
Why Can’t Johnny Fix Vulnerabilities: A Usability Evaluation of Static Analysis
Tools for Security

Justin Smith
Lafayette College

smithjus@lafayette.edu

Lisa Nguyen Quang Do
Google

lisanqd@google.com

Emerson Murphy-Hill
Google

emersonm@google.com

Abstract
Static analysis tools can help prevent security incidents, but to
do so, they must enable developers to resolve the defects they
detect. Unfortunately, developers often struggle to interact
with the interfaces of these tools, leading to tool abandonment,
and consequently the proliferation of preventable vulnerabili-
ties. Simply put, the usability of static analysis tools is crucial.
The usable security community has successfully identified
and remedied usability issues in end user security applications,
like PGP and Tor browsers, by conducting usability evalua-
tions. Inspired by the success of these studies, we conducted
a heuristic walkthrough evaluation and user study focused on
four security-oriented static analysis tools. Through the lens
of these evaluations, we identify several issues that detract
from the usability of static analysis tools. The issues we iden-
tified range from workflows that do not support developers
to interface features that do not scale. We make these find-
ings actionable by outlining how our results can be used to
improve the state-of-the-art in static analysis tool interfaces.

1 Introduction

Security-oriented static analysis tools, like Spotbugs [12],
Checkmarx [2], and CodeSonar [3] enable developers to de-
tect issues early in the development process. Among several
types of code quality issues, developers rank security issues
as the highest priority for these tools to detect [22].

Evaluating the efficacy of these security-oriented static
analysis tools has been a popular topic for researchers [17,29,

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
USENIX Symposium on Usable Privacy and Security (SOUPS) 2020.
August 9–11, 2020, Virtual Conference.

51, 63]. However, prior work has largely overlooked the us-
ability of these tools, instead focusing on functional properties
such as the types of vulnerabilities tools detect (or fail to de-
tect), false alarm rates, and performance. Chess and McGraw
argue that usability is essential to actually make software
more secure: “Good static analysis tools must be easy to use,
even for non-security people. This means that their results
must be understandable to normal developers who might not
know much about security and that they educate their users
about good programming practice” [21].

Unfortunately, developers continue to make mistakes and
need help resolving security vulnerabilities due to the poor
usability of security tools [33]. Recently, Acar and colleagues
set forth a research agenda for remedying usability issues in
developer security tools, explaining that “Usable security for
developers has been a critically under-investigated area” [14].
As part of that research agenda, they call for usability eval-
uations of developer security tools. This approach has been
successfully applied in the adjacent field of end-user secu-
rity tools [25, 30, 31, 58, 60]. For instance, Whitten and Tygar
conducted cognitive walkthroughs to identify usability is-
sues in PGP, an end user security tool [60]. We use a similar
evaluation technique, namely heuristic walkthroughs [55] in
combination with a user study, to identify usability issues in
developers’ security-oriented static analysis tools.

We evaluated four security-oriented static analysis tools,
Find Security Bugs [13], RIPS [10], Flawfinder [7], and a
commercial tool. (Our license agreement with the tool vendor
stipulates that we anonymize the commercial tool; we refer
to it as CTool throughout the paper.) To our knowledge, this
study is the first to identify usability issues across multiple
developer security tools using heuristic walkthroughs. As a re-
sult of this study, we identified several usability issues, ranging
from missing affordances to interfaces that scale poorly. Each
of these usability issues represents an opportunity to improve
developers’ security tools. Alongside these usability issues,
we contribute our visions for how toolsmiths and security
researchers can improve the usability of static analysis tools
for security. Ultimately, by improving the usability of these

tools, we can enable developers to create secure software by
resolving vulnerabilities more accurately and efficiently. To
support replication, we make our study setting available in
a virtual machine [6], along with the study protocol [5] and
the detailed list of usability issues we identified for the four
tools [8].

The contributions of this paper are:
• A heuristic walkthrough and a user study evaluating the

usability of the interfaces of four static analysis tools.
• A categorization of usability issues that serves both as

a list of known pitfalls and as a list of opportunities to
improve existing tools.

• Design guidelines and discussions that illustrate the ac-
tionability of these issues.

• Specifications for a low-cost heuristic walkthrough ap-
proach that researchers and practitioners can use to im-
prove additional tools.

2 Related Work

We have organized the related work into two categories. First,
we will discuss relevant work concerning usability evalua-
tions of end user security tools. Next, we will discuss prior
evaluations of developer security tools.

2.1 Usability Testing End-User Security Tools
Several studies have evaluated the usability of end user secu-
rity tools. Through these evaluations, researchers identified
usability issues in various end user security tools, ranging
from encryption tools [49] to Tor browsers [25]. Collectively,
these studies have improved the usability of end user security
tools by contributing a better understanding of how users in-
teract with these tools. In their foundational work, Whitten
and Tygar studied the usability of PGP, using a combination of
a cognitive walkthrough and a laboratory user test to identify
aspects of the tool’s interface that failed to meet a usability
standard [60]. Their study revealed issues such as irreversible
actions and inconsistent terminology.

Since the Whitten and Tygar’s study, others have success-
fully applied similar approaches to study the usability of ad-
ditional end user tools. For instance, Good and Krekelberg
studied the usability of the Kazaa P2P file sharing system [31].
Their findings suggest that usability issues led to confusion
and privacy concerns for users. Similarly, Gerd tom Markotten
studied the usability of an identity management tool using a
heuristic evaluation and cognitive walkthrough [58]. Reynolds
and colleagues conducted two studies to understand multiple
aspects of YubiKey usability [52].

Clark and colleagues conducted cognitive walkthroughs
to examine the usability of four methods for deploying Tor
clients [25]. Based on their evaluation, they make recommen-
dations for facilitating the configuration of these systems.
Also studying the usability of Tor systems —through a user

study instead of a cognitive walkthrough—Gallagher and col-
leagues conducted a drawing study to elicit users’ understand-
ing, and misunderstandings, of the underlying system [30].

Like these previous studies, we are concerned with the
usability of security tools and strive to better understand us-
ability issues by conducting an empirical evaluation. We are
encouraged by these studies’ successful applications of eval-
uation techniques like cognitive walkthroughs and heuristic
evaluations to end user tools. In contrast to these prior studies,
we evaluate static analysis tools to identify usability issues in
the domain of developer security tools.

2.2 Evaluating Developer Security Tools

Several studies have conducted comparative evaluations of
developer security tools. For instance, Zitser and colleagues
evaluated five static analysis tools that detect buffer over-
flow vulnerabilities, comparing them based on their vulner-
ability detection and false alarm rates [63]. Comparing a
wide range of Android security tools, Reaves and colleagues
categorize tools according to the vulnerabilities they detect
and techniques they use [51]. Their results do also include
some usability experiences, such as how long it took evalu-
ators to configure the tool and whether output was human-
readable. Austin and colleagues compare four vulnerability
detection techniques, including static analysis, with respect to
the number of vulnerabilities found, false positive rates, and
technique efficiency [17]. They conclude that multiple tech-
niques should be combined to achieve the best performance.
Emanuelsson and Nilsson compare three static analysis tools,
Coverity Prevent, Klocwork K7, and PolySpace Verifier, in
an industrial setting [29].

There have been a limited number of studies that account
for usability in their evaluations of developer security tools.
Imtiaz and colleagues [38] study developer actions on Cover-
ity warnings to determine how it helps fix bugs. They show
that despite the quick fixes and the low complexity of the warn-
ings, developers still take a disproportionately large amount of
time to fix them. Assal and colleagues conducted a cognitive
walkthrough evaluation of Findbugs to determine how well
it helped developers determine the number of vulnerabilities
in a codebase [16]. Based on the usability issues identified in
this study, the authors created a tool, Cesar, designed to be
more usable. Gorski and colleagues conducted a participatory
design study of security warnings generated for cryptographic
APIs [32]. They find that design guidelines for end-user warn-
ings are insufficient in this context. Nguyen and colleagues
describe some usability issues that affect Android lint tools
to motivate the design of their tool, FixDroid, which uses
data flow analysis to help secure Android apps [44]. How-
ever, the descriptions of Lint’s usability issues are not based
on a formal evaluation. Smith and colleagues conducted a
user study which identified 17 categories of developers’ infor-
mation needs while using a security-oriented static analysis

tool [56]. Thomas and colleagues leveraged Smith and col-
leagues’ framework to evaluate the usability of ASIDE, an
interactive static analysis tool [57]. Our work differs from
these prior studies because we study the usability (rather than
the technical capability) of static analysis tools.

The studies closest to our own focus on the usage and us-
ability of different analysis tools. Sadowski and colleagues de-
scribe the Tricorder static analysis ecosystem at Google [54].
They also provide guiding principles based on their experi-
ence with Tricorder. Some of these guidelines emphasize the
importance of usable static analysis. For instance, they argue
that analysis tools should fix bugs, not just find them. Johnson
and colleagues [40] interview 20 developers on their experi-
ence with the static analysis tools they use at work. Christakis
and colleagues [23] survey the developers at Microsoft about
their usage of the tools, and report on live-site incidents to
complete the survey. Lewis and colleagues [43] interview
developers on two analysis tools at Google. Nguyen Quang
Do [45] surveys 87 developers and analyzes the logs of static
analysis tools at Software AG. Through those studies, the
authors find common usability issues such as workflow inte-
gration, waiting times, bad warning explainability, and bad
tool design. This is related to the findings of Imtiaz and col-
leagues. [37], who mined StackOverflow posts to discover that
filtering and verifying false positives are major concerns of
developers when using static analysis tools. Similarly, studies
of static analysis tools, such as Parfait [24], focus on scala-
bility and developer workflow and not on the user interface.
While those studies report on general usability issues, we
focus on tool design, and in particular, on the tool’s user inter-
face (which includes the Graphical User Interface, but also all
functionalities provided to the user, e.g., generating reports).

3 Methodology

In this section we first justify our choice of tools and then
describe the interfaces of those tools. Next, we describe the
study environment, including the projects that each of the
tools scanned. We also outline our approach toward conduct-
ing the heuristic walkthroughs and the user study. Finally, we
provide a replication package.

3.1 Tools

We chose to examine four security-oriented static analysis
tools, Find Security Bugs (FSB), RIPS, Flawfinder, and CTool.
In this section, we justify our choice of those tools and de-
scribe their interfaces, focusing particularly on how they
present information to developers.

We considered 61 candidate tools from lists of static analy-
sis tools compiled by organizations and reserchers [64–67].
To narrow the selection of tools to use for our evaluation, we
followed two criteria.

Table 1: Evaluated tool interface dimensions

Dimension FSB RIPS Flaw-
finder CTool

Remediation Information1 X X X X
Trace Navigation2 X X X
Quick Fixes3 X
Graphical Rep. of Traces4 X X
Command-Line Interface X X
IDE Integration X
Standalone Interface X X

1 Information that helps developers fix a vulnerability;
2 Affordances that allow developers to trace dataflow;
3 Features for applying patches automatically;
4 Graphical representations of dataflow traces;

The first one was availability. We only considered tools
we could access and run. This criteria limited our selection of
commercial tools, because their license agreements often ex-
plicitly forbid the publication of evaluations or comparisons.
(For example, Coverity’s license agreement states, “Customer
will not disclose to any third party any comparison of the re-
sults of operation of Synopsys’ Licensed Products with other
products.”1) Although most tool vendors we contacted were
interested in the study in principle, only one agreed to par-
ticipate in our study, under the condition that we anonymize
the tool by not using screenshots, names, trademarks, or other
distinguishing features in any publication. We thus refer to
this tool as CTool (for Commercial Tool).

Second, to increase the generalizability of our results, we
chose four tools that cover different aspects of the tool inter-
face design space. This primarily translates to selecting tools
with four different modes of interaction: command-line inter-
face, IDE integration, and two standalone tools. Table 1 sum-
marizes how FSB, RIPS, Flawfinder, and CTool vary along
some of the interface dimensions we considered. Note that
Table 1 reflects the interfaces of the versions of the tools
we chose to evaluate. For instance, FSB can also be run as
a command-line tool. The full table of tools and interface
dimensions is available online [11].

Though definitive usage statistics are hard to find for
these tools, it is fair to characterize all four of these tools
as widely-used. According statistics published by Source-
forge,2 FindBugs,3 RIPS, and Flawfinder have approximate
download counts of: 1,410,000, 143,000, and 19,000 respec-
tively. CTool has been adopted by government agencies and
hundreds of companies across different industries.

Due to the availability constraint, our sample only includes
one commercial tool. This introduces a potential threat that

1https://www.synopsys.com/company/legal/software-integrity/coverity-
product-license-agreement.html

2https://sourceforge.net/
3Download statistics are not available specifically for FSB, which is a

plugin for FindBugs

https://sourceforge.net/

Figure 1: The Graphical User Interface of Find Security Bugs.

our sample may not represent tools used most frequently in
the real-world. However, an empirical study examined the 20
most-popular Java projects on GitHub that use static analysis
as part of their continuous integration pipeline [62]. They
report that those projects commonly use open-source tools,
like CheckStyle, FindBugs, and PMD. Reportedly, none use
commercial analysis tools. Vassallo and colleagues’ findings
support this general trend in different contexts [59].

3.1.1 Find Security Bugs

Find Security Bugs (FSB) is an extension of the Find-
Bugs/SpotBugs [12] static analysis tool for Java pro-
grams [13]. FSB detects 125 types of security vulnerabili-
ties. We used the open-source Eclipse [4] plugin of the tool,
version 1.7.1.

Figure 1 depicts FSB’s GUI. The “Bug Explorer” pane on
the left lists the potential vulnerabilities found by the most
recent scan. Categories indicate the severity of the errors. In
each category, errors are grouped according to FSB’s certainty.
Finally, vulnerabilities are grouped by type (e.g., “Cipher with
no integrity”). When a user double clicks an error, the tool
highlights the relevant lines of code in the editor. Tooltips for
those icons provide information on all errors occurring at that
particular line. In addition, the “Bug info” pane provides more
information about the vulnerability that is being examined. It
contains a bug description, examples of similarly vulnerable
code and how to fix it, links to useful information on this
vulnerability, and tool-specific information. It also provides a
“Navigation” panel that contains a trace of the vulnerability.

FSB also allows users to customize how the list of results
is shown in the left view. Bug patterns and categories can
be toggled in and out, in which case, errors matching the
category will no longer show in the list. The different types
of vulnerabilities can also be reclassified in different severity
categories. It is also possible to exclude particular source files
from the scan, and to choose which analyses to run.

3.1.2 RIPS

RIPS [10] is a security static analysis tool for PHP code that
detects more than 80 vulnerabilities. It provides a standalone
web interface from which the user can configure and launch
scans, and consult the results. We used version 0.55 of RIPS.

Figure 2 presents the main screen of RIPS. RIPS summa-
rizes its results in the “Result” popup. Vulnerabilities are
grouped by files and ordered by vulnerability type. RIPS pro-
vides a short description of each vulnerability alongside the
problematic code. An icon on the left (not pictured) opens a
non-editable version of the file containing the error. Some-
times, a “help” icon and a “generate exploit” icon are also
shown on the left. When available, the help view explains
vulnerabilities in more detail and sometimes suggest fixes.
The generate exploit icon opens a view in which the user can
generate an example exploit for this vulnerability.

The top menu of the page gives access to additional views
that include a summary of the scan, a list of the program’s
functions, and a call graph illustrating which functions call
each other. The user can rearrange the layout of the graph.

3.1.3 Flawfinder

Flawfinder [7] is a command-line tool that detects uses of
dangerous functions in C/C++. We used version 2.0.4 of this
open-source tool.

Figure 3 depicts Flawfinder’s HTML report. The re-
port lists all files that were scanned and all the vulnerabil-
ities Flawfinder found, ordered by severity. For each error,
Flawfinder provides the location of the error, the severity
score, the vulnerability type, the dangerous function, a short
description of the vulnerability, a link to the CWE page of the
vulnerability, and a proposed fix—which is often the name
of a safe function that can be used instead of the vulnerable
one. The bottom of the report shows the analysis summary,
which contains statistical data about the scan, such as with

Figure 2: The Graphical User Interface of RIPS.

Figure 3: The Graphical User Interface of Flawfinder.

the number of files scanned, the number of errors reported,
etc. The tool either prints its report in the command-line or
produces reports in HTML or CSV format.

Flawfinder can be customized with command-line options
to exclude files, or run on patchfiles, i.e. the diffs between
two git commits. Errors can also be filtered out of the output
with regex patterns.

3.1.4 CTool

CTool is a commercial tool that is largely used in industry
to scan C, C++, and Java code and bytecode. It is able to
detect a large range of software defects, from simple bugs to
complex security vulnerabilities. The tool can be run from the

command line or through a full application. It also provides
different interfaces such as an IDE plugin, or a web page. The
creators of CTool provided us with the default web interface,
which we used to scan Apache POI version 3.9 [1].

The web interface of CTool has two main views, which we
detail on a high level to keep the tool’s anonymity. The first
view is an overview of the warnings found in the project. Each
warning is reported along with a priority score, the warning
type, the code location, and information on its severity. The
second view details the selected warning. It shows its details
in the source code, and sometimes suggests fixes. In this view,
the user can comment on the warning and manage it (e.g.,
edit its priority). The two main views of CTool are supported
by a large number of visuals, in particular diverse charts and
graphs and a complex navigation system. The GUI cannot
be customized, since it is a web page, but the diversity of the
visuals and the navigation capabilities cover a large number
of potential use cases developers would run into.

The tool provides the ability to export a report in xml, html,
or pdf format, and to customize the report. It also allows the
users to customize the analysis by choosing which checkers
to run, and set code annotations that guide the analysis at
runtime. Users can also annotate warnings and track scores
throughout the development lifecycle across different runs.

3.2 Analyzed Applications

To ensure the evaluators could exercise the tools in a variety
of situations, we chose subject applications that contained
multiple types of vulnerability patterns. Synthetic suites, like

the Juliet test suite [19], could have helped us ensure this
coverage. However, those hand-crafted tests do not represent
how vulnerabilities appear to developers in the wild.

We selected test suites from the “Applications” section of
the Software Assurance Reference Dataset [9], originating
from production code bases containing known vulnerabilities.

We selected three test suites: RIPS scanned WordPress ver-
sion 2.0 (PHP); FSB and CTool scanned Apache POI version
3.9 (Java); and Flawfinder scanned OpenSSL version 1.0.1e
(C). All three open-source tools and their associated applica-
tions were configured in a single virtual machine image for
evaluation. The virtual machine is available online [6].

3.3 Heuristic Walkthroughs

We first identified usability issues by using a heuristic
walkthrough [55], a two-phase method that combines the
strengths of two usability evaluation techniques: cognitive
walkthroughs [50] and heuristic evaluations [47]. In a cog-
nitive walkthrough, evaluators simulate the tasks that real
users would perform with a system. In a heuristic evaluation,
evaluators systematically examine a system following a set of
heuristics (as opposed to the task-driven approach in a cogni-
tive walkthrough). In a heuristic walkthrough, evaluators first
perform a cognitive walkthrough and then perform a heuristic
evaluation. Combining the strengths of these two techniques
in this way, heuristic walkthroughs have been shown to be
more thorough than cognitive walkthroughs and more valid
than heuristic evaluations on their own [55]. We chose this
evaluation technique because heuristic walkthrough evalu-
ations have successfully identified usability issues in other
domains, such as electronic health records systems [28], mu-
sic transcription tools [20], and lifelong learning systems [35].
Heuristic walkthroughs enable relatively few external evalua-
tors [15] to identify usability issues by providing them with
a structured process and requiring them to be double experts
(experts in the application domain and usability principles). In
compliance with these requirements, the two authors who con-
ducted the heuristic walkthroughs for all four tools were famil-
iar with security tools and usability principles. Our evaluation
draws on our experience building advanced static analysis
tools, conducting laboratory experiments, and graduate-level
courses in security, software design, and user experience. Not
including the time required to configure each tool, each eval-
uator spent approximately one workday with each tool. The
study protocol [5] and the detailed list of usability issues [8]
are available online.

3.3.1 Phase 1: Task-Oriented Evaluation

Phase 1 of a heuristic walkthrough resembles a cognitive
walkthrough, where evaluators approach a system with a list
of predefined tasks. The goals of this phase are for evaluators
to familiarize themselves with the system and complete tasks

similar to those actual users would try to complete. In Phase 1
of our study, we used the tools with a particular task in mind:
fixing as many errors as possible in a limited time. To do so,
we used the following guidelines:

• Choose a vulnerability to inspect first.
• Determine whether it is a true positive or a false positive.
• Propose a fix to the vulnerability.
• Assess the quality of the fix.
To help us think critically about each tool, we used Sears’

list of guiding questions [55]. These questions ask evalua-
tors to consider whether users will: know what to do next;
notice the correct controls; know how to use the controls;
see progress being made. During Phase 1, we recorded the
vulnerabilities we inspected, our impressions of the tool, and
any usability issues we encountered.

3.3.2 Phase 2: Free-Form Evaluation

Phase 2 of a heuristic walkthrough resembles a heuristic eval-
uation, where evaluators freely explore an entire system using
a set of usability heuristics to identify issues.

Among the many sets of available heuristics, we chose
to use Smith and colleagues’ 17 information needs [56] as
the basis for our heuristics. We made this choice because
the information needs are specific to security-oriented static
analysis tools, in contrast with Nielsen’s ten heuristics [46]
or the cognitive dimensions framework [34], which are both
more generic. These 17 information needs pertain specifically
to security-oriented static analysis tools and cover a range of
relevant topics such as: vulnerabilities, attacks, and fixes; code
and the application; individuals; and problem solving support.
Prior studies have shown that domain-specific heuristics can
be more effective [27, 39, 48] and these particular heuristics
have been used previously to evaluate a security static analysis
tool [57]. Table 4 summarizes these heuristics.

The two evaluators considered each of the 17 information
needs and recorded any usability issues that related to those
information needs. During this phase, the evaluators also
recorded additional usability issues that did not precisely fit
any of the provided heuristics.

Finally, because similar issues were identified across tools,
heuristic categories, and evaluators, we performed an informal
thematic analysis to group usability issues into themes and
subthemes. This analysis is only intended to reduce repetition
and clarify the presentation of the results. Section 4 is orga-
nized according to these themes; each subsection describes
one theme.

3.4 User Study
In the second part of our evaluation, we conducted a user study
on the four static analysis tools, with the goal of triangulating
the observations made in the heuristic evaluation. To this end,
we recruited 12 participants, who we refer to as P01–P12,

with various degrees of professional experience as software
developers. Participants answered questions on a Likert scale
from 1 (novice) to 5 (expert) about their experience. Table
3 reports on their responses. In summary, participants self-
reported familiarity with software security (median 3/5), Java
(median 4/5), C++ (median 2/5), and PHP (median 1/5).

We presented each participant with two of the four static
analysis tools, and asked them to fix warnings reported by the
tools, using the same code bases as for the heuristic evaluation.
Participants thought aloud while working with each tool for
approximately 20 minutes. Following each tool, we conducted
semi-structured post-task interviews. At the end of the session
we collected demographic data. During the study, we allowed
participants to ignore warnings they were uncomfortable with.
This choice helped to account for differences in programming
language skill. It also simulated real-world developers’ strong
propensity to selectively ignore most warnings [53, 61]. For
all tools, all participants managed to find warnings they were
comfortable with. In the post-task interviews, participants
described their experience with the tools, focusing on how the
tool helped them understand and fix warnings. Appendix C
lists the questions we used to guide this discussion.

To reduce fatigue, we only asked participants to interact
with two tools. Still, the mean session duration was 52 min-
utes, 58 seconds. To avoid learning effects between the two
tools, we applied a latin-square design [26]. We distributed the
tools evenly between participants—each tool was evaluated
by six participants.

3.4.1 Data Extraction

We captured screen, audio, and questionnaire responses. Af-
terwards, we asked two independent researchers to review the
audio recordings and extract the usability issues encountered
by the participants. This yielded a total of 562 individual us-
ability incidents. We kept the intersection of both reviewers’
reported incidents, thus reducing the number of total usability
incidents to 140. Two authors then classified the incidents into
distinct usability categories using the open card sort method-
ology [36]. The classification yielded a Cohen Kappa of κ =
0.93, indicating an almost perfect agreement [41]. Afterwards,
the two raters discussed and agreed on a final classification,
which we present in Section 4.

3.5 Replication Package

To support the replication and continuation of this work, we
have made our materials available, including the virtual ma-
chine image used during our heuristic evaluation. It contains
the static analysis tools (we exclude CTool for legal reasons)
and the code bases they were used on [6], the study proto-
col [5] and the list of usability issues we detail in the following
section [8].

The user study protocols and heuristic walkthrough guide
are also available in the Appendix.

Because usability evaluations of security tools are benefi-
cial beyond the scope of what was feasible during our study,
we also provide the heuristic evaluation guide we developed.
With this guide, a qualified evaluator with expertise in static
analysis tools and usability principles could extend our work
to any additional static analysis tool for security.

4 Results

Through our heuristic walkthrough evaluations and user study,
we identified 194 and 140 usability issues, respectively. We
do not intend for the presence or quantity of these issues to be
a statement about the overall quality of the tools we evaluated.
Instead, each of these issues represents a potential opportunity
for tools to be improved. For completeness, we provide the
full list of usability issues in the supplemental materials [8].

In each section, we will give a general description of the
usability issues relating to that theme, explain how instances
of those issues impact developers, and sketch how our insights
could be used by tool designers and researchers to improve
security-oriented static analysis tools. Next to the title of each
theme, we report the number of usability issues in parenthesis
(X) that we identified during the heuristic walkthrough phase.
This number simply characterizes our findings and should not
be interpreted as the ranking or severity of the issues in that
theme. Also note that these counts sum to slightly more than
194, because some usability issues span multiple themes.

To further organize the results, we have bolded short titles
that describe subthemes of issues within each theme. Next
to each subtheme title are the tools, in {braces}, that issues
in that subtheme apply to. For instance, “Immutable Code
{RIPS, Flawfinder, CTool}” denotes that Immutable Code
usability issues apply to RIPS, Flawfinder, and CTool, but not
FSB. In addition, Table 2 provides an overview of the themes
and subthemes.

4.1 Missing Affordances (39)
Beyond presenting static information about code defects, anal-
ysis tools include affordances for performing actions, such
as navigating code, organizing results, and applying fixes.
Issues in this category arose when tools failed to provide
affordances.

Managing Vulnerabilities {FSB, RIPS, Flawfinder}:
After scanning the source code, tools must report the identi-
fied vulnerabilities to developers. We found that FSB, RIPS,
and Flawfinder did not provide adequate affordances for help-
ing developers navigate and manage the list of reported vul-
nerabilities. Managing the list of reported vulnerabilities is
important, because it allows developers to quickly find the
vulnerabilities they would like to inspect and fix. For instance,
some developers might only be interested in a subset of the

Table 2: Usability issues, grouped by theme

Theme Subtheme

4.1 Missing Affordances
Managing Vulnerabilities
Applying Fixes

4.2 Missing or Buried Information
Vulnerability Prioritization
Fix Information

4.3 Scalability of Interface
Vulnerability Sorting
Overlapping Vulnerabilities
Scalable Visualizations

4.4 Inaccuracy of Analysis

4.5 Code Disconnect
Mismatched Examples
Immutable Code

4.6 Workflow Continuity
Tracking Progress
Batch Processing

code, or have expertise fixing particular types of vulnerabili-
ties. These three tools simply show a list of all vulnerabilities
they found; the options to manage the list of all potential
vulnerabilities were limited.

Flawfinder, for example can generate a single text file, csv,
or HTML page containing all the scan results. As Figure 3
depicts, in Flawfinder these “Final Results” are presented as
a list that cannot be reorganized or sorted. To find a vulner-
ability to inspect in detail, a developer must linearly search
through the full list of results. Consequently, it is difficult
for developers to quickly find and fix vulnerabilities they are
interested in.

User Study: Most issues in this category impacted
Flawfinder, where participants found the presentation of vul-
nerabilities (3) “irritating” (P09) and “poor” (P11). P01
and P12 were also confused by RIPS’s presentation of
vulnerabilities—P12 suggested that it would be easier to make
sense of the error messages if they were presented in a table.

Applying Fixes {FSB, RIPS, Flawfinder, CTool}: The
tools we evaluated did not fully support quick-fixes (semi-
automated code patches for common vulnerabilities) and did
not otherwise offer assistance applying changes. Instead, de-
velopers must manually fix the issues reported by these tools.
Only FSB included some quick-fixes, but this feature was
available for just three out of the 21 defect patterns present
in our test suite. Without these affordances for applying fixes,
developers must exert extra effort to resolve the defects pre-
sented by their tools.

User Study: We did not identify any participants who faced
these issues during our user study. One explanation for this
may be that issues in this category only become apparent after
working with a tool for an extended period of time, trying to
apply several fixes.

Discussion: Many of the affordances that we noted as miss-
ing from these tools do not represent revolutionary break-
throughs in user interface design. In fact, features like sorting

and filtering lists are commonplace in many applications. In-
tegrating these well-known affordances into static analysis
tools for security could be one low-cost way to improve the
usability of these tools. On the other hand, some affordances
will require more effort to incorporate into analysis tools. For
example, affording developers the ability to accurately ap-
ply automated patches remains an open research area. We
are encouraged by systems like FixBugs [18], which assists
developers in applying quick-fixes with FindBugs. Our re-
sults suggest that security-oriented static analysis tools would
benefit from advances in this area.

4.2 Missing or Buried Information (96)
Static analysis tools can provide developers with a wide range
of information about the defects they detect. For example, all
four tools we studied give information about the location and
defect-type of the vulnerabilities detected. The issues in this
theme correspond to instances where tools failed to provide in-
formation that would be used to resolve defects. In this theme
we discuss both missing information and buried information.
These two issues are intertwined, because buried information
that a developer never unearths is effectively missing.

Vulnerability Prioritization {FSB, RIPS, Flawfinder,
CTool}: Since tools can generate many alerts from a sin-
gle scan, before fixing a vulnerability, developers must decide
which alert to inspect first. To varying extents, all four tools
failed to provide information that, had the information been
present, would have helped developers decide which vulnera-
bilities to inspect. Many of these issues arose as we considered
the “Vulnerability Severity and Rank” heuristic during Phase
2. We noted several different types of missing information,
such as information about: which files contained clusters of
vulnerabilities (Flawfinder); a vulnerability’s severity (RIPS);
and how to interpret severity scales (FSB, Flawfinder CTool).
For example, unlike RIPS, FSB provides information about
the severity of each vulnerability, typically in the following
form:

However, even FSB does not provide information about how
to interpret this report. A developer might be left wondering
whether 18 is high or low, or what other confidence values are
possible. This issue may disproportionately affect users who
are using a tool for the first time and still learning to interpret
the scales. Nonetheless, lacking information about how to
prioritize vulnerabilities, developers might misallocate their
limited time by fixing low-severity vulnerabilities.

User Study: Participants in the user study encountered sim-
ilar issues to those we identified. P04 complained that RIPS
did not provide any severity or priority scores. Further, several
participants (P01, P04, P05, P08, and P10) were confused by
FSB and CTool’s scales.

Fix Information {FSB, RIPS, Flawfinder, CTool}: The
tools we evaluated also failed to provide some information
that developers would need to accurately fix vulnerabilities.
The types of missing information spanned many different
categories. To name a few, the tools were missing code ex-
amples, fix suggestions, definitions of unfamiliar terms, and
explanations of how vulnerabilities could be exploited. Fur-
thermore, some types of information that were present were
not detailed enough, such as when the tools provided terse
issue descriptions or when the tools listed possible fixes, but
did not articulate the tradeoffs between those solutions.

User Study: Nearly all participants experienced issues as a
result of insufficient fix information across all four tools. For
instance, participants described the information that was pro-
vided as, “not helpful and too complicated” (P05), “generic”
(P06), “unclear and very irritating” (P09), and “short” (P11).

Discussion: One solution to these types of issues would be
to simply add more information to tool notifications. This sim-
ple solution would ensure all the information needed to select
and fix vulnerabilities is present for the developer. However,
overstuffing notifications with too much information might
bury the most pertinent information at a given time. Instead,
the challenge for static analysis tools is to discern when de-
velopers need a particular piece of information and deliver
that information.

4.3 Scalability of Interface (11)

As static analysis tools scale to find more defects in larger
codebases, so too must their interfaces for presenting those
defects. The issues in this section arose when tools struggled
to present large amounts of information about vulnerabilities.
Here we distinguish between scalable interfaces and scalable
tools because we are interested in the usability of these tools’
interfaces, not their technical capabilities, which have already
been explored elsewhere [17, 51, 63]. Each of the four tools
we examined exhibited an interface scalability issue.

Vulnerability Sorting {Flawfinder}: As we previously
discussed in Section 4.1, Flawfinder does not provide affor-
dances for managing the list of vulnerabilities it detects. This
issue is magnified as Flawfinder scales to identify more vul-
nerabilities in a project. Lacking the ability to manage this list,
developers must resort to sub-optimal task selection strategies,
such as searching linearly through the list for a vulnerability
they would like to inspect.

User Study: Unsurprisingly, participants requested the abil-
ity to “sort the warnings by type, class, and significance.”—
P11

Overlapping Vulnerabilities {FSB, CTool}: Like the
other tools we evaluated, FSB and CTool can detect multiple
different patterns of vulnerabilities. When multiple vulnera-
bility patterns are detected on the same line, these tools do
not provide clear indications that multiple problems are occur-
ring in the same location. FSB, for example draws multiple

bug icons directly on top of each other, which appears just
the same as a single bug icon. In fact, Line 117 in Figure 1
contains multiple overlapping vulnerabilities, however this is
not perceptible without hovering over the bug icon (Figure 4).
CTool includes a feature for displaying overlapping vulnera-
bilities, but this feature is turned off by default and is located
in a somewhat hidden location.

Figure 4: Instance of Overlapping Vulnerabilities

Scaling up the number of defect detectors increases the
likelihood that these instances of overlap will occur. The
decision to display vulnerability markers in this way deprives
developers of information and forces FSB users to manually
inspect each line for duplicates. As a consequence, developers
might overlook severe vulnerabilities if their indicators are
hidden beneath minor vulnerabilities.

User Study: Participants did not explicitly mention this
issue during the user study, either because they did not inspect
any overlapping notifications, or because they didn’t notice
that they were overlapping.

Scalable Visualizations {RIPS}: Finally, the clearest scal-
ability issue we encountered was the call graph visualization
in RIPS. An example of this visualization is depicted in Fig-
ure 5. The graph is intended to show the flow of tainted data
from sources to sensitive sinks. However, when functions
along the flow are called from many sites, all the call sites
are added to the graph, resulting in a crowded visualization.
Furthermore, when these call sites span more than 50 files,
RIPS will not generate any visualization (Figure 6).

User Study: Only one participant (P04) experienced this
issue with RIPS during the study, suggesting that the graph
representation, “could be improved.”

Discussion: We propose two potential design changes that
would improve FSB and CTool’s overlapping vulnerabilities
issues. One possibility is that these tools could use the stack
metaphor to present the co-located vulnerabilities. Rather than
draw the icons directly on top of each other, the tool could
offset each subsequent bug by a few pixels. Alternatively, the
tools could annotate a single bug icon with the number of
vulnerabilities present on that line (e.g., 3).

RIPS provides a call graph visualization, whereas the two
open-source tools we evaluated provided no similar feature.
Such a feature could help visually oriented developers trace
vulnerabilities and reason about the flow of tainted data
through their system. However, if tools are to implement suc-
cessful graph visualizations to support developers, the scal-
ability of the visualization must be considered. Tool design-
ers could consider implementing features such as those in
Reacher [42], which enable developers to expand and high-
light only the relevant paths through the graph.

Figure 5: Scalability of RIPS’ function view.

Figure 6: RIPS call graph visualization for more than 50 files.

4.4 Inaccuracy of Analysis (17)
The issues in this category arose when we encountered im-
plementation bugs or unexpected behaviors. These issues do
not necessarily represent deep design flaws of FSB, RIPS,
Flawfinder, and CTool. However, these bugs do have an im-
pact on usability, because implementation bugs may affect
developers’ confidence in tools and their abilities to complete
tasks. We encountered several issues in this category spanning
all four tools; to illustrate the types of issues in this category,
here we describe in detail one of these issues affecting FSB.

One set of issues in this category affected FSB, specif-
ically its code navigation features. For instance, when we
used FSB’s quick-fix feature, the IDE unexpectedly navi-
gated away from the current file. This behavior was disori-
enting and could easily cause a developer to lose track of
the code they were trying to fix. We also observed issues
with FSB’s navigation pane in the bug info window. This
pane often either contained duplicated entries, was missing
entries, or contained entries that, when clicked, didn’t navi-
gate the user anywhere. Figure 7 depicts an instance of the
duplicated entries issue—both entries labeled “Sink method
java/io/File.<init>(Ljava/lang/String;)V” refer to the same
location in the code.

User Study: While using RIPS, participants (P01, P06,
P12) encountered a similar unexpected behavior. RIPS sum-
marizes results in a popup window (Figure 2). Frustratingly,
this popup window obscures other information about the re-
sults and cannot be closed.

Figure 7: Duplicate entries in FSB’s navigation feature

4.5 Code Disconnect (14)

Static analysis tools generate reports based on the code they
scan. However, we identified usability issues when the content
of those reports were disconnected from the source code.

Mismatched Examples {FSB, RIPS, Flawfinder,
CTool}: The first issue in this category relates to the code
examples used by all four tools. Many FSB notifications, for
instance, contain hard-coded examples of vulnerable code and
also examples of suggested code patches. Providing any code
example is certainly more helpful than giving no information.
Nonetheless, because the examples are hard-coded for each
pattern, the burden of figuring out how to adapt and apply that
example to the current context falls on the developer. Even if
the example is written in the same programming language,
this translation can be non-trivial, especially if the example is
drawn from a source using different libraries or frameworks.
Figure 8 depicts one instance where FSB’s examples are
mismatched with the vulnerable code. In this case, FSB’s
“solution” example (Figure 8b) differs substantially from the
original problematic code: the variable names are different;
the ciphers are initialized in different modes (encrypt vs.
decrypt); and the ciphers are using different encryption
algorithms (ECB vs. GCM).

(a) Vulnerable code

(b) FSB’s example “solution”

Figure 8: Instance of Mismatched Examples

User Study: Several participants encountered similar issues
with mismatched examples while using RIPS (P04, P06, P10,
P12). Figure 9 illustrates a common issue. Here RIPS sug-
gests that functions-compat.php contains an error on line 304,
however, this file is only 155 lines long. The mismatched line
numbers confused participants: “I am confused because the
line number doesn’t correspond to line in file.”—P10

Figure 9: RIPS line numbers mismatched with code.

Immutable Code {RIPS, Flawfinder, CTool}: We en-
countered usability issues while trying to apply changes.
RIPS, Flawfinder, and CTool’s web UI do not allow develop-
ers to directly modify the code they scan. These three tools
display a projects’ source code (CTool) or snippets (RIPS,
Flawfinder) containing potential vulnerabilities, but do not
enable developers to directly make those changes. Instead,
developers must view scan results in one window and edit the
code using a separate text editor. This disconnect forces devel-
opers to transfer their findings from where the tool presents
its results to where they need to make changes. Furthermore,
without being able to access the complete original source code
while using a static analysis tool, as is the case with RIPS and
Flawfinder, developers cannot use navigation tools to browse
code related to a vulnerability. This workflow is problematic,
because developers are burdened with manually maintaining
a mapping between the tool’s findings and the code editor.
For example, developers must mentally track details about
the vulnerability—like which line, module, and version it is
contained in—so that they can fix the appropriate line.

User Study: Several participants in the user study verified
this issue. They described switching between a code editor
and the static analysis tools as, “disorienting” (P10), “cum-
bersome” (P03), and “time-consuming” (P09).

Discussion: Presenting results within an IDE, like FSB
and other versions of CTool do, helps developers maintain
connections between a vulnerability and the code surrounding
that vulnerability. Developers also have the added benefit of
being able to use code navigation tools while inspecting a
vulnerability within this environment. However, our findings
reveal opportunities to establish deeper connections between
vulnerable code and how tools present those vulnerabilities to
developers. Considering the mismatched examples usability
issue, we imagine that analysis tools’ code examples could
be parameterized to use similar variable names and methods
to those in the scanned code. Achieving a closer alignment
between source code and examples will hopefully reduce
developers’ cognitive load while translating between the two,
freeing them up to concentrate on resolving the vulnerability.

4.6 Workflow Continuity (29)

Developers do not use static analysis tools in isolation. Tools
must synergize with other tasks in a developer’s workflow,
such as editing code, testing changes, and reviewing patches.
These issues arose when tools dictated workflows that were
not compatible with a developer’s natural way of working.

Tracking Progress {FSB, RIPS, Flawfinder}: Develop-
ers work with static analysis to reduce the number of vul-
nerabilities in their code, making code changes to progres-
sively resolve warnings. However, some tools present their
results in such a way that does not allow developers to track
their progress. Instead of reporting which vulnerabilities were
added and removed between scans, tools only provide snap-
shots of all the current vulnerabilities in a project at a given
time. This is only somewhat problematic when a developer
wants to consider the effects of their changes on a single vul-
nerability notification. For example, if the tool at first reports
450 vulnerabilities, and then reports 449 after the developer
applies a patch, then they can assume their patch fixed the
one vulnerability. However, when a developer or his/her team
makes sweeping changes to address many several vulnera-
bilities simultaneously, it becomes much more difficult to
determine which issues were added and removed between
scans based only on two snapshots.

User Study: P01 encountered this issue while using FSB;
they were unable to verify that their change fixed the bug,
“How do you check whether it has been fixed?” P12 echoed
P01’s frustration while using Flawfinder, “It would be nice if
the user interface could track which errors have been added
and removed. Now, I need to do all this work manually.”

Batch Processing {FSB, RIPS, Flawfinder, CTool}: Sec-
ondly, all four tools we evaluated dictate that developers ad-
dress notifications individually. This is problematic because
projects can contain many occurrences of the same vulnera-
bility patterns. For instance, CTool detected 30 occurrences
of a package protection vulnerability in POI. Serially fixing
these vulnerabilities is error-prone—developers must consis-
tently apply the right fix to each occurrence. Since tools are
technically capable of scanning many more files than develop-
ers could manually scan, they must also enable developers to
fix similar vulnerabilities in batches. Otherwise, the tool far
outpaces the developers, adding vulnerabilities to their work
queues much faster than they dismiss them.

User Study: P09 described this issue during the user study,
“If the bugs are similar, you don’t have option to fix them at
the same time... I would like to fix them all at once.”

Discussion: Static analysis tools for security can be im-
proved to better support developers’ workflows. By keeping
track of the vulnerabilities added and removed in each scan,
tools provide developers with scan diffs. These would help
developers identify changes that add many potential vulner-
abilities to the code as well as draw developers’ attention to
changes that remove vulnerabilities.

Tools could also support developers’ workflows by en-
abling them to process similar vulnerabilities in batches. One
way tools could accomplish this is by integrating with au-
tomated refactoring tools. Rather than fixing the individual
occurrences of an issue one at a time, developers could de-
scribe to the static analysis tool how they would like to fix the

issue, then the static analysis tool would apply a refactoring
to fix all occurrences of the issue.

5 Design Guidelines

To help make our findings more actionable for toolsmiths, we
provide a set of design guidelines:

• Communicate what and how to fix. Just locating po-
tential vulnerabilities is insufficient. Static analysis tools
should enable developers to diagnose (and, when it’s
technically feasible, automatically fix) the vulnerabilities
they detect. Tools should either provide semi-automated
quick-fixes or provide enough information for developers
to manually fix detected vulnerabilities. We are inspired
by FixBugs [18], which shows how human-in-the-loop
fixes can improve automation beyond what’s possible
with quick-fixes. For even more complex problems, bet-
ter explanations would be preferable. (Section 4.2)

• Situate alerts within editable code. Switching between
a code editor and a tool’s results page is disorienting
and time-consuming. Tools should present their alerts
where developers can directly modify problematic code.
(Section 4.5)

• Integrate with existing workflows. Tools should inte-
grate with developers’ workflows. After developers fix
potential vulnerabilities, tools should clearly communi-
cate which problems have been fixed and which new
problems have been introduced. (Section 4.6)

• Generate contextualized notifications. Tools should
infer contextual information about the code they scan
and use that contextual information to generate alerts and
examples that match the current context. (Section 4.5)
For instance, FSB’s example in Figure 8 could be contex-
tualized by parsing the vulnerable code and generating
an alert with matching variable names and cyphers.

6 Limitations

First, we only evaluated four tools. To mitigate this threat
to generalizability, we selected analysis tools that are each
representative of distinct interface features (Table 1) and we
included both a commercial tool and open-source tools. We
do not claim that all of the usability issues we identified nec-
essarily generalize to other analysis tools. For example, not
all tools use ambiguous vulnerability severity scales like FSB
does (Section 4.2). However, the themes and subthemes we re-
port (Table 2) are more generalizable—all but two subthemes
describe usability issues that span multiple tools. We expect
that these types of issues detract from the usability of other
tools. To further mitigate this threat, we also made our evalua-
tion guide available. If researchers or toolsmiths are interested
in understanding how these categories manifest in a particular
tool, our approach can easily be applied to additional tools.

We also acknowledge that the evaluators’ individual tool
usage styles might have influenced the issues they identified.
To bolster the ecological validity of our study, we selected real-
world applications and instructed evaluators to perform real-
istic tasks. Additionally, we triangulate our findings through
a user study with professional developers.

Another limitation of our study is that we examined datasets
containing known vulnerabilities (Section 3.2). This choice
guaranteed that scans would yield results, thus enabling us to
examine how each tool presented vulnerabilities. However,
static analysis users may face additional usability issues when
searching for unknown vulnerability patterns.

Our choice of usability evaluation technique also influences
our results. Compared with user studies, where qualified par-
ticipants might spend less than an hour using a tool, evalu-
ators conducting heuristic walkthroughs have more time to
find deeper issues. On the other hand, our choice of heuris-
tics might have influenced the usability issues we identi-
fied. We chose to use these heuristics because prior studies
have shown that domain-specific heuristics can be more ef-
fective [27, 39, 48]. To mitigate this issue, we performed a
user study with independent participants and independent re-
viewers, resulting in a classification that is different from the
heuristics we chose. The results of the user study confirm
most of our observations from the heuristic walkthrough. The
user study was performed in a closed setting, within time lim-
its. While it would be interesting to conduct a complementary
study over several months in an industry setting, we note that
the heuristic walkthrough already mitigates this limitation by
allowing evaluators to spend more time and investigate the
tools in depth. To avoid further external threats to validity, we
recruited participants with an industry background.

7 Conclusion

This paper responds to a call for usability evaluations of de-
veloper security tools. In this work, we conducted a heuristic
walkthrough and a user study to evaluate the usability of four
static analysis tools: Find Security Bugs, RIPS, Flawfinder,
and CTool. To enable similar evaluations to be conducted even
more broadly, we have made our heuristics, study protocols
and study setting available in a replication package.

This work reveals usability issues that detract from all four
of the tools we examined. We discuss potential mitigations for
those types of issues. To help toolsmiths design more usable
static analysis tools for security, we present a set of design rec-
ommendations. We hope that our work enables practitioners
to improve the usability of their tools and inspires researchers
to evaluate the usability of developers’ security tools.

Acknowledgments

We would like to thank our study participants for their time.
We would also like to thank Maria Riaz, Caitlin Sadowski,
Sarah Heckman, William Enck, Amy Ko, Adam Meade, and
Kathryn Stolee for their feedback.

References

[1] Apache poi source code. https://poi.apache.org/
subversion.html, 2018.

[2] Checkmarx home page. https://www.checkmarx.
com/, 2018.

[3] Codesonar home page. https://www.grammatech.
com/products/codesonar, 2018.

[4] Eclipse home page. http://www.eclipse.org/,
2018.

[5] Evaluation guide. https://figshare.com/s/
087f103905189f1a7ca0, 2018.

[6] Evaluation vm. https://figshare.com/s/
bf91e24a3df3c4fff77c, 2018.

[7] Flawfinder home page. https://www.dwheeler.com/
flawfinder/, 2018.

[8] List of issues. https://figshare.com/s/
71d97832ae3b04e0ff1a, 2018.

[9] Nist test suites. https://samate.nist.gov/SRD/
testsuite.php, 2018.

[10] Rips home page. http://rips-scanner.
sourceforge.net/, 2018.

[11] Security tool interface dimensions. https://
figshare.com/s/5255acbe659d3097d8a2, 2018.

[12] Spotbugs home page. https://spotbugs.github.
io/, 2018.

[13] Find security bugs home page. http:
//find-sec-bugs.github.io/, 2019.

[14] Yasemin Acar, Sascha Fahl, and Michelle L. Mazurek.
You are not your developer, either: A research agenda for
usable security and privacy research beyond end users.
In Cybersecurity Development (SecDev), IEEE, pages
3–8. IEEE, 2016.

[15] Yasemin Acar, Christian Stransky, Dominik Wermke,
Michelle L. Mazurek, and Sascha Fahl. Security devel-
oper studies with github users: Exploring a convenience
sample. In Thirteenth Symposium on Usable Privacy
and Security (SOUPS 2017), pages 81–95, Santa Clara,
CA, 2017. USENIX Association.

[16] Hala Assal, Sonia Chiasson, and Robert Biddle. Cesar:
Visual representation of source code vulnerabilities. In
Visualization for Cyber Security (VizSec), 2016 IEEE
Symposium on, pages 1–8. IEEE, 2016.

[17] Andrew Austin, Casper Holmgreen, and Laurie
Williams. A comparison of the efficiency and effective-
ness of vulnerability discovery techniques. Information
and Software Technology, 55(7):1279–1288, 2013.

[18] T. Barik, Y. Song, B. Johnson, and E. Murphy-Hill.
From quick fixes to slow fixes: Reimagining static anal-
ysis resolutions to enable design space exploration. In
2016 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pages 211–221, Oct
2016.

[19] T. Boland and P. E. Black. Juliet 1.1 c/c++ and java test
suite. Computer, 45(10):88–90, Oct 2012.

[20] Manuel Burghardt and Sebastian Spanner. Allegro:
User-centered design of a tool for the crowdsourced tran-
scription of handwritten music scores. In Proceedings of
the 2Nd International Conference on Digital Access to
Textual Cultural Heritage, DATeCH2017, pages 15–20,
New York, NY, USA, 2017. ACM.

[21] Brian Chess and Gary McGraw. Static analysis for secu-
rity. IEEE Security and Privacy, 2(6):76–79, November
2004.

[22] Maria Christakis and Christian Bird. What developers
want and need from program analysis: An empirical
study. In Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering,
ASE 2016, pages 332–343, New York, NY, USA, 2016.
ACM.

[23] Maria Christakis and Christian Bird. What developers
want and need from program analysis: An empirical
study. In Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering,
ASE 2016, pages 332–343, New York, NY, USA, 2016.
ACM.

[24] Cristina Cifuentes, Nathan Keynes, Lian Li, Nathan
Hawes, Manuel Valdiviezo, Andrew Browne, Jacob Zim-
mermann, Andrew Craik, Douglas Teoh, and Christian
Hoermann. Static deep error checking in large sys-
tem applications using parfait. In Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering,
ESEC/FSE ’11, pages 432–435, New York, NY, USA,
2011. ACM.

[25] Jeremy Clark, Paul C. Van Oorschot, and Carlisle
Adams. Usability of anonymous web browsing: an

https://poi.apache.org/subversion.html
https://poi.apache.org/subversion.html
https://www.checkmarx.com/
https://www.checkmarx.com/
https://www.grammatech.com/products/codesonar
https://www.grammatech.com/products/codesonar
http://www.eclipse.org/
https://figshare.com/s/087f103905189f1a7ca0
https://figshare.com/s/087f103905189f1a7ca0
https://figshare.com/s/bf91e24a3df3c4fff77c
https://figshare.com/s/bf91e24a3df3c4fff77c
https://www.dwheeler.com/flawfinder/
https://www.dwheeler.com/flawfinder/
https://figshare.com/s/71d97832ae3b04e0ff1a
https://figshare.com/s/71d97832ae3b04e0ff1a
https://samate.nist.gov/SRD/testsuite.php
https://samate.nist.gov/SRD/testsuite.php
http://rips-scanner.sourceforge.net/
http://rips-scanner.sourceforge.net/
https://figshare.com/s/5255acbe659d3097d8a2
https://figshare.com/s/5255acbe659d3097d8a2
https://spotbugs.github.io/
https://spotbugs.github.io/
http://find-sec-bugs.github.io/
http://find-sec-bugs.github.io/

examination of tor interfaces and deployability. In Pro-
ceedings of the 3rd symposium on Usable privacy and
security, pages 41–51. ACM, 2007.

[26] Yadolah Dodge. Latin Square Designs, pages 297–297.
Springer New York, New York, NY, 2008.

[27] Dean Julian Dykstra. A Comparison of Heuristic Evalu-
ation and Usability Testing: The Efficacy of a Domain-
Specific Heuristic Checklist. A & M University, Texas,
1993.

[28] Paula J. Edwards, Kevin P. Moloney, Julie A. Jacko, and
François Sainfort. Evaluating usability of a commercial
electronic health record: A case study. International
Journal of Human-Computer Studies, 66(10):718 – 728,
2008.

[29] Pär Emanuelsson and Ulf Nilsson. A comparative study
of industrial static analysis tools. Electron. Notes Theor.
Comput. Sci., 217:5–21, July 2008.

[30] Kevin Gallagher, Sameer Patil, and Nasir Memon. New
me: Understanding expert and non-expert perceptions
and usage of the tor anonymity network. In Thirteenth
Symposium on Usable Privacy and Security (SOUPS
2017), pages 385–398, Santa Clara, CA, 2017. USENIX
Association.

[31] Nathaniel S Good and Aaron Krekelberg. Usability and
privacy: a study of kazaa p2p file-sharing. In Proceed-
ings of the SIGCHI conference on Human factors in
computing systems, pages 137–144. ACM, 2003.

[32] Peter Leo Gorski, Yasemin Acar, Luigi Lo Iacono, and
Sascha Fahl. Listen to developers! a participatory design
study on security warnings for cryptographic apis. In
Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, pages 1–13, 2020.

[33] Matthew Green and Matthew Smith. Developers are not
the enemy!: The need for usable security apis. IEEE
Security & Privacy, 14(5):40–46, 2016.

[34] Thomas RG Green. Cognitive dimensions of notations.
People and computers V, pages 443–460, 1989.

[35] Xiaoqing Gu, Fengjia Gu, and James M Laffey. Design-
ing a mobile system for lifelong learning on the move.
Journal of Computer Assisted Learning, 27(3):204–215,
2011.

[36] William Hudson. The encyclopedia of human-computer
interaction, 22. card sorting. https://www.interaction-
design.org/literature/book/the-encyclopedia-of-human-
computer-interaction-2nd-ed/card-sorting, 2014.

[37] N. Imtiaz, A. Rahman, E. Farhana, and L. Williams.
Challenges with responding to static analysis tool alerts.
In 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR), pages 245–249,
May 2019.

[38] Nasif Imtiaz, Brendan Murphy, and Laurie Williams.
How do developers act on static analysis alerts? an em-
pirical study of coverity usage. In 2019 IEEE 30th
International Symposium on Software Reliability Engi-
neering (ISSRE), pages 323–333. IEEE, 2019.

[39] Pooya Jaferian, Kirstie Hawkey, Andreas Sotirakopou-
los, Maria Velez-Rojas, and Konstantin Beznosov.
Heuristics for evaluating it security management tools.
Human Computer Interaction, 29(4):311–350, 2014.

[40] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill,
and Robert Bowdidge. Why don’t software developers
use static analysis tools to find bugs? In Proceedings
of the 2013 International Conference on Software En-
gineering, ICSE ’13, pages 672–681, Piscataway, NJ,
USA, 2013. IEEE Press.

[41] J. R. Landis and G. G. Koch. The measurement of
observer agreement for categorical data. page 159–174,
1977.

[42] Thomas D. Latoza and Brad A. Myers. Visualizing
call graphs. In in VL/HCC’2011: IEEE Symposium
on Visual Languages and Human-Centric Computing,
pages 18–22.

[43] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J.
Whitehead. Does bug prediction support human de-
velopers? findings from a google case study. In 2013
35th International Conference on Software Engineering
(ICSE), pages 372–381, May 2013.

[44] Duc Cuong Nguyen, Dominik Wermke, Yasemin Acar,
Michael Backes, Charles Weir, and Sascha Fahl. A
stitch in time: Supporting android developers in writing
secure code. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
pages 1065–1077. ACM, 2017.

[45] Lisa Nguyen Quang Do. User-Centered Tool Design for
Data-Flow Analysis. PhD thesis, Paderborn University,
2019.

[46] Jakob Nielsen. 10 usability heuristics for user interface
design. Nielsen Norman Group, 1(1), 1995.

[47] Jakob Nielsen and Rolf Molich. Heuristic evaluation
of user interfaces. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI
’90, pages 249–256, New York, NY, USA, 1990. ACM.

[48] Tulsidas Patil, Ganesh Bhutkar, and Noshir Tarapore.
Usability evaluation using specialized heuristics with
qualitative indicators for intrusion detection system. In
Advances in Computing and Information Technology,
pages 317–328. Springer, 2012.

[49] Nikhil Patnaik, Joseph Hallett, and Awais Rashid. Us-
ability smells: An analysis of developers’ struggle with
crypto libraries. In Proceedings of the Fifteenth USENIX
Conference on Usable Privacy and Security, SOUPS’19,
page 245–257, USA, 2019. USENIX Association.

[50] Peter G. Polson, Clayton Lewis, John Rieman, and Cath-
leen Wharton. Cognitive walkthroughs: a method for
theory-based evaluation of user interfaces. International
Journal of Man-Machine Studies, 36(5):741 – 773, 1992.

[51] Bradley Reaves, Jasmine Bowers, Sigmund Albert
Gorski III, Olabode Anise, Rahul Bobhate, Raymond
Cho, Hiranava Das, Sharique Hussain, Hamza Karachi-
wala, Nolen Scaife, et al. * droid: Assessment and eval-
uation of android application analysis tools. ACM Com-
puting Surveys (CSUR), 49(3):55, 2016.

[52] Joshua Reynolds, Trevor Smith, Ken Reese, Luke Dick-
inson, Scott Ruoti, and Kent Seamons. A tale of two
studies: The best and worst of yubikey usability. In 2018
IEEE Symposium on Security and Privacy (SP), pages
872–888. IEEE, 2018.

[53] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam
Miller-Cushon, and Ciera Jaspan. Lessons from building
static analysis tools at google. Communications of the
ACM, 61(4):58–66, 2018.

[54] Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan,
Emma Söderberg, and Collin Winter. Tricorder: Build-
ing a program analysis ecosystem. In Proceedings of the
37th International Conference on Software Engineering
- Volume 1, ICSE ’15, pages 598–608, Piscataway, NJ,
USA, 2015. IEEE Press.

[55] Andrew Sears. Heuristic walkthroughs: Finding the
problems without the noise. International Journal of
Human-Computer Interaction, 9(3):213–234, 1997.

[56] Justin Smith, Brittany Johnson, Emerson Murphy-Hill,
Bill Chu, and Heather Richter Lipford. Questions devel-
opers ask while diagnosing potential security vulnera-
bilities with static analysis. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engi-
neering, ESEC/FSE 2015, pages 248–259, New York,
NY, USA, 2015. ACM.

[57] Tyler Thomas, Heather Lipford, Bill Chu, Justin Smith,
and Emerson R Murphy-Hill. What questions remain?
an examination of how developers understand an inter-
active static analysis tool. In WSIW@ SOUPS, 2016.

[58] Daniela G. tom Markotten. User-centered security en-
gineering. In Proceedings of the 4th EurOpen/USENIX
Conference–NordU2002, 2002.

[59] Carmine Vassallo, Sebastiano Panichella, Fabio
Palomba, Sebastian Proksch, Harald C Gall, and
Andy Zaidman. How developers engage with static
analysis tools in different contexts. Empirical Software
Engineering, pages 1–39, 2019.

[60] Alma Whitten and J Doug Tygar. Why johnny can’t
encrypt: A usability evaluation of pgp 5.0. In USENIX
Security Symposium, volume 348, 1999.

[61] Glenn Wurster and Paul C Van Oorschot. The developer
is the enemy. In Proceedings of the 2008 New Security
Paradigms Workshop, pages 89–97, 2008.

[62] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto,
Gerardo Canfora, and Massimiliano Di Penta. How open
source projects use static code analysis tools in contin-
uous integration pipelines. In 2017 IEEE/ACM 14th
International Conference on Mining Software Reposito-
ries (MSR), pages 334–344. IEEE, 2017.

[63] Misha Zitser, Richard Lippmann, and Tim Leek. Testing
static analysis tools using exploitable buffer overflows
from open source code. In ACM SIGSOFT Software
Engineering Notes, volume 29, pages 97–106. ACM,
2004.

[64] Nist source code security analyzers. http:
//samate.nist.gov/index.php/Source_Code_
Security_Analyzers.html.

[65] Owasp source code analysis tools. http://owasp.
org/index.php/Source_Code_Analysis_Tools.

[66] Web application security consortium static code analysis
tools. http://projects.webappsec.org/w/page/
61622133/StaticCodeAnalysisList.

[67] Static analysis tools for security. https://www.
dwheeler.com/essays/static-analysis-tools.
html.

http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
http://owasp.org/index.php/Source_Code_Analysis_Tools
http://owasp.org/index.php/Source_Code_Analysis_Tools
http://projects.webappsec.org/w/page/61622133/StaticCodeAnalysisList
http://projects.webappsec.org/w/page/61622133/StaticCodeAnalysisList
https://www.dwheeler.com/essays/static-analysis-tools.html
https://www.dwheeler.com/essays/static-analysis-tools.html
https://www.dwheeler.com/essays/static-analysis-tools.html

A User Study Briefing

Thank you so much for agreeing to participate in this study.
As I mentioned in the email, we are researchers interested in
improving the usability of different security-oriented static
analysis tools. This study will provide valuable information
on how to design and develop better support for the use of
static analysis tools.

Today I’ll have you to use two static analysis tools and ask
a few questions about your experience using them. During
this session I’ll be recording the computer screen and audio
from our conversation. You can let me know at any point if
you’d like to stop or pause the recording. If all that sounds ok
to you, could you please sign this form for me...

Consent form: <obtain consent from participant>

B User Study Task Briefing

In this scenario, you have been tasked with evaluating the
security of two applications. These applications have been
analyzed by a static analysis tool that detects potential security
vulnerabilities. I’ll have you use the first tool for about 15-20
minutes, then I’ll ask you a few questions. Then I’ll have you
use the second tool for about 15-20 minutes and I’ll ask you
a few more questions.

As you are working with the tools, try to think aloud. So,
say any questions or thoughts that cross your mind regard-
less of how relevant you think they are. If you are silent for
longer than 30 seconds or so, I’ll gently remind you to KEEP
TALKING.

(If participants are silent for more than 30 seconds raise a
"KEEP TALKING" sign [Sugirin 1999])

Prioritized list of tasks
1. Choose a vulnerability that you’d be most likely to in-

spect first.
2. Determine whether the reported vulnerability is actually

a vulnerability.
3. Propose a fix to the vulnerability.
4. Assess the quality of your fix.
Do you have any questions before we begin?
(TURN ON SCREEN RECORDER, AUDIO RECORDER,

AND BACKUP RECORDER!)

C Post-Study Questions

1. Which issues did you encounter when using the tool?
2. Which functionalities of the tool did you like most?
3. Which functionalities of the tool did you dislike most?
4. Which functionalities of the tool did you find useful?
5. Were there moments when you were confused?
6. Would you use this tool in your development work?

D Heuristic Walkthrough Guide

Pass 1

You work at a software company and are responsible for the
security of your product. Your team uses [toolname] to detect
vulnerabilities early in the development process. The tool
detects several potential vulnerabilities in the code, but you
only have a limited amount of time to resolve them. Given
these constraints, work through the following tasks:

Prioritized list of tasks

1. Choose a vulnerability that you’d be most likely to in-
spect first.

2. Determine whether the reported vulnerability is actually
a vulnerability.

3. Propose a fix to the vulnerability.
4. Assess the quality of your fix.

Repeat these tasks until you feel satisfied with your as-
sessments. Use the questions below to guide your evaluation.
Record any usability problems you encounter during this
phase.

Guiding questions:

1. Will users know what they need to do next? It is possible
that they simply cannot figure out what to do next.

2. Will users notice that there is a control (e.g., button,
menu) available that will allow them to accomplish the
next part of their task? It is possible that the action is
hidden or that the terminology does not match what users
are looking for. In either case, the correct control exists
but users cannot find it. The existence and quality of
labels on controls and the number of controls on the
screen influence the user’s ability to find an appropriate
control (Franzke, 1995).

3. Once users find the control, will they know how to use
it (e.g., click on it, double click, pull-down menu)? For
example, if the control is a pull-down menu but it looks
like a normal button, users may not understand how to
use it. Users may find the icon that corresponds to the
desired action, but if it requires a triple-click they may
never figure out how to use it.

4. If users perform the correct action, will they see that
progress is being made toward completing the task?
Does the system provide appropriate feedback? If not,
users may not be sure that the action they just performed
was correct.

Pass 2

Heuristics

Guided by the knowledge you gained in Pass 1, you are now
free to explore any part of the system. Evaluate the system
using each of the following heuristics, which are derived from
Smith and colleagues’ 17 information needs [56]. For your
convenience, short summaries of each heuristic are included
here:

• Preventing and Understanding Potential Attacks
Information about how an attacker would exploit

this vulnerability or what types of attacks are possible in
this scenario.

• Understanding Approaches and Fixes
Information about alternative ways to achieve the

same functionality securely.
• Assessing the Application of the Fix

Once a fix has been selected and/or applied, infor-
mation about the application of that fix or assessing the
quality of the fix.

• Relationship Between Vulnerabilities
Information about how co-occurring vulnerabilities

relate to each other.
• Locating Information

Information that satisfies "where" questions.
Searching for information in the code.

• Control Flow and Call Information
Information about the callers and callees of poten-

tially vulnerable methods.
• Data Storage and Flow

Information about data collection, storage, its ori-
gins, and its destinations.

• Code Background and Functionality
Information about the history and the functionality

of the potentially vulnerable code.
• Application Context/Usage

Information about how a piece of potentially vul-
nerable code fits into the larger application context (e.g.,
test code).

• End-User Interaction
Information about sanitization/validation and input

coming from users.
• Developer Planning and Self-Reflection

Information about the tool user reflecting on or or-
ganizing their work.

• Understanding Concepts
Information about unfamiliar concepts that appear

in the code or in the tool.
• Confirming Expectations

Does the tool behave as expected?
• Resources and Documentation

Additional information about help resources and
documentation.

• Understanding and Interacting with Tools

Information about accessing and making sense of
tools available. Including, but not limited to the defect
detection tool.

• Vulnerability Severity and Rank
Information about the potential impact of vulnera-

bilities, including which vulnerabilities are potentially
most impactful.

• Notification Text
Textual information that an analysis tool provides

and how that text relates to the potentially vulnerable
code.

• Other Usability Problems / Notes

E Summary of Participants’ Experience

Table 3: Summary of Participant Experience

ID Tool 1 Tool 2
Security

Familiarity
Java

Familiarity
C++

Familiarity
PHP

Familiarity
Professional Exp.

(Years)

P00 FSB Rips ### #### 7
P01 FSB Rips ## # ## #### 3
P02 FSB Flawfinder ## ## ### #### 2.5
P03 FSB CTool ### ### #### #### 4
P04 RIPS CTool ## ## ### #### 3
P05 Flawfinder CTool # # ### ### 7
P06 RIPS FSB # # ### 1
P07 Flawfinder FSB #### ## ### #### 0.5
P08 CTool FSB ## # # ### 3
P09 Flawfinder Rips ### ## ### #### 6
P10 CTool Rips #### ### ### ### 3
P11 CTool Flawfinder ## # ### #### 0
P12 RIPS Flawfinder ## # # # 8

F Heuristics Summarized

Table 4: Summary of heuristics from Smith and colleagues [56]

Heuristic Description

Preventing & Understanding Potential Attacks Information about how an attack would exploit this vulnerability or what
types of attacks are possible in this scenario.

Understanding Alternative Fixes & Approaches Information about alternative ways to achieve the same functionality se-
curely.

Assessing the Application of the Fix Once a fix has been selected and/or applied, information about the applica-
tion of that fix or assessing the quality of the fix.

Relationship Between Vulnerabilities Information about how co-occurring vulnerabilities relate to each other.
Locating Information Information that satisfies "where" questions. Searching for information in

the code.
Control Flow & Call Information Information about the callers and callees of potentially vulnerable methods.
Data Storage & Flow Information about data collection, storage, its origins, and its destinations.
Code Background & Functionality Information about the history and the functionality of the potentially vul-

nerable code.
Application Context / Usage Information about how a piece of potentially vulnerable code fits into the

larger application context (e.g., test code).
End-User Interaction Information about sanitization/validation and input coming from users.

Does the tool help show where input to the application is coming from?
Developer Planning & Self-Reflection Information about the tool user reflecting on or organizing their work.
Understanding Concepts Information about unfamiliar concepts that appear in the code or in the

tool.
Confirming Expectations Does the tool behave as expected?
Resources & Documentation Additional information about help resources and documentation.
Understanding & Interacting with Tools Information about accessing and making sense of tools available. Including,

but not limited to the defect detection tool.
Vulnerability Severity & Rank Information about the potential impact of vulnerabilities, including which

vulnerabilities are potentially most impactful.
Notification Text Textual information that an analysis tool provides and how that text relates

to the potentially vulnerable code.

	Introduction
	Related Work
	Usability Testing End-User Security Tools
	Evaluating Developer Security Tools

	Methodology
	Tools
	Find Security Bugs
	RIPS
	Flawfinder
	CTool

	Analyzed Applications
	Heuristic Walkthroughs
	Phase 1: Task-Oriented Evaluation
	Phase 2: Free-Form Evaluation

	User Study
	Data Extraction

	Replication Package

	Results
	Missing Affordances (39)
	Missing or Buried Information (96)
	Scalability of Interface (11)
	Inaccuracy of Analysis (17)
	Code Disconnect (14)
	Workflow Continuity (29)

	Design Guidelines
	Limitations
	Conclusion
	User Study Briefing
	User Study Task Briefing
	Post-Study Questions
	Heuristic Walkthrough Guide
	Summary of Participants' Experience
	Heuristics Summarized

