
Privacy-Preserving Secure Cardinality and

Frequency Estimation

Craig Wright, Evgeny Skvortsov, Benjamin Kreuter, Yao Wang,
Raimundo Mirisola

Google LLC

May 29, 2020

Abstract

In this paper we introduce a new family of methods for cardinality and
frequency estimation. These methods combine aspects of HyperLogLog
(HLL) and Bloom filters in order to build a sketch that, like HLL, is
substantially more compact than a Bloom filter, but like a Bloom filter
maintains the ability to union sketches with a bucket-wise sum. Together
these properties enable the creation of a scalable secure multi-party com-
putation protocol that takes advantage of homomorphic encryption to
combine sketches across multiple untrusted parties. The protocol limits
the amount of information that participants learn to differentially private
estimates of the union of sketches and some partial information about the
Venn diagram of the per-sketch cardinalities.

1 Introduction

The cardinality estimation problem has a rich history in the computer science
literature and a vast number of methods have been invented to solve it [12].
On the other hand, the frequency problem, as we define it, does not have such
widespread recognition, one exception being in the advertising industry where
it is a critical metric for audience reporting.

The reach of an advertising campaign is defined as the number of unique users or
households, (henceforth just users), who have been exposed to that campaign.
Essentially reach is just cardinality, and frequency is the number of times that
a user has been exposed to an advertisement. There are two common ways of
exposing the frequency of a campaign or inventory: the frequency histogram
and k+ reach. Frequency histogram shows what fraction of users have each fre-
quency, while k+ reach is the cardinality of the set of users that have frequency
greater than or equal to k. Overall this is a relatively straightforward extension
of the cardinality problem, but estimating frequency for a range of values with
only a single pass over a dataset is important, and given the economic usefulness

1

of this metric, worthy of consideration. Often the maximum value required for
frequency is less than 15 as advertisers use this metric to help ensure people are
not overexposed to their advertisements.

A further complication to the reach and frequency use case is that we wish to
determine these metrics across O(100) publishers for frequencies of up to 10
or 15, where a publisher is defined as an entity that hosts content and shows
advertisements on behalf of advertisers. However, since publishers compete
with each other for advertising revenue and do not necessarily trust each other,
we cannot assume that data, even sketches, can be shared. More importantly,
commonly used sketches are known to leak information about their contents,
which is something that we believe must be avoided. Therefore it is important
that methods for reach and frequency measurement can preserve the privacy
of individuals that make up the content of the sketches and prevent publishers
from learning information about each other. This is congruent with many other
industries and indeed there has been a significant amount of research in privacy-
preserving cardinality estimation techniques, some of which we discuss in the
next section.

Another requirement of the multi-publisher use case is the need to define a com-
mon identifier space from which to create sketches, however we do not consider
this here. Rather we simply refer to a modeling technique previously developed
that is capable of probabilistically mapping disparate identifier spaces into a
common identifier space for the purpose of counting [17].

The rest of the document proceeds as follows. First we cover background mate-
rial related to secure multiple party computation, HyperLogLog, Bloom filters,
differential privacy, and ElGamal encryption. Then we describe Cascading Le-
gions, which is a geometrically distributed array of Bloom filters for estimating
cardinality and frequency. After that we describe Liquid Legions, which is a
continuous version of the Cascading Legions algorithm. Once both of these
algorithms are introduced we explore two mechanisms for applying differential
privacy to each of the sketches prior to using them to estimate multi-publisher
reach. Then we describe a multi-party computation protocol for combining
sketches of either the discrete or continuous type cryptographically. This pro-
tocol produces frequency estimates that are differentially private. We leave a
detailed empirical evaluation to a future version of this paper.

2 Background

2.1 Secure Multiparty Computation

Secure multiparty computation (MPC) protocols allow two or more parties to
compute a function over their collective inputs without revealing to any other
parties more about their inputs than the result of the computation. Early
research on feasibility demonstrated that MPC protocols exist for all polynomial
time functions under various trust models [11, 20]. More recently a growing

2

number of real-world applications using MPC protocols have been reported [3,
4, 14].

Broadly speaking there are two widely accepted security definitions for MPC
protocols. In the honest-but-curious model, it is assumed that each party faith-
fully executes each step of the protocol. A protocol is considered secure in
the honest-but-curious model if for any proper subset of the parties, nothing
more can be learned from an execution of the protocol than the parties could
compute given only their respective outputs. The second security model is the
malicious one, in which the parties may arbitrarily deviate from the protocol.
Security in the malicious model requires that, in addition to the properties of
the honest-but-curious model, every party is committed to its input, and that
the outputs of the protocol remain consistent with the inputs used by each
party [15]. These two models deal only with the standalone setting, but various
extensions have been considered for the case where the parties may engage in
multiple concurrent protocol sessions [5].

Note that MPC security definitions are only concerned with the mechanics of
how the function is computed. What the output might reveal about the par-
ties’ inputs is an orthogonal concern, which in some cases can be addressed by
also achieving the differential privacy property discussed below in section 2.4.
Similarly, an MPC protocol’s output is only as good as the inputs provided
by each party, and the security definitions leave open the possibility of parties
giving dishonest inputs to the computation. However, for this work the risk
of parties supplying dishonest inputs is considered low because participants in
the system will have to undergo accreditation and periodic audits to ensure
compliance.

2.2 Bloom Filters

A Bloom filter [2], is a well-known algorithm that can be used for cardinality
estimation, though it is not often used as such due to its relatively large memory
requirements. Nonetheless, the cardinality of a Bloom filter can be determined
by evaluating:

n ≈ −mk ln
(
1− x

m

)
where k is the number of hashes used in the filter, m is the number of bits of the
filter, x is the number of filled buckets, and n is the estimated cardinality. [19]
Allowing k to go to 1 and inverting the function, we can estimate the number
of active bits given the set size using the following formula:

X ≈ m
(
1− exp

(
− n
m

))
Note that it is possible to use the cardinality formula iteratively with a counting
Bloom filter to estimate frequency and that the protocol below can also be used
to aggregate standard counting Bloom filters.

3

2.3 HyperLogLog

HyperLogLog (HLL) [8,13] is a well-known and widely used cardinality estimator
that is characterized by low error rates, low variance, and low memory usage.
Moreover, the union of two HLLs is trivial to compute, which means that HLLs
are ideal for distributed counting applications.

In some related work at Google, an extension of HLL, called FreqLogLog (FLL)
that can estimate both cardinality and frequency was developed. To achieve this
FLLs store two additional values per register, a count and a fingerprint. When
the HLL register value is updated, the fingerprint of the item is stored and the
counter is reset to one. Then when another item assigned to that register has
the same number of leading zeroes as the previous item, the fingerprints are
compared. If they are the same the count is incremented. Otherwise if the new
fingerprint is larger than the old fingerprint the new fingerprint is stored and
the count is reset to 1. Otherwise the old fingerprint is larger and nothing is
modified. Additional material on FLLs will be published in the future.

Unfortunately, HLLs and thus FLLs, suffer from serious privacy issues, and
it has been shown [6] that under conditions where intermediate sketches are
required and the parameters for constructing the sketches are public, then any
sufficiently accurate cardinality estimator is not privacy preserving. We have
thus far been unable to construct a satisfactory MPC protocol for operating on
HLLs, the requirements for which are that it should be relatively efficient for a
large number of input sketches, hide publisher inputs, and provide differentially
private reach and frequency estimates that are reasonably accurate.

2.4 Differential Privacy

In this paper we consider how to apply differential privacy to sketches from
individual publishers prior to aggregation and directly to the estimates of car-
dinality and frequency after aggregation. However, before getting into some of
the details of our application, a few basic definitions will be reviewed.

Recall that differential privacy is a mathematical framework for data privacy
that involves quantifying the contribution of a single user to the input of some
computation and ensuring that the presence (or absence) of that user, with
some probability, can not be determined by inspecting the output. This process
necessarily involves a degree of randomness on the part of the computation, the
result of which is a noisy output.

We define the distance between two inputs, or databases D1 and D2 as the
number of records in which they differ, such that two databases are said to be
neighbors if they differ in exactly one record. That is, D1 could be made equal
to D2 by adding or subtracting exactly one record from either.

Moreover, a randomized computation M has epsilon differential privacy if for
any two neighboring databases x and y,

4

Pr (M(x) ∈ S) ≤ exp(ε)Pr(M(y) ∈ S)

where S is any subset in the range of M . Finally, we define the query sensi-
tivity to be the maximum value of |M(x)−M(y)| over all pairs of neighboring
databases (x, y) [7].

We define a database as the underlying set of ad impression logs belonging to one
or more publishers. In the case of reach either a user is present in the database or
not, which again is just the cardinality estimation problem, where the sensitivity
of the sketches is 1. As it relates to Bloom filters this area has been well explored
and indeed our work below applies BLoom-and-flIP (BLIP) [1], which is a well-
known technique for making Bloom filters differentially private. We also build
upon work by Stanojevic et al. [18] for estimating the cardinality of a union of
noisy Bloom filters.

While the work around differentially private Bloom filers is well-established, we
believe our work on the frequency problem to be new. Here each impression
in the database is captured by the sketch, and therefore the user with the
most impressions (i.e. the maximum frequency) defines the sensitivity of these
queries. Moreover, since the data structure used to capture this information is
not a bit array but an array of counts, it is not possible to apply the techniques
for differentially private Bloom filters referenced above. Instead since this is a
case of generalized discrete data, we turn to the work of Ghosh et al. [10], and
employ a two-tailed geometric distribution for generating differentially private
noise. That distribution is defined as follows:

Pr(X = δ) = 1−α
1+αα

|δ|

where X is a two-sided geometric random variable with domain δ ∈ (− inf, inf)
and parameter α, 0 < α < 1.

Given that a user may be exposed to an ad campaign easily 10 or more times, the
amount of noise that may be required is quite high. For example with ε = 1 and
a maximum frequency of 10 we have α = 0.0952, which implies a distribution
with some very long-tails. Indeed, some of our early investigations have shown
that adding noise directly to frequency sketches quickly destroys utility.

For this reason we have chosen to use MPC to compute a frequency histogram
from the raw sketches, which means that since any user is represented in any
histogram at most once, we maintain a query sensitivity of only 1 rather than
the maximum frequency. Moreover, the protocol is constructed so that noise
is injected into the histogram as it is constructed. Thus after combining the
sketches via MPC we are left with only a noisy frequency histogram, and none
of the raw sketches are ever decrypted.

2.5 ElGamal Encryption

ElGamal encryption is a simple public-key encryption scheme that can easily be
adapted to support threshold decryption. It can be viewed as an offline variant

5

of the Diffie-Hellman key exchange protocol. The basic scheme, for a group with
generator G and order q, is as follows:

• KeyGen: Choose a random sk ∈ Zq, and set pk = Gsk.

• Enc(pk,m): Choose a random R ∈ Zq and compute the ciphertext tuple
(GR,mpkR).

• Dec(sk, c): Compute (GR)sk and output m = (mpkR)/(GR)sk.

An N-of-N threshold version of this scheme can be constructed by simply multi-
plying all of the public keys together. A simple example of this threshold variant
is as follows: two parties generate keys GX and GY . If these public keys are
multiplied we get GX+Y , which can be used as a public key for encryption; the
corresponding secret key is X + Y . Notice, however, that for decryption the
original secret keys can be applied one-by-one (in any order), so no single party
needs to know the joint private key.

ElGamal encryption has an additional useful property: it supports a multiplica-
tion homomorphism. Given two ciphertexts (GR1 ,M1G

XR1), (GR2 ,M2G
XR2),

we can compute (GR1+R2 ,M1M2G
X(R1+R2)), which will decrypt to the prod-

uct of the two messages. Note that this is an additive homomorphism on the
discrete logarithms of the messages; in other words, we could have used this to
compute (GR1+R2 , GM1+M2GX(R1+R2)), which works for small message spaces
(small enough to compute discrete logarithms efficiently).

For our application we use the additive homomorphism in the exponent of the
messages as described above to combine counts. However, it is also necessary
to join the set of sketches on their register IDs, for which we use use deter-
ministic encryption (specifically, the Pohlig-Hellman cipher [16]), which allows
for equality testing without exposing the register ID itself. This involves each
worker choosing a secret exponent that is applied to all of the partially de-
crypted register IDs, and is equivalent to changing the generator G to some
random group element. We also apply a secure hash to the IDs before applying
the ElGamal cipher to ensure that the malleability of the ciphertext cannot be
abused to determine the register IDs after deterministic encryption has been
applied.

3 CascadingLegions Cardinality and Frequency
Estimator

The number of bits required for Bloom filter accuracy grows linearly with the
cardinality of the set that needs to be measured. We solve this by arranging reg-
isters (i.e. bits that record the presence of the item) of CascadingLegions (CL)
into a two-dimensional array. Columns of the array are called legions and rows
are called positions. Each item is thus mapped into a (legion, position) tuple,
which is the register. The probability distribution over the legions is geometric

6

and over the positions it is uniform, which means that essentially each legion
is a single hash Bloom filter. This scheme allows estimation of the cardinality
with a fixed relative error, and the required sketch size grows logarithmically
with the cardinality of the set that needs to be measured. Moreover, as with
Bloom filters, CL sketch registers can be combined via a bitwise-or operation.
This sketch can also be extended to support frequency estimation by making
each register a counter and combining sketches with a register-wise sum.

Algorithm 1 shows how a CL sketch is initialized. There are two parts, the
allocation of an array of registers (s) and the allocation of an array of same-key
aggregators (b). The same-key aggregator is akin to what was described above
for FreqLogLog. When an item is initially inserted into register (r), the same-
key aggregator stores a fingerprint of that item and s[r] is set to 1. Then the
next time an item is allocated to that register, its fingerprint is compared to the
existing fingerprint. If they are equal s[r] is incremented. If the new fingerprint
is larger than the existing one, then the existing one is replaced and s[r] is reset
to 1. Otherwise the new fingerprint is smaller and no modifications are made.
The process for updating the same-key aggregator is part of Algorithm 3 below,
which shows how items are inserted into a sketch.

Algorithm 1 Sketch Initialization

Input: Number of legions l, Number of positions m
Output: Sketch (s, b)

s← Array of size l ∗m
b← Array of size l ∗m
for si ∈ s do

si ← 0
bi ← SameKeyAggregator()

end for

Before proceeding with insertion we introduce the register allocation algorithm.
To allocate an item to a register it is first hashed. Then the legion is assigned
by determining the number of leading zeros in the hash value. Next, the first
non-zero bit is stripped and the remaining bits, modulo the number of positions,
determine the position. See Algorithm 2. Note that it is also straightforward
to allocate items to legions using a binomial distribution by using the sum of
active bits in the fingerprint as the way of determining the legion, in which case
similar adjustments to the estimation methods below are also required.

Insertion, which is shown in Algorithm 3, proceeds by allocating the item to a
register (i, j). The next step is to check the same-key aggregator as described
above and adjust the register values accordingly. The algorithm assumes the
use of counters, but in the cases where frequency is not desired, changing to a
bit-array is a straightforward modification.

7

Algorithm 2 Register allocation

Input: Fingerprint f , Num legions l, Num positions m
Output: CascadingLegions register (leg, pos)

leg ← 0
while f mod 2 ≡ 0 and leg < l − 1 do

leg ← leg + 1
f ← f/2

end while
f ← f/2
pos← f mod m
return (leg, pos)

Algorithm 3 Item insertion

Input: Item I, Sketch (s, b)
Output: Updated sketch (s, b)

f ← fingerprint(I)
(leg, pos)← allocateRegister(f)
r ← leg ∗m+ pos
if br ≡ null or br ≡ f then

sr ← sr + 1
br ← f

else if br < f then
sr ← 1
br ← f

end if

To estimate the cardinality of the set of items we first derive the expected
number of registers that are activated by a certain cardinality. Since each legion
is a uniform Bloom filter, then if nj items fell into legion j then it is expected to
have 1−exp(−nj/m) fraction of registers activated. And as legion ` is expected
to be hit with 2−(j+1) fraction of items we observe that the total number of
registers activated is equal to:

F (t) = m
∑̀
j=0

(1− exp(−n
m · 2(j+1)

)) (1)

Since F (t) is monotonic, we can use binary search to efficiently find the cardinal-
ity t given the observed number of activated registers. See algorithm 4.

8

Algorithm 4 Cardinality estimation from CascadingLegions sketch.

Input:CascadingLegions sketch s
Output:Estimated cardinality of the set stored in s

Define F (t) = Equation 1
c← Count non-zeros in s
t← BinarySearch for t = F (c)
return t

For frequency estimation the distribution of counts is extracted from the regis-
ters and the frequency distribution is estimated from the sample.

Finally, it is worth noting the resemblance of the CascadingLegions and PCSA
sketch structures [9], which are essentially transposes of one another, however
the CascadingLegions estimator is compatible with MPC and differentially pri-
vate noise, whereas PCSA to the best of our knowledge, is not.

4 Differentially Private Cardinality Estimation

Following the results of Allagan et al. [1], we can add ε-differential privacy to
CL sketches by flipping each bit in the sketch with probability p = 1

1+exp(ε) .

For example, given an epsilon of log(3) we should flip bits with probability 0.25,
where flipping a bit constitutes XORing its current value with 1.

In Algorithm 5 we show how given a list of sketches S, all of which had bits
flipped with probability p, that we can estimate the number of 0 registers in the
union by removing noise in aggregate.

We could apply this strategy to the whole sketch, but since the sketch is expected
to have many fully saturated and empty legions, the error of such estimation
would be large. Therefore we apply the de-noising to each legion separately
and use the legion that’s in the process of saturation, which we call the Golden
Legion, to do the estimate.

We use a heuristic such that the first legion with less than 60% of its registers
activated is declared to be the Golden Legion. The rationale for this is that if
too many registers are saturated then the number of newly activated registers
with increased cardinality changes slowly, which leads to a high level of noise
in the cardinality estimation. On the other hand, legions with too little sat-
uration are sampling too few items. Formally, the legion that maximizes the
expected number of incremental activated registers given the incremental car-
dinality should be used. We have observed empirically that the algorithm has
sufficient accuracy with the 60% threshold, but we plan to do formal analysis
of optimal selection of the set of Golden Legions in the future.

9

Algorithm 5 Estimating cardinality of the union, using GoldenLegion of noised
CascadingLegion sketches

Input: a list of CascadingLegions sketches S that had bits flipped with proba-
bility p
Output: estimated cardinality of the union of sets stored in S

InverseF ← InverseF function from Algorithm 4
procedure OneCountsVolumesVector(S, j)

v ← [0] ∗ len(S)
for i in range(m) do

let c = number of sketches in S that have 1 in i-th position of j-th
legion

let v[c] += 1
end for
return v

end procedure
procedure TransitionProbability(a, b)

This function is quite technical and is omitted here.
return probability of a vector with a ones to have b ones

after bits flipping with probability p
end procedure
procedure CorrectionMatrix:

N ← a matrix of transition probabilities, i.e.
N(a, b)← TransitionProbability(a, b)

return linear algebra inverse of N
end procedure
for g in range(l) do

v ← OneCountsVolumesVector(S, g)
estimated zero count← first coordinate of CorrectionMatrix∗v
if NOT j < l − 1 and estimated zero count < 0.6 ∗m then

return InverseF(m− estimated zero count)
end if

end for

10

5 Using continuous exponential distribution

The CascadingLegions sketch presented above is straightforward and achieves
estimations of cardinality with fixed relative error. However, it has a few prop-
erties that are aesthetically displeasing, which may lead to unnecessary friction
when the algorithm is applied. It is an arbitrary decision for legions to have a
geometrically decreasing allocation probability with parameter 1/2. This dis-
cretization also requires the formula F for the expected number of legions to
have a summation with l terms. Moreover, in the differentially private version,
this decision required an abrupt switch between the Golden Legion and adja-
cent legions. These drawbacks are all alleviated in the continuous version of the
algorithm that we call LiquidLegions and present in this section.

We can instead allocate items to registers using a geometric distribution with
a varying decay factor. To be able to use this idea we need to find a way to
do this allocation efficiently and to estimate the cardinality from the observed
number of activated registers.

Consider a bounded geometric distribution

P (i) = qi·(1−q)
1−qm , i ∈ {1, . . . ,m} .

To sample an element from it naively we would need to run a for-loop that po-
tentially goes up to m, however to perform this sampling efficiently and simplify
the analysis, we will instead be using an exponential distribution

P (x) = ae−ax

1−e−a

truncated to segment [0, 1], with a resolution m.

To allocate an item to a register we split the segment [0, 1] into m segments
of equal length, assuming that i-th segment corresponds to i-th register. Then
we sample a real valued number from the exponential distribution and allocate
the item to the register corresponding to the interval in which the real number
fell.

It is well known that to sample a number from a real valued distribution we
can sample a number from the segment [0, 1] uniformly and apply an inverse
CDF. The inverse CDF of the truncated exponential distribution above is equal
to:

F−1(u) = 1− log(ea + u(1− ea))/a

Thus we arrive at Algorithm 6 for allocating an item to the LiquidLegions
sketch.

Otherwise, the algorithms for creation and insertion are identical to those used
for CascadingLegions with the exception that we take the number of positions
per legion to be 1.

11

Algorithm 6 LiquidLegions register allocation

INPUT:item to allocate, number of positions m
OUTPUT:Zero-based index of LiquidLegions register

f ← fingerprint64bit(item)
u← f/264

x← 1− log(exp(a) + u ∗ (1− exp(a)))/a
return bx ∗mc

For cardinality estimation we need a function that maps cardinality to the ex-
pected number of registers activated r. This function is t = c/m → r/m, and
it can be obtained for an arbitrary distribution P via integration.

E(t) = 1−
∫ 1

0

e−P (x)tdx (2)

This formula can be obtained by writing the probability of the i-th register being
allocated by at least one item and going to the limit when m goes to infinity. At
Google we have initially observed this when developing methodology for efficient
Reach model application [17]. The integral for the exponential distribution can
be expressed via an exponential integral function as follows.

E(t) = 1−
∫ 1

0

e−P (x)tdx

= 1−
∫ 1

0

e
− ae−ax

1−e−a dx

= 1−
expi(− at

−1+ea) + expi(− aeat
−1+ea)

a

(3)

We thus arrive at the algorithm for cardinality estimation. It is again identical to
its CascadingLegions counterpart, except for the replacement of the cardinality
function.

Algorithm 7 Inverse cardinality estimation function from LiquidLegions sketch

procedure ExpectedLegionaries(t)
return 1−(−expi(−a∗t/(exp(a)−1))+expi(−a∗exp(a)∗t/(exp(a)−1)))/a

end procedure

To make the LiquidLegions sketch differentially private we then flip each bit with
probability p = 1

1+exp(ε) . The Golden Legion in this case will be a continuous

segment of registers. We have empirically observed that setting the length of
the Golden Legion to

m̃ = min(m,m · log(10))/a

12

leads to substantial improvement in accuracy over CascadingLegions. The intu-
ition of this length is that the last register of the Golden Legion is made to have
probability 10 times smaller than the first register, and thus we can find the
location before which almost all registers are saturated and after which almost
no registers are saturated. We leave it to future work to accurately find the
optimal length of the Golden Legion for the LiquidLegions algorithm.

Notice that for any x0 registers at positions {x0, . . . , x0 + m̃ − 1} constitute
another LiquidLegion with m̃ registers and exponent of ã = a·m̃

m .

We find the position of the Golden Legion by maximizing the probability that
the next item added to the set flips a register of the clean sketch inside the
Golden Legion. It is easy to see that for cardinality t this probability is equal
to

p(x0) ·
(
dEg(t̃, x0)

dt̃

∣∣∣t̃=t·p(x0)

)
,

where

p(x0) =
e

−x0·a
m − e

−(x0+m̃)·a
m

1− e−a

is the probability of an item falling between registers x0 and x0+m̃, while

Ẽ(t̃, x0) = 1−
expi(− ãt̃

−1+eã) + expi(− aeã t̃
−1+eã)

ã

is the expected number of registers activated in the Golden Legion starting at
position x0 by t̃ items.

Empirically we observed that such position can be approximated by picking
such position that about one half of the registers {x0, . . . , x0 +m̃} are activated.
Which is consistent with the heuristic used for CascadingLegions.

5.1 Any Distribution Bloom Filters

Note that the in the previous subsection we did not use any specific properties of
the exponential distribution. Thus all the reasoning can be applied analogously
to an arbitrary distribution. Specifically, given a continuous distribution over
segment [0, 1] with probability density function P (t) and cumulative distribution

function F (t) =
∫ t
0
P (x)dt we can define a Bloom filter as follows.

• Sample a register index from the range {0, 1, . . . ,m} using formula
bF−1(u)c, where u is a random uniform variable from segment [0, 1]

• Estimate cardinality given n registers activated using formula E−1(n),
where

E(t) = 1−
∫ 1

0

e−P (x)tdx

is the expectation of the number of registers activated for cardinality t.

13

We chose to use an exponential distribution, as it achieves a fixed relative er-
ror regardless of the cardinality. Uniform bloom filters achieve minimal error
(maximal accuracy) on the small cardinalities. One may choose a different dis-
tribution trading accuracy for certain cardinalities in favor of others.

If you use a distribution for which the integrals used in this section can be com-
puted analytically, then that closed form solution should be used. Otherwise
the distribution can be approximated with a piece-wise uniform distribution.
See [17] on details of computing such integrals. Note that the piece-wise uni-
form distributions correspond to Dirac Mixture activity density functions in the
terminology of [17].

In the extreme such an approximation can be done assuming each individual reg-
ister is a distinct uniform distribution. The disadvantage of this non-parametric
approach is the additional computation costs of computing the cardinality esti-
mation, as a repeated summation over all registers is required when executing
the binary search in Algorithm 4.

6 Differentially Private Frequency Estimation

The methods for differentially private sketches presented in the previous sec-
tion, while promising for cardinality estimation have proven to break down for
frequency estimation. Indeed, early experiments have shown that encoding fre-
quency directly into just a single sketch results in very poor estimates. Other
techniques that attempt to use multiple sketches, for example one for each fre-
quency, also appear unworkable. This is due to the fact that after unioning less
than ten noisy sketches, results tend to be both biased and have high variance.
Given these poor results and our interest in estimating frequencies of up to 10
across as many as 100 publishers, we turn to multiparty computation methods
as a solution.

The first subsection presents a cryptographic technique to replace the same-key
aggregator discussed above, and the following subsection describes a protocol
for computing differentially private reach and frequency estimates across an
arbitrary number of publishers.

6.1 Cryptographic Same-Key Aggregator

The cryptographic same-key aggregator relies on homomorphic encryption to
filter out registers to which more than one user contributed, thereby allowing us
to obtain a clean sample of user frequencies. For any given register we wish to
compute the sum of the counters where all keys are the same, and otherwise we
would like the sum to become a random number. To accomplish this we track a
flag such that when decrypted reveals nothing more than whether the counter
was destroyed by randomness.

14

We begin with several tuples that we wish to combine:

[(E(C1), E(K1)), E(C2), E(K2)), . . .].

The overall list can be thought of as the values for a single register where each tu-
ple is the value that is contributed by a particular publisher. Algorithm 8 shows
how to construct the encrypted sum of the counters and a flag, E(IsDestroyed),
indicating whether all of the keys are identical, which is only the case when
the flag is equal to its initial value. This value can be any well-known constant
value.

Algorithm 8 Homomorphic Same Key Aggregator

INPUT:tuples is a list of tuples of encrypted counter and encrypted key of the
form (E(C), E(K))
OUTPUT:(E[c], E[sumofcounters]) if all keys are the same; (E[R1], E[R2])
if any key is different where R1 and R2 are random numbers

E[IsDestroyed]← E[c]
E[CountF inal]← tuples[0][0]
E[K1] = tuples[0][1]
for E[C], E[K] in tuples[1 :] do

R← random()
Destructor ← E[R] ∗ (E[K]− E[K1])
E[IsDestroyed]← E[IsDestroyed] +Destructor
E[CountF inal]← E[CountF inal] + E[C] +Destructor

end for
return (E[IsDestroyed], E[CountF inal])

Note that when merging buckets across more than two sketches we will destroy
buckets when any single bucket disagrees on the key, but this should not be a
problem for higher order legions and is irrelevant for lower order legions. This is
different from the same key aggregator presented above, and loses some fidelity
when compared to the max function used in the unencrypted case, however we
have not found this to be a problem in practice.

6.2 MPC Protocol

As shown above, sketches with the same parameterization can be unioned by
summing them register-wise. We make use of this fact to build a lightweight
MPC protocol for computing a joint sketch, using the homomorphic properties
of ElGamal encryption as the core operation of our protocol. The high-level
approach is to first set up an N-of-N threshold key, and then have each of the
sketch providers encrypt their inputs using the public key. Each secret key
shareholder will then partially decrypt the joint sketch, apply a deterministic
cipher using the homomorphic properties, and forward the result to the next
shareholder. Once all decryption key shares have been used, the result will be a

15

deterministically encrypted sketch, from which the desired statistics can be com-
puted. We describe the protocol in detail below, including how a differentially
private output can be computed.

In our application we anticipate that the number of sketch providers will be
large. We also expect that most sketch providers will be too resource-constrained
to fully participate in the MPC protocol as peers. Therefore we opt for a semi-
honest worker model where a small number of independently operated workers
run the protocol and the majority of sketch providers send encrypted inputs to
one of the workers. This model has been deployed previously in other MPC
applications [3]. Among the workers the communication graph follows a ring
topology.

To begin each worker generates an ElGamal key pair (pki, ski) as described
above. Each worker then broadcasts its key to each of the other workers. After
this it is possible for each of the workers to form the combined public key and
then the sketch providers can fetch the key from any of the workers. This
combined public key will then be used by sketch providers to encrypt their
sketches.

Next each of the sketch providers do the following:

1. Retrieve the combined public key from the workers.

2. Create a sketch that includes bucket fingerprints.

3. Package the sketch into a sparse representation where each non-zero regis-
ter is represented as a three-tuple of (SHA256(register), value, fingerprint).

4. Apply ElGamal encryption to each three-tuple with the combined public
key.

5. Send the encrypted sparse sketch to the first worker.

Note that it’s possible to generalize to having sketch providers send their sketches
to a random worker and then having each worker shuffle their received sketches
before sending them on to a single worker that commences with the protocol.
To simplify our exposition we proceed assuming that all sketch providers send
sketches to a single worker. Also note that the simple description for publisher
sketch transmission above will leak each publisher’s cardinality to the receiving
worker. This issue is addressed below.

Once the first worker has received the encrypted sparse sketches of each pub-
lisher the protocol begins and consists of the following steps:

1. For all three-tuples from all publishers, subsequently referred to as just
three-tuples, the first worker shuffles the three-tuples and transfers them
to the next worker.

2. The next worker then performs the following steps:

(a) It uses its ElGamal key share to partially decrypt each register id.

16

(b) It applies a layer of deterministic encryption to each register id using
the ElGamal homomorphism.

(c) It shuffles the three-tuples.

(d) It passes the three-tuples to the next worker.

3. This process continues until the first worker once again receives the three-
tuples.

4. Then the first worker uses its key share to decrypt the three-tuples and
joins the tuples on the now deterministically encrypted register IDs, which
for each position results in the following structure

(Edet(r), [(E(c1), E(f1)), (E(c2), E(f2)), . . .])

where ci and fi are the count and the fingerprint of the i-th register with
the register id r.

5. The first worker then combines the encrypted (value, fingerprint) tuples
using the same-key aggregator method described above. This results in a
combined three-tuple (Edet(r), E(count), E(flag)) for each unique register
ID in the combined sketch.

6. From here the first worker initiates a second round of communication by
forwarding the combined three-tuple to the next worker.

7. The next worker then performs the following steps:

(a) It decrypts the count.

(b) It decrypts the flag.

(c) It shuffles the three-tuples.

8. This process continues until the first worker receives the set of combined
three-tuples.

9. From here it’s possible to obtain an estimate of cardinality. Technically
this can be done after step 4, but once we include the updates below for
making the protocol differentially private, it is necessary to place it here.

10. Next the workers collaborate to determine the frequency distribution:

(a) The first worker finishes decrypting the flag and discards all tuples
whose flag is not equal to the well-known same-key aggregator con-
stant.

(b) From here a frequency histogram can be constructed in order to es-
timate the true frequency distribution of the sketch.

Differential privacy can be added to the frequency histogram directly by gener-
ating a two-tailed geometric random variable for each histogram bin and adding
it to that bin. The query sensitivity is one, which must be the case because any

17

user is represented in the frequency histogram at most once. The downside of
adding noise here is that the workers learn the true histogram and could choose
to leak it.

An approach to adding noise that avoids this leakage involves distributing noise
generation as part of the MPC protocol, however to do this we need a procedure
to sample random variables whose sum will be a two-tailed geometric random
variable. The details of this construction are currently being published by a
colleague and will be properly cited in a subsequent version of this paper.

To add the noise the workers begin by agreeing on an arbitrary baseline, B, to be
added to each bucket. Steps 1 and 2 of the above protocol are extended to have
each worker draw max frequency appropriately parameterized Polya random
variables (X1, ..., Xi, ..., Xmax freq). These represent the number of noise values
to add to the computation for the values [1,max frequency] for the particular
worker. To achieve this each worker adds B − Xi tuples with value i to the
sketch. These newly added registers will have a random register ID that is
outside of the bounds of valid register IDs and a random fingerprint. This is
done in order to prevent the noise registers from interfering with the same-key
aggregator. Then in step 9, the first worker can subtract the value B ∗W from
each frequency histogram bucket, where W is the number of workers. This then
leaves us with the required noise distribution. It also means that cardinality can
only be estimated after the noise baseline has been subtracted. See algorithm 9
for a detailed look at how each worker adds noise to the computation.

One complication with this approach is that the maximum frequency that must
be reported is far lower than the theoretical maximum frequency, which means
that if the frequency histogram could be truncated that less noise would have
to be injected into the final result. To accomplish this we first determine the
maximum frequency, which is done by having each publisher cap their reported
frequency and by knowing the number of publishers participating in the union.
Then while assembling the frequency histogram the first worker sums the fre-
quency histogram buckets greater than or equal to the maximum reportable
frequency into a single bucket. After this each worker can report the amount
of noise it added in aggregate to all buckets greater than maximum reportable
frequency and these values can be subtracted from the final histogram bucket.
An unfortunate result of this entire operation is that the size of the sketch is in-
creased by a factor of the number of sketches being unioned. Finding a cheaper
way to drop registers that have counts greater than the maximum reportable
frequency is an open research topic.

One observation about the protocol described above is that it leaks the cardi-
nalities of individual sketch contributors. There are several possible ways to
solve this. One way is to use a pseudo-dense representation. In this case the
zero-valued registers are encrypted, but all are given single invalid well-known
register ID, which of course once encrypted, are indistinguishable from any valid
register value and each other. This effectively pads the input sketch, but us-
ing invalid register IDs prevents these dummy registers from interfering with

18

Algorithm 9 Worker Distributed Noise

noise tuples← []
for v ∈ [0,max frequency] do

x← drawPolyaRv()
for i ∈ range(B − x): do

noise tuples.append((random(), v, random()))
end for

end for

the same-key aggregator. One additional step is also required in the protocol,
which is to deterministically encrypt the well-known register value and filter it
out before estimation occurs. This can be done after the first round of communi-
cation once noise registers have been added by each worker. Computationally it
is desirable to use less padding, but it is an open question whether less padding
can adequately preserve privacy.

Another observation about the protocol is that after joining on register IDs
it is possible to determine the number of publishers that contributed to each
register. Unfortunately we have not been able to find a good way to hide this.
In particular it is not possible to send truly dense sketches since this will break
the same-key aggregator. This is an area of continued research for us, which
could include either modifications to the protocol or the development of other
methods for estimating the frequency histogram that do not require the same-
key aggregator.

7 Results and Conclusions

A subsequent version of this paper will present simulation results and compar-
isons to standard cardinality and frequency estimation techniques.

References
[1] Alaggan, M., Gambs, S., and Kermarrec, A.-M. Blip: Non-interactive differentially-

private similarity computation on bloom filters. In Stabilization, Safety, and Security
of Distributed Systems (Berlin, Heidelberg, 2012), A. W. Richa and C. Scheideler, Eds.,
Springer Berlin Heidelberg, pp. 202–216.

[2] Bloom, B. H. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13, 7 (July 1970), 422–426.

[3] Bogetoft, P., Christensen, D. L., Damg̊ard, I., Geisler, M., Jakobsen, T. P.,
Krøigaard, M., Nielsen, J. D., Nielsen, J. B., Nielsen, K., Pagter, J.,
Schwartzbach, M. I., and Toft, T. Secure Multiparty Computation Goes Live. In
Financial Cryptography (2009), pp. 325–343.

[4] Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel,
S., Ramage, D., Segal, A., and Seth, K. Practical secure aggregation for privacy-
preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 -

19

November 03, 2017 (2017), B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, Eds.,
ACM, pp. 1175–1191.

[5] Canetti, R. Universally composable security: A new paradigm for cryptographic pro-
tocols. Cryptology ePrint Archive, Report 2000/067, 2000. https://eprint.iacr.org/

2000/067.

[6] Desfontaines, D., Lochbihler, A., and Basin, D. Cardinality estimators do not pre-
serve privacy. Proceedings on Privacy Enhancing Technologies 2019, 2 (2019), 26 – 46.

[7] Dwork, C., and Roth, A. The algorithmic foundations of differential privacy. Founda-
tions and Trends® in Theoretical Computer Science 9, 3–4 (2014), 211–407.

[8] Flajolet, P., Fusy, É., Gandouet, O., and Meunier, F. HyperLogLog: the analysis
of a near-optimal cardinality estimation algorithm. In AofA: Analysis of Algorithms
(Juan les Pins, France, June 2007), P. Jacquet, Ed., vol. DMTCS Proceedings vol. AH,
2007 Conference on Analysis of Algorithms (AofA 07) of DMTCS Proceedings, Discrete
Mathematics and Theoretical Computer Science, pp. 137–156.

[9] Flajolet, P., and Martin, G. N. Probabilistic counting. In 24th Annual Symposium
on Foundations of Computer Science (sfcs 1983) (1983), pp. 76–82.

[10] Ghosh, A., Roughgarden, T., and Sundararajan, M. Universally utility-maximizing
privacy mechanisms. SIAM Journal on Computing 41 (12 2008).

[11] Goldreich, O., Micali, S., and Wigderson, A. How to play any mental game. In
Proceedings of the nineteenth annual ACM symposium on Theory of computing (New
York, NY, USA, 1987), STOC ’87, ACM, pp. 218–229.

[12] Harmouch, H., and Naumann, F. Cardinality estimation: An experimental survey.
Proc. VLDB Endow. 11, 4 (Dec. 2017), 499–512.

[13] Heule, S., Nunkesser, M., and Hall, A. Hyperloglog in practice: Algorithmic en-
gineering of a state of the art cardinality estimation algorithm. In Proceedings of the
16th International Conference on Extending Database Technology (New York, NY, USA,
2013), EDBT ’13, Association for Computing Machinery, p. 683–692.

[14] Ion, M., Kreuter, B., Nergiz, A. E., Patel, S., Raykova, M., Saxena, S., Seth, K.,
Shanahan, D., and Yung, M. On deploying secure computing commercially: Private
intersection-sum protocols and their business applications. Cryptology ePrint Archive,
Report 2019/723, 2019. https://eprint.iacr.org/2019/723.

[15] Lindell, Y. How to Simulate It – A Tutorial on the Simulation Proof Technique.
Springer International Publishing, Cham, 2017, pp. 277–346.

[16] Pohlig, S., and Hellman, M. An improved algorithm for computing logarithms over
gf (p) and its cryptographic significance (corresp.). IEEE Transactions on information
Theory 24, 1 (1978), 106–110.

[17] Skvortsov, E., and Koehler, J. Virtual people: Actionable reach modeling. Tech.
rep., 2019.

[18] Stanojevic, R., Nabeel, M., and Yu, T. Distributed cardinality estimation of set oper-
ations with differential privacy. In 2017 IEEE Symposium on Privacy-Aware Computing
(PAC) (2017), pp. 37–48.

[19] Swamidass, S. J., and Baldi, P. Mathematical correction for fingerprint similarity
measures to improve chemical retrieval. Journal of chemical information and modeling
47 (05 2007), 952–64.

[20] Yao, A. C. Protocols for secure computations. In Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science (Washington, DC, USA, 1982), SFCS
’82, IEEE Computer Society, pp. 160–164.

20

https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2019/723

	Introduction
	Background
	Secure Multiparty Computation
	Bloom Filters
	HyperLogLog
	Differential Privacy
	ElGamal Encryption

	CascadingLegions Cardinality and Frequency Estimator
	Differentially Private Cardinality Estimation
	Using continuous exponential distribution
	Any Distribution Bloom Filters

	Differentially Private Frequency Estimation
	Cryptographic Same-Key Aggregator
	MPC Protocol

	Results and Conclusions

