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Abstract

Tracking object poses in 3D is a crucial building block
for Augmented Reality applications. We propose an instant
motion tracking system that tracks an object’s pose in space
(represented by its 3D bounding box) in real-time on mo-
bile devices. Our system does not require any prior sensory
calibration or initialization to function. We employ a deep
neural network to detect objects and estimate their initial
3D pose. Then the estimated pose is tracked using a ro-
bust planar tracker. Our tracker is capable of performing
relative-scale 9-DoF tracking in real-time on mobile de-
vices. By combining use of CPU and GPU efficiently, we
achieve 26-FPS+ performance on mobile devices.

1. Introduction

Tracking in monocular videos is a challenging and well
studied problem in computer vision. While 2D tracking is
mature with robust solutions [16, 13, 3,4, 12, 10], 3D track-
ing from monocular RGB images remains an open problem.
Current approaches to 3D tracking [7, 17, 18] require com-
plex initialization procedures to estimate depth, and are not
very robust and have high computational cost.

The objective of 3D tracking is to track the 3D bounding
box of a rigid object throughout frames when both camera
and object motions are present. The object pose in 3D is
uniquely determined by its 3D bounding box and has 9 DoF
including orientation, translation, and physical size.

In this paper, we propose a system to detect and track an
object’s 3D pose in real-time. Initially, we detect the object
and estimate its pose using a deep neural network [6]. The
detection network does not require prior knowledge of the
object’s shape, size or CAD model to be known and can de-
tect category-level unseen objects. This model can run in
real-time on mobile devices and can be used in a tracking-
by-detection paradigm. When the model is applied to ev-
ery frame, the detection output may suffer from jitter due
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to the prediction noise from the model. This jitter is un-
desirable for AR applications. We adopt a detection-plus-
tracking framework to mitigate this issue. This framework
mitigates the need to run the network on every frame, allow-
ing the use of heavier and therefore more accurate models,
while keeping the pipeline real-time on mobile devices. It
also retains object identity across frames and ensures that
the prediction is temporally consistent, effectively reducing
the jitter.

Our detection-plus-tracking system works as follows.
We first locate the object’s pose using the detection network,
estimating its 3D bounding box. We then project the bound-
ing box’s 3D vertices to the image plane and track the 2D
points, which rest on a plane, using a planar tracker [16]. Fi-
nally, we lift the tracked 2D points to 3D using the EPnP [§]
algorithm to estimate the 3D bounding box in subsequent
frames. This work extends our previous works on 3D ob-
ject detection [6], instant motion tracking [16], and 3D ob-
ject tracking [2].

Our tracker has three properties: it is robust, instant, and
real-time. The tracker is very efficient in utilizing both CPU
and GPU on-device for tracking and detection, respectively,
thus achieving real-time (26-FPS+) performance on mobile
devices. The detection is performed on a single RGB image
and the planar tracker is instant. Thus our whole pipeline
does not require any parallax-inducing motion to initialize
and locate the object and its overall latency is low. Finally,
with the assumption that 3D bounding box sits on a planar
ground, the planar tracker is very robust given typical AR
applications.

Our main contributions are:

e We propose an end-to-end system to track the ob-
ject’s 3D pose (orientation, translation, and size up to
a scale). This system uses a CNN to initialize the pose,
then track it using a planar tracker.

e The proposed system is calibration-free and does not
require any complex initialization sequence or any
hardware beyond camera or IMU sensors. It does not
require prior knowledge of object’s shape or model and
can detect and track unseen objects.



e The end-to-end system (including detection) runs in
real-time on mobile devices.

To encourage researchers and developers to experiment
and prototype based on our pipeline, we open-sourced our
on-device ML pipeline in [ 1], including an end-to-end demo
mobile application and our trained detector for shoes and
chairs. We hope that sharing our solution with the wide
research and development community will stimulate new
use cases, applications, and research efforts.

2. Related work

Efficient and robust tracking is an essential component
for any AR application. Object tracking has been studied
and practiced extensively in computer vision. Planar and
region-based trackers [13, 3, 4, 12, 10] rely on 3D geometry
to estimate the camera motion and track objects. Recently,
neural nets have been utilized to learn and estimate motion.
Generally tracking system consists of two components:

a) detector: which detects the objects in each frame and es-
timates their 2D or 3D bounding boxes, and

b) a matching algorithm, which tracks object correspon-
dences between frames.

[7] detects an object’s 3D bounding box and then esti-
mates the 3D motion between frames to track the box. Em-
ploying a Kalman filter after 3D detection was investigated
in [17] and shown to achieve good performance. In [9] and
[11], tracking the 3D bounding box with stereo cameras for
autonomy applications were studied. [15] used 3D cues for
tracking vehicles’ 2D bounding boxes. Recently, in [18] the
authors propose to use a deep neural network for both 3D
detection and tracking.

3. Instant 3D tracking

Figure | shows an overview of our 3D tracking system.
Initially, the frames are passed through a single-stage CNN,
as shown in Figure 2, to predict the object’s pose and phys-
ical size from a single RGB image.

The model backbone has an encoder-decoder architec-
ture, built upon MobileNetV2[14]. We employ a multi-task
learning approach, jointly predicting an object’s shape with
detection and regression. The shape task predicts the ob-
ject’s shape signals depending on what ground truth annota-
tion is available, e.g. segmentation. This is optional if there
is no shape annotation present in the training data. For the
detection task, we use the annotated bounding boxes and
fit a Gaussian to the box, with the center at the box’s cen-
troid and standard deviations proportional to the box size.
The goal for detection is then to predict this distribution
with its peak representing the objects center location [5].
The regression task estimates the 2D projections of the eight
bounding box vertices. To obtain the final 3D coordinates
for the bounding box, we leverage a well established pose
estimation algorithm (EPnP) [8]. It can recover the 3D

frames

3D Object Detector Network

!

Estimate object pose
(3D bounding box)

—

s N
Project to 8 Box keypoints to
the image

[ Motion Analysis ]
(. J

e N
\—r Robust Box Tracking

(. l J

e A

B6DOF Pose Estimation (with
relative scale)

i

EPnP

Lift 2D tracked point to 3D
(. J

Orientation Sensor data ——|

Tracked 3D Pose

Consolidate
[ detection and tracking pose

!

Obiject Pose

]%

Figure 1: Overview of our 3D tracking system.
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Figure 2: Our network detects the object and estimates the
3D bounding box.

Figure 3: Estimated 3D bounding box and the segmentation
mask produced by our object detector network.

bounding box of an object, without a priori knowledge of
the object dimensions. Given the 3D bounding box, we can
easily compute pose and size of the object. Figure 2 shows
our network architecture and post-processing. The model is
light enough to run real-time on mobile devices (at 26 FPS
on an Adreno 650 mobile GPU). The details of our model
is described in [6].

After initializing the object’s pose with the object detec-



Figure 4: Tracking a 3D bounding box with both camera
motion and object movement present.

tor network, we compute the nine key-points of the bound-
ing box and project them to the image. The nine key-points
consists of the bounding box’s eight vertices plus its center.
We track these points using a planar tracker [16]. Our track-
ing system consists of a motion analysis module, a robust
box tracker, and a pose estimation module for calibration-
free 6DoF tracking [16]. Tracking the nine 2D points using
a 6-DoF relative scale tracker [16] is sufficient for track-
ing the object’s 9DoF pose. At every frame, we lift the 2D
points back to 3D using the EPnP algorithm [8] to estimate
the 3D bounding box (with 9-DoF) up-to scale. Conse-
quently, our model inference only needs to run every few
frames, resulting in high efficiency in our mobile pipeline.
When a new prediction is made, we consolidate the detec-
tion result with the tracking result based on the area of over-
lap.

4. Results and applications to AR

In Figure 4, we demonstrate tracking multiple 3D bound-
ing boxes results from a video. The complete system is im-
plemented in the Mediapipe framework. The model and the
code is available at [1]. Our detection network predicts the
3D bounding box with average precision of 0.59 at 0.5 3D
IoU. The model weights only 5.54MB. The model’s out-
put also includes shape information such as segmentation
mask. The object detector runs at 26.5fps on the mobile

Figure 5: Fitting and rendering a mesh model to the detected
objects for AR Applications.

GPU while the 3D tracking runs at 30fps+ on a mobile
CPU (Samsung S20 device with Qualcomm’s Snapdragon
865 SoC).

Figure 5 shows an example of how to use the tracked
object’s pose for AR applications such as virtual shoe try-
on. In each frame, we render a CAD model at the object
pose using OpenGL rendering pipeline. The same polygon
mesh model is also rendered in Figure 4 inside the bounding
box as an occluder to give a 3D effect to the visualization.

We make two key assumptions for the 3D tracking sys-
tem to work properly: first, there is no gauge ambiguity in
the 3D bounding box and the detected eight keypoints are
unique. For symmetric objects, e.g. volleyball, this assump-
tion does not hold. As a result, the detection network would
predict different orientations each time and that would cause
failure when consolidating the detection and tracking results
together. The second assumption by the tracking module is
that the object’s plane does not significantly change while
we are tracking it. This assumption is true for most ob-
jects without the roll, however, if the tracked object rolls
and changes its plane during tracking, e.g. volleyball, we
may lose their track.

5. Conclusion

In conclusion, we present a system for 3D object track-
ing that enables real-time instant 3D bounding box tracking
on mobile devices. Our proposed system uses a neural net-
work to initialize the 3D pose then utilizes a planar surface
tracker to track the object’s pose in the video frame. The
end-to-end system runs in real-time on mobile devices.
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