
acmqueue | march-april 2020 1

debugging

G
oogle has published two books about SRE
(Site Reliability Engineering) principles, best
practices, and practical applications.1,2 In
the heat of the moment when handling a
production incident, however, a team’s actual

response and debugging approaches often differ from
ideal best practices.

This article covers the outcomes of research
performed in 2019 on how engineers at Google debug
production issues, including the types of tools, high-level
strategies, and low-level tasks that engineers use in
varying combinations to debug effectively. It examines
the research approach used to capture data, summarizing
the common engineering journeys for production
investigations and sharing examples of how experts
debug complex distributed systems. Finally, the article
extends the Google specifics of this research to provide

How experts debug
production issues

in complex
distributed systems CHARISMA CHAN AND BETH COOPER

1 of 20 TEXT
ONLY

Debugging
Incidents
in Google’s
Distributed
Systems

https://landing.google.com/sre/books/

acmqueue | march-april 2020 2

debugging

some practical strategies that you can apply in your
organization.

RESEARCH APPROACH
As this study began, its focus was to develop an empirical
understanding of the debugging process, with the
overarching goal of creating optimal product solutions
that meet the needs of Google engineers. We wanted to
capture the data that engineers need when debugging,
when they need it, the communication process among
the teams involved, and the types of mitigations that are
successful. The hypothesis was that commonalities exist
across the types of questions that engineers are trying to
answer while debugging production incidents, as well as
the mitigation strategies they apply.

To this end, we analyzed postmortem results over the
last year and extracted time to mitigation, root causes,
and correlated mitigations for each. We then selected 20
recent incidents for qualitative user studies. This approach
allowed us to understand and evaluate the processes
and practices of engineers in a real-world setting and to
deep-dive into user behavior and patterns that couldn’t be
extracted by analyzing trends in postmortem documents.

The first step was trying to understand user behavior:
At the highest level, what did the end-to-end debugging
experience look like at Google? The study was broken
down into the following phases (which are unpacked in the
sections that follow):

3 Phase 0 – Define a way to segment the incident
responder and incident type populations.

3 Phase 1 – Audit the postmortem documentation from

2 of 20

acmqueue | march-april 2020 3

debugging

a spread of actual Google incidents.
3 Phase 2 – Conduct in-depth user interviews with first

responders who worked on those incidents.
3 Phase 3 – Map the responders’ journeys across those

incidents, detailing common patterns, questions, and steps
taken.

Phase 0: Segment incident responder and
incident type populations
The preliminary approach to segment the population under
study was designed to ensure that a sufficiently broad set
of incidents and interviewees was included, from which we
could capture a comprehensive set of data.

Incident Responders

First, the incident responder (or on-callers) were segmented
into two distinct groups: SWEs (software engineers), who
typically work with a product team, and SREs (Site Reliability
Engineers), who are often responsible for the reliability of
many products. These two groups were further segmented
according to tenure at Google. We found the following
behaviors across the different user cohorts:

SWE vs. SRE mental models and tools
SWEs are more likely to consult logs earlier in their
debugging workflow, where they look for errors that could
indicate where a failure occurred.

SREs rely on a more generic approach to debugging:
Because SREs are often on call for multiple services, they
apply a general approach to debugging based on known
characteristics of their system(s). They look for common

3 of 20

acmqueue | march-april 2020 4

debugging

failure patterns across service health metrics (e.g., errors
and latency for requests) to isolate where the issue is
happening, and often dig into logs only if they’re still
uncertain about the best mitigation strategy.

Experience level of the incident responder
Newer engineers are more likely to use recently developed
tools, while engineers with extensive experience (10-plus
years running complex, distributed systems at Google)
tend to use more legacy tools. Intuitively, this finding
makes sense—people tend to use the tools they are most
comfortable with, particularly in emergency situations.

Incident Types
We also examined incidents across the following
dimensions, and found some common patterns for each:

3 Scale and complexity. The larger the blast radius (i.e.,
its location(s), the affected systems, the importance of
the user journey affected, etc.) of the problem, the more
complex the issue.

3 Size of the responding team. As more people are
involved in an investigation, communication channels
among teams grow, and tighter collaboration and handoffs
between teams become even more critical.

3 Underlying cause. On-callers are likely to respond
to symptoms that map to six common underlying issues:
capacity problems; code changes; configuration changes;
dependency issues (a system/service my system/service
depends on is broken); underlying infrastructure issues
(network or servers are down); and external traffic issues.
Our investigation intentionally did not look at security or

4 of 20

acmqueue | march-april 2020 5

debugging

data-correctness issues outside the scope of the tools
focused on in this work.

3 Detection. On-callers learn about issues through
human or machine detection that is based on availability
or performance problems. Some common mechanisms
include alerts on the following: white-box metrics;
synthetic traffic; SLO (service-level objective) violations;
and user-detected issues.

Phase 1: Postmortem documentation analysis
Once the different categories of incidents were determined,
we read the postmortems for the 20 incidents identified for
qualitative studies, mapping the steps responders took for
each case. This approach allowed us to validate the common
factors that affect how responders handled these incidents
and the challenges they faced. We could also ensure
that the incidents selected for deep-dive analysis were
distributed across the dimensions, as just described.

Google has a strong culture of blameless
postmortems.4 It is common for teams to look at the
history of their failures to ensure that their services are
continuing to run reliably. Because of this, postmortem
documents are readily available internally and were an
invaluable resource for analyzing debugging behavior.
Detailed chat transcripts linked to these postmortems
helped form a base understanding of what happened, when
it happened, and what went wrong. We could then start
mapping a prototype of the debugging journey. Future
research could extend this work by applying natural-
language processing to further validate response patterns
in the incident response chats.

5 of 20

acmqueue | march-april 2020 6

debugging

Phase 2: In-depth interviews
To round out this study, in-depth interviews were
conducted with the first responders identified in these 20
postmortems so any gaps in the postmortem document
could be filled in. These data sources added significant
color to the debugging journey we were mapping, and
surfaced a core set of building blocks that make up the
overall debugging process.

Phase 3: Mapping the responders’ journeys
This study allowed us to generate snapshots of what
an actual incident investigation lifecycle looks like at
Google. By mapping out each responder’s journey and then
aggregating those views, we extracted common patterns,
tools, and questions asked around debugging that apply
to virtually every type of incident. Figure 1 is a sample
of the visual mapping of the steps taken by each of the
responders interviewed.

COMMON PATTERNS AROUND DEBUGGING
A typical canonical debugging journey consists of the
stages and sub-journeys shown in figure 2 and described
in this section. These building blocks are often repeated as
the user investigates the issue, and each block can happen
in a nonsequential and, sometimes, cyclical order.

During the detection to mitigation stages, investigations
are typically time sensitive—especially when the issue
affects the end-user experience. An on-caller will always
try to mitigate the issue or “stop the bleeding” before
uncovering the root cause. After mitigation, on-callers and

6 of 20

B
uilding
blocks
are often
repeated
as the user

investigates
the issue, and
each block can
happen in a
nonsequential
and, sometimes,
cyclical order.

acmqueue | march-april 2020 7

debugging

developers often perform a deeper analysis of the code and
apply measures to prevent a similar situation from recurring.

Detect
The on-caller discovers the issue via an alert, a customer
escalation, or a proactive investigation by an engineer
on the team. A common question would be: What is the
severity of this issue?

7 of 20

FIGURE 1: Building Blocks

acmqueue | march-april 2020 8

debugging 8 of 20

FIGURE 2: User Journey

acmqueue | march-april 2020 9

debugging

Triage loop
The on-caller’s goal is to assess the situation quickly by
examining the situation’s blast radius (the severity and
impact of the issue) and determining whether there is a
need to escalate (pull in other teams, inform internal and
external stakeholders). This stage can happen multiple
times in a single incident as more information comes in.

Common questions include: Should I escalate? Do I need
to address this issue immediately, or can this wait? Is this
outage local, regional, or global? If the outage is local or
regional, could it become global (for example, a rollout
contained by a canary analysis tool likely won’t trigger a
global outage, whereas a query of death triggered by a
rollout that is now spreading across your systems might)?

Investigate loop
The on-caller forms hypotheses about potential issues and
gathers data using a variety of monitoring tools to validate
or disprove theories. The on-caller then attempts to
mitigate or fix the underlying problem. This stage typically
happens multiple times in a single incident as the on-caller
collects data to validate or disprove any hypotheses about
what caused the issue.

Common questions include: Was there a spike in
errors and latency? Was there a change in demand?
How unhealthy is this service? (Is this a false alarm, or
are customers still experiencing issues?) What are the
problematic dependencies? Were there production
changes in services or dependencies?

9 of 20

acmqueue | march-april 2020 10

debugging

Mitigate loop
The on-caller’s goal is to determine what mitigation action
could fix the issue. Sometimes a mitigation attempt can
make the issue worse or cause an adverse ripple effect
on one of its dependent services. Remediation (or full
resolution of the issue) usually takes the longest of all the
debugging steps. This step can, and often does, happen
multiple times in a single incident.

Common questions include: What mitigation should be
taken? How confident are you that this is the appropriate
mitigation? Did this mitigation fix the issue?

Resolve/root-cause loop
The on-caller’s goal is to figure out the underlying issue
in order to prevent the problem from occurring again.
This step typically occurs after the issue is mitigated and
is no longer time sensitive, and it may involve significant
code changes. Responders write the postmortem
documentation during this stage.

Common questions include: What went wrong? What’s
the root cause of the problem? How can you make your
processes and systems more resilient?

Communication
Throughout the entire process, incident responders
document their findings, work with teammates on
debugging, and communicate outside of their team as
needed.

OBSERVABILITY DATA
In every single interview, on-callers reported that they

S
ometimes a
mitigation
attempt can
make the
issue worse

or cause an
adverse ripple
effect on one of
its dependent
services.

10 of 20

acmqueue | march-april 2020 11

debugging

started working with time-series metrics that indicate the
health of a given service, performing a breadth-first search
to identify which components of the system were broken.
The majority of the teams that were interviewed evaluated
the following items:

3 �RPC (remote procedure call) latency and error
metrics (similar to the metrics derived from the open-
source gRPC libraries).

3 �Change in external traffic, including QPS (queries per
second).

3 �Change in production such as rollouts, configuration
pushes, and experiments.

3 �Underlying job metrics such as memory and CPU
consumption.

Both alerts and realtime dashboards use these metrics.
On-callers typically used logs and traces only after they
identified a component as broken, and they then needed to
drill down to the specific issue.

ANECDOTES FROM THE FRONT LINE
Some of the interviewees applied SRE best practices
to debug complex distributed systems, methodically
eliminating their theories on what could go wrong, applying
temporary mitigations to prevent user pain, and, finally,
successfully resolving and root-causing the problem that
set off the outage in the first place.

Many other responders hit unexpected roadblocks.
Some responders were impacted by a complex set
of changes throughout the stack that occurred
simultaneously. Therefore, it was extremely challenging
to isolate the actual issue and figure out how to resolve

11 of 20

acmqueue | march-april 2020 12

debugging

it. Other responders cited process and awareness issues:
Some did not fully understand how their production
tooling worked, or the appropriate standard course of
action to take. Some responders wound up unintentionally
applying bad changes to production.

Following are some (anonymous) stories to illustrate
successful and problematic debugging sessions. These
anecdotes are intended to show that even with the most
experienced engineers, great technology, and powerful
tooling, things can—and do—go wrong in unexpected ways.

An exemplary debugging journey
The following is an example of a successful debugging
session, where the SRE follows best practices and
mitigates a service-critical issue in less than 20 minutes.

While sitting in a meeting, the SRE on-caller receives
a page informing her that the front-end server is seeing
a 500 server error. While she’s initially looking at service
health dashboards, a pager-storm starts, and she sees
many more alerts firing and errors surfacing. She responds
quickly and immediately identifies that her service isn’t
healthy.

She then determines the severity of the issue, first
asking herself how many users are impacted. After
looking at a few error rate charts, she confirms that a
few locations have been hit with this outage, and she
suspects that it will significantly worsen if not immediately
addressed. This line of questioning is referred to as the
triage loop, similar to triage processes used in health care
(for example, emergency rooms that sort patients by
urgency or type of service). The SRE needs to determine

S
ome
responders
wound up
uninten-
tionally

applying bad
changes to
production.

12 of 20

acmqueue | march-april 2020 13

debugging

if the alert is noise, if she needs to handle it now, and
whether to escalate the issue to other teams and
stakeholders.

Now that she knows this is a real and relatively severe
issue, the SRE starts pulling in other people from her
team to help with the investigation. She also sets up
communication channels to inform other teams that may
be affected, and to let them know her team is addressing
the outage.

She then focuses on temporarily mitigating the issue
for end users. She tasks a teammate with ensuring that
traffic isn’t routed to any of the unhealthy locations and
configuring load balancers to avoid sending traffic to
impacted locations. For the moment, this action stops the
issue from propagating, which leaves her free to conduct a
deeper investigation using monitoring data.

Next, she asks a series of questions that help her
narrow down the potential cause and figure out how best
to mitigate the issue permanently. She largely uses time-
series metrics (e.g., Cloud Monitoring metrics3) to help
answer these questions quickly:

3 To narrow down the breadth of the investigation:
Which specific parts of the service are unhealthy? Are the
errors coming from the front end or back end? Are there
“slices” of data that are problematic? Are there outliers in
the data?

3 To identify the severity of the issue and rule out
causes: Is the shape of the graph a step (something changed
suddenly and remained unchanged), a spike (something
changed, then stopped), or a slope (a gradual rollout is
happening)? How quickly did the error rate ramp up?

13 of 20

https://cloud.google.com/monitoring/api/metrics

acmqueue | march-april 2020 14

debugging

3 To identify the severity: What is the blast radius? (If
errors occur globally, this indicates a severe issue that will
most likely have end-user impact.)

3 To rule out underlying causes: When did the problem
start? What production events in the service or in its
dependencies correlate with this issue?

Once the issue is mitigated, the SRE drills into logs and
traces, confirming that a new line of code was crashing
the jobs in the regions with issues. She decides to roll back
to the last stable version of the service, and validates
that the issue is resolved when the affected locations are
brought back online.

Debugging journey where the tooling failed
to support the on-caller
The following is an example of a journey where Google
on-callers hit unexpected hurdles as they debugged, and
where applying best practices could have reduced the time
to mitigation.

The on-caller receives a page that informs him that the
service’s overall server-side availability SLO (service-level
objective) was down from 99.9 percent to 91 percent, and
that specific user actions failed. He begins his investigation
by looking at graphs of metrics that confirm (1) when the
error rate started to increase; (2) errors were mostly caused
by timeouts; and (3) request durations were about equal to
the duration of the timeout. He then slices the metrics to the
failing user actions identified before, checks the associated
server errors and queries-per-second metrics, and digs into
server logs to find specific errors. Up to this point, he has
followed common practices for debugging.

14 of 20

acmqueue | march-april 2020 15

debugging

At the same time, another on-caller for a back-end
service dependency notices that the service is nearing its
quota limitations and suspects that this situation might
have an impact on the investigation. This on-caller tries to
allocate some quota through a configuration change, hoping
to alleviate the problem. Because of a misunderstanding
in the configuration push tooling, however, this change
accidentally removes a back-end server in one location
instead of adding quota, which increases the error rates in
the other locations. Additionally, since he considered this
change to be safe, the on-caller didn’t monitor the rollout
of the updated configuration as closely as best practices
recommend, and initially missed indicators that overall
capacity was actually reduced because of the removed
location. At this point, the on-caller breaks from best
practices by performing a global push of a nonvalidated
configuration that includes a completely unrelated change—
the action of dropping a back end should be separate from
adding capacity.

While this is happening, the first on-caller goes deep in
the logs and finds “permission-denied” errors increased
at the time the back-end server was removed. He does
this through a breadth-first search of a number of the
supporting back ends and an analysis of their aggregated
logs. Here, he notices that when one server was removed,
more requests were funneling to the servers that were
experiencing issues. Only after digging into logs and
opening a number of tools is he able to connect the errors
to the configuration change in the dependency.

Better tooling could have prevented the user from
performing an unanticipated change. Tooling could also

15 of 20

acmqueue | march-april 2020 16

debugging

have helped validate what the change would actually do.
Additionally, better tooling to support monitoring the
effects of the changes to the system could have helped the
on-callers draw these conclusions earlier.

The on-callers then connect to share their findings.
Once connected, the first on-caller rolls back the
configuration push that reduced capacity, identifies the
back-end dependency that changed the permission errors,
and works with the back-end team to get bad changes
rolled back.

TRANSLATING INSIGHTS INTO CONCRETE ACTION
If you are responsible for running a distributed service, you
might find yourself dealing with scenarios similar to what
the teams we interviewed experienced. Our study revealed
that teams that apply the following principles are typically
able to mitigate service problems faster.

Establish SLOs and accurate monitoring
You need to have SLOs and/or metrics that you can alert
and optionally report on. These should accurately reflect
user pain and allow for slicing by failure domains. These
should also be associated with alerts that have clear next
steps and links to the most important information.

Triage effectively
Once you have the prerequisites of SLOs and accurate
monitoring in place, you need to be able to quickly
determine both the severity of user pain and the total blast
radius. You should also know how to set up the proper
communication channels based on the severity of the issue.

16 of 20

acmqueue | march-april 2020 17

debugging

Mitigate early
Documenting a set of mitigation strategies that are safe
for your service can help on-callers temporarily fix user-
facing issues and buy your team critical time to identify the
root cause. For more information on implementing generic
mitigations, see “Reducing the Impact of Service Outages
with Generic Mitigations with Jennifer Mace.”5 The ability
to easily identify what changed in your service— either
in its critical dependencies or in your user traffic—is also
helpful in determining what mitigation attempt to move
forward with. As mentioned in the exemplary debugging
case, asking a series of common questions and having
metrics, logs, and traces can help speed up the process of
validating your theories about what went wrong.

Apply established mitigation strategies for common issues
Although every service is different, the following patterns
emerged in the underlying issues we examined and the
mitigations associated with them. When you’re dealing
with a problem that you’ve never seen before, it can be
helpful to think about what type of issue your service is
facing, the questions you should ask, and the associated
mitigations based on the answers.

3 Service errors. This was the most common cause
for an alert firing in our study. As such, it also had the
largest variety of mitigations. Some factors to consider
in determining mitigation strategies include: (1) Are the
errors occurring globally? Check for correlated rollouts,
configuration/data changes, and experiments. (2) Are the
incoming QPS spiking? Add capacity and/or start load
shedding to drop traffic that your service can’t handle. (3)

17 of 20

https://www.oreilly.com/library/view/spotlight-on-cloud/0636920347927/
https://www.oreilly.com/library/view/spotlight-on-cloud/0636920347927/

acmqueue | march-april 2020 18

debugging

Is a bad actor causing a change in QPS? If so, block the user.
3 Performance. Latency can make for a bad user

experience and degrade into errors over time. These issues
can be difficult to debug if there is no obvious correlated
capacity or production change. Typically, responders look
through traces to identify which components in the stack
are affected and try to determine a solution from there.

3 Capacity. Capacity issues are some of the easiest to
spot, especially if you have capacity-specific alerts. Like
errors and performance issues, these can manifest as
both fast and slow burns. If a service is going to run out
of capacity immediately, teams typically ask for more
capacity in an “emergency loan” to scale up their service
(or they may attempt to scale out). For a slow burn,
responders perform additional analyses and planning
to determine if there are other underlying issues. These
types of alerts surface only when automated capacity
systems hit their authorized maximum, and acquiring more
resources requires human intervention.

3 Dependency issues. A critical dependency—even if it’s
deep within the service stack—can contribute to the failure
of the entire service. Knowing your hard dependencies
(those in the critical path of your code) and being able to
view the health of these dependencies can be helpful in
ruling out whether the problem actually lies with another
service.

3 Debugging microservices. Most of the teams
we interviewed have a microservice architecture.
Frequently, the error may be deeper in the stack than
where it manifested to the on-caller. Similar to debugging
dependencies, it’s helpful to be able to traverse the stack

18 of 20

acmqueue | march-april 2020 19

debugging

quickly, associate production
changes, and understand service
architecture.

CONCLUSIONS
SREs continuously strive to
improve systems and expose
vulnerabilities in order to limit
the probability of failures, near
misses, and inefficiencies in
production. Even under the
most ideal conditions, things
inevitably go wrong. By surfacing,
preserving, and disseminating
the commonalities—both positive
and negative—in the debugging
workflow, the aim is to prevent
the same class of problem from
recurring, or, when prevention
isn’t possible, to minimize the

duration or impact of unavoidable outages. Hopefully,
other organizations can apply these findings in practice
too.

References
1. �Beyer, B., Jones, C., Petoff, J., Murphy, N. R., eds. 2016.

Building Secure and Reliable Systems. O’Reilly Media;
https://landing.google.com/sre/books/.

2. �Beyer, B., Murphy, N. R., Rensin, D. K., Kawahara, K.,
Thorne, S., eds. 2018. The Site Reliability Workbook.
O’Reilly Media; https://landing.google.com/sre/books/.

Related articles

3 The Calculus of Service Availability
You’re only as available as the sum
of your dependencies.
Ben Treynor, Mike Dahlin, Vivek Rau,
Betsy Beyer
https://queue.acm.org/detail.cfm?id=3096459

3 Why SRE Documents Matter
How documentation enables SRE teams
to manage new and existing services
Shylaja Nukala and Vivek Rau
https://queue.acm.org/detail.cfm?id=3283589

3 Weathering the Unexpected
Failures happen, and resilience drills
help organizations prepare for them.
Kripa Krishnan
https://queue.acm.org/detail.cfm?id=2371516

19 of 20

https://landing.google.com/sre/books/
https://queue.acm.org/detail.cfm?id=2371516

acmqueue | march-april 2020 20

debugging

3. �Google Cloud. 2020. Metric list; https://cloud.google.
com/monitoring/api/metrics.

4. �Lunney, J., Lueder, S. 2017. Postmortem culture: learning
from failure. O’Reilly Media; https://landing.google.com/
sre/sre-book/chapters/postmortem-culture/.

5. �Mace, J. 2019. Spotlight on Cloud: Reducing the Impact of
Service Outages with Generic Mitigations with Jennifer
Mace. O’Reilly Media; https://www.oreilly.com/library/
view/spotlight-on-cloud/0636920347927/.

Beth Cooper is a Product Manager at Google NYC. She
focuses on building Google scale monitoring for both site
reliability and software engineers. Prior to Google, she
worked on Microsoft Azure building products for cloud and
datacenter automation.

Charisma Chan is a user experience design researcher at
Google UK in London. Prior to joining Google, she led design
research and strategy for consumer and enterprise products
in the financial services and media sectors and she holds a
bachelor’s degree from Cornell University in Ithaca, New York.
Copyright © 2020 held by owner/author. Publication rights licensed to ACM.

20 of 20

https://cloud.google.com/monitoring/api/metrics
https://cloud.google.com/monitoring/api/metrics
https://landing.google.com/sre/sre-book/chapters/postmortem-culture/
https://landing.google.com/sre/sre-book/chapters/postmortem-culture/
https://www.oreilly.com/library/view/spotlight-on-cloud/0636920347927/
https://www.oreilly.com/library/view/spotlight-on-cloud/0636920347927/

