restrictions on wi, j(X) the method described above is not exactly the same as

traditional subclassification, since observations are mapped to a state with a certain proba-

bility rather than deterministically. In that sense PSPS is a soft-thresholding generalization

of the classic subclassification approach – akin Gaussian mixture modeling being the soft-

thresholding generalization of K-means clustering.
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If practitioners want to obtain such a deterministic (hard-clustering) strata assignment, we

suggest to add an entropy based penalty regularization of the form

λe ·
N

∑
i=1

(
−

J

∑
j=1

wi, j log2 wi, j

)
= λe ·

N

∑
i=1

entropyi. (22)

Adding this penalty to the total loss in (18) allows us to control with how much certainty

observations are mapped to predictive states. For sufficiently large λe the penalty is minimized

for deterministic mappings, wi, j = 0 for all but one j for each i, i.e., it effectively assigns

observations to exactly one state with probability 1.

We want to emphasize though that without any prior knowledge of such a deterministic

mapping we suggest to keep the soft-thresholding property of PRESS, as from a pure likelihood

point of view it leads to better models. Similarly to how a Gaussian mixture model usually

gives better quality results compared to a hard-thresholding K-means solution. In practice a

small λe can be beneficial to make w j slightly more sparse.

3.2 Trimming

A nice consequence of using predictive states in the propensity model is that we can easily

assess balance within each predictive state between treated and control and then drop states

from the inference where balance is deemed inadequate. A simple suggestion is to ensure that

there are enough treated and control units in each state with respect to the complexity of the

outcome model being assumed. Other measures may include assessing balance of individual

covariates or their products via methods such as t-tests, etc.

3.3 TensorFlow Implementation

Modeling the propensity and outcome models jointly – rather than traditional two-step proce-

dures – has the benefit that the model can be expressed as a single computational graph in deep

learning frameworks. In particular, our implementation for MLE optimization and treatment

effect inference runs entirely within a TensorFlow graph computation (Abadi et al., 2016),

which in turn can be easily added into larger graphs that rely on causal inference as part of

their computation.

3.4 Model Complexity and Parameter Tuning

Recall that PSPS is based on a single PRESS model that approximates P(T |X) using J states;

PSPS then trains outcome models in each of the J states. There are no restrictions on the
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complexity of the function spaces to approximate P(Y | X,T ) and P(T | X), respectively. One

thus faces a trade-off to approximate p(T | X) well (increase J, larger model class) but at

the same time not let J grow too much as the full joint model otherwise contains too many

parameters (θ1, . . . ,θJ) to estimate consistently and efficiently with limited amount of data.

While only a model selection / tuning algorithm can find a value for J and guarantee rea-

sonable model complexity choices for the dataset at hand, we can leverage theory on doubly

robust methodology (Robins and Rotnitzky, 1995) to give a generally applicable recommen-

dation for this trade-off. Double robustness states that as long as at least one of the propensity

or the outcome model is correctly specified, the causal effects can be estimated consistently –

even if one of the models is not misspecified. From that point of view, it is clearly preferable

to get one propensity model right, rather than trying to specify all J outcome models correctly.

This aligns with our findings in simulations that a more complex propensity model (e.g., a

neural net with several layers before the predictive states) combined with simple (e.g., linear)

outcome models is sufficient to get unbiased, low-variance causal effect estimators.

In practice we found that shallow neural networks with standard activation functions, such

as selu or relu, work well for a wide range of datasets (see Goodfellow et al., 2016, for details

and further references).

If the sample size is large enough, we do recommend to use non-linear function spaces

for outcome models as well, as this can even further reduce the variance in treatment effect

estimates.

3.5 Uncertainty Estimates

We use standard bootstrap procedures (Efron and Tibshirani, 1986) to obtain empirical confi-

dence intervals for ∆i and ∆AT E in (19) and (20), respectively. See Figure 2b, 3b, and 4b for

interval width and coverage metrics.

4 Simulations

Here we compare PSPS (with J = 10) to several state of the art causal inference methods.

In particular we consider linear outcome models, doubly robust inverse propensity weighted

(DRIPW) models (Chan et al., 2010) – both linear and Random Forest (Breiman, 2001) ver-

sions –, entropy balancing (Hainmueller, 2012), and a neural net outcome model (PRESS from

(Goerg, 2017)).3

3For clarification, the PRESS neural net model is not related to the PRESS setup that PSPS uses for the propen-
sity model. It is simply an outcome neural net for P(Y | Z) with Z = (X,T ) as the covariates, which happens to
use the PRESS structure. The states from this outcome-only model are not related to the predictive states of the
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All of the above models – with the exception of entropy balancing – can not only estimate

the average treatment effect (ATE), but also unit-level treatment effects (UTE) (this is equiva-

lent to the conditional average treatment effect (CATE) in our setup). To compare the different

methods we conduct a simulation study and examine the distribution of the biases for ATE and

RMSE for UTE (where appropriate) across the different simulations for each of the different

methods.

The results are graphed in Figures 2, 3 and 4 where each point in the graph is a run from a

single simulated dataset. For estimating ATE we plot the distribution of biases for each of the

simulated datasets for each method for each simulation scenario. By plotting the full distribu-

tion we can not only compare the location of the biases but also their spread, where a method

with the same average or median bias but smaller variance is preferred. We chose to examine

the distribution of RMSE for estimating UTEs as it is a single measure summarizing the per-

formance for a single dataset. This was chosen in lieu of the average bias as by construction

the sample mean of the estimated UTEs for each dataset in the simulation is the estimated ATE

for that dataset (see equation 20) and so the average bias is equivalent to the bias for the ATE.

4.1 Kang & Schafer

Kang and Schafer (2007) construct a simulation based on one of their real case studies. Here

four features are drawn independently from a standard Normal, (z1,z2,z3,z4) ∼ N(0, I4), and

the outcome and true propensity scores are generated as

y = 210+27.4z1 +13.7z2 +13.7z3 +13.7z4 + ε (23)

and

π = expit(−z1 +0.5z2−0.25z3−0.1z4) (24)

respectively, where ε ∼ N(0,1). The true features (z1,z2,z3,z4) are then transformed as

x1 = exp(z1/2)

x2 = x2/(1+ exp(z1))+10

x3 = (z1z3/25+0.6)3

x4 = (z2 + z4 +20)2

(25)

such that causal methods can be evaluated against correctly and incorrectly specified models by

either using the original or transformed features. This can help demonstrate doubly robustness

propensity model in PSPS.
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but also can help test feature generation and exploration that some methods utilize such as

PSPS, PRESS and DRIPWRandomForest.

Figure 2a summarizes the results on bias & RMSE. In the “Original” (linear) case, Doubly-

RobustIPW, EntropyBalancing and PSPS are all unbiased; the linear outcome model is slightly

biased but has the best RMSE for UTE estimates alongside the PSPS model. It is not surprising

that both parametric linear causal models (DoublyRobustIPW and EntropyBalancing) perform

best in terms of bias as they can be considered best-case oracle scenarios. Interestingly, PSPS

is on par with the parametric & linear models even though it is a semi-parametric, non-linear

method. PSPS especially shows its strength compared to the misspecified linear models in the

“Transformed” case, where Entropy Balancing does significantly worse in terms of bias, and

DoublyRobustIPW has the worst UTE estimates amongst all models (EntropyBalancing does

not even provide UTE estimates). PSPS on the contrary is only slightly biased, but has the

smallest RMSE for UTE effects amongst all models. Given that in real world settings, cause

and effect are rarely – if ever – related in a linear way, this comes to show that PSPS is a great

choice for estimating causal effects in real world – non-linear – scenarios. Figure 2b shows

that only PSPS, EntropyBalancing, and DoublyRobustIPW have close to proper confidence

interval coverage with small widths. However, all methods except for DoublyRobustIPW are

completely off in terms of coverage for the “Transformed” case. Achieving correct coverage

in the non-linear case remains a task for future work.

4.2 Lunceford & Davidian

Lunceford and Davidian (2004) provide another simulation where the data still consists of

{(Xi,Zi,Ti,Yi), i= 1, · · · ,n}, but all of them are observed. Both Xi and Zi are three dimensional

vectors. The propensity score is only related to X – not Z – through

logit(P(Ti = 1)) = β0 +
d

∑
j=1

β jXi, j. (26)

The parameter β controls the association between X and T . We follow the original work and

use three settings for “no”, “moderate”, and “strong” association:

β
no = (0,0,0,0)T ,

β
moderate = (0,0.3,−0.3,0.3)T ,

β
strong = (0,0.6,−0.6,0.6)T .

(27)
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4.2 Lunceford & Davidian 4 SIMULATIONS

(a) ATE bias and CATE RMSE for linear and non-linear dataset.

(b) 95% bootstrap confidence interval coverage and interval width

Figure 2: Model comparison for Kang & Schafer dataset (Section 4.1)
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The response Y is generated according to

Yi = ν0 +
3

∑
j=1

ν jXi j +ν4Ti +
3

∑
j=1

ξ jZi j + εi, (28)

where εi ∼ N(0,1) and ν = (0,−1,1,−1,2)T . Similarly to β , ξ controls the association be-

tween Z and Y :

ξ
no = (0,0,0)T ,

ξ
moderate = (−0.5,0.5,0.5)T ,

ξ
strong = (−1,1,1)T .

(29)

The joint distribution of (Xi,Zi) is given by Xi3∼Bernoulli(0.2), then generate Zi3 as Bernoulli

with

P(Zi3 = 1 | Xi3) = 0.75 ·Xi3 +0.25 · (1−Xi3). (30)

Conditional on Xi3, (Xi1,Zi1,Xi2,Zi2) is then generated as multivariate normal N(aXi3 ,BXi3),

where a1 = (1,1,−1,−1)T ,a0 = (−1,−1,1,1)T and

B0 = B1 =


1 0.5 −0.5 −0.5

0.5 1 −0.5 −0.5

−0.5 −0.5 1 0.5

−0.5 −0.5 0.5 1

 . (31)

This data generation process yields a true ATE of 2.0. The challenge comes from the inter- and

intra-dependence of X and Z, and that Z is only involved in the outcome model.

In Figure 3 we see that PSPS, linear DRIPW, entropy balancing and DRIPW perform

equally well in all cases. As in the Kang & Schafer case this is quite compelling for PSPS

as it is on par with the parametric linear models, while being able to model non-linearities

as in a semi-parametric fashion. The neural net outcome model underestimates ATE in all

cases – most likely due to a regression to the mean property (shrinkage) of PRESS’ inherent

smoothing. The bias of a Random Forest outcome model increases for stronger associations.

Interestingly, both a linear and Random Forest DRIPW model cannot estimate unit-level effects

– compared to competing models that all have low RMSE.
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(a) ATE bias (normalized)

(b) 95% bootstrap confidence interval coverage and interval width

Figure 3: Model comparison for Lunceford & Davidian dataset (Section 4.2)
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4.3 Radcliffe & Surrey

This data generating process is taken from Radcliffe (2007) and Radcliffe and Surry (2011).

Here treatment is randomly assigned to each unit with probability p. For each unit, covariates

x1 and x2 are drawn as independent uniform random integers in U [0,B] for an upper bound

B (here: B = 99). Unobserved variables u1 and u2 are then drawn uniformly from U(0,xi),

i = 1,2 respectively. Unit-level treatment effects and outcome regressions are then set as

utei = u2,i · s+ c (32)

yi = u1,i +Ti ·utei, (33)

where Ti is the realization of a Bernoulli draw with probability p (here: p = 0.5). This specifi-

cation yields a true ATE of

AT E = s ·E(u2)+ c, where E(u2) = B/4. (34)

In simulations we explore whether the scaling factor s or shift c affect the ability to recover

the true treatment effect. As for Lunceford & Davidian we consider three scenarios: const =

{s = 0,c = 3}, scale = {s = 0.1,c = 0}, and both = {s = 0.1,c = 3}.
Figure 4 shows that – except for the outcome PRESS neural net – all models give unbiased

ATE estimates; and again, linear and Random Forest DRIPW cannot estimate unit-level effects

at all. Results do not vary much between “const”, “scale”, or “both” except for RandomForest-

DRIPW, which performs worse as the association grows stronger.
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(a) ATE bias (normalized)

(b) 95% bootstrap confidence interval coverage and interval width

Figure 4: Model comparison for Radcliffe & Surrey dataset (Section 4.3)
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4.4 Balancing the Outcome and Treatment Models

In Figure 5 we plot the R-squared of the underlying outcome model versus the achieved bias

of the ATE for each dataset (with the exception of EntropyBalancing which does not assume a

separate predictive outcome model). We see that those methods with a higher R-squared do not

necessarily achieve a better bias reduction for estimating the Average Treatment Effect. This

is demonstrated in Figure 5a where we see that PSPS often achieves zero bias with a lower

R-squared than other methods. It is also evident in Figure 5b where we see that even though

RandomForestDRIPW had the largest R-squared value it did not achieve lowest bias. These

results highlight the fact that in causal inference the objective is to estimate the treatment

effects and not to achieve greatest predictive accuracy on the outcome. They show that by

not just focusing on the predictive quality of an outcome model but by correcting imbalances

among the treatment groups a better estimate of the average treatment effect can be achieved.

(a) Kang & Schafer. For marginal bias distribution see Figure 2a.
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(b) Lunceford & Davidian. For marginal bias distribution see Figure 3a.

(c) Radcliffe & Surrey. For marginal bias distribution see Figure 4a.

Figure 5: R-squared of the Outcome Model vs. ATE Bias
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5 Discussion

We introduce predictive state propensity subclassification (PSPS), a novel method for causal

inference. It follows the general Rubin Causal Model (RCM) framework by adjusting natu-

ral experiments through propensity models following a subclassification approach. However,

rather than using ad-hoc procedures to bin observations by propensity score, PSPS estimates

outcome models, propensity models, and optimal strata simultaneously as part of a joint prob-

abilistic model. This in turn yields efficient parameter estimation procedures that can be easily

implemented in deep learning frameworks like TensorFlow. We show via simulations on stan-

dard causal inference datasets that PSPS is either unbiased or modestly biased for a wide range

of data generating processes, small confidence intervals width, yet with accurate nominal cov-

erage outperforming state-of-the-art causal inference algorithms.
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