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Abstract—Deep Quantization (below eight bits) can significantly reduce DNN computation and storage by decreasing the bitwidth of
network encodings. However, without arduous manual effort, this deep quantization can lead to significant accuracy loss, leaving it in a
position of questionable utility. We propose a systematic approach to tackle this problem, by automating the process of discovering the
bitwidths through an end-to-end deep reinforcement learning framework (RELEQ). This framework utilizes the sample efficiency of
Proximal Policy Optimization (PPO) to explore the exponentially large space of possible assignment of the bitwidths to the layers. We
show how RELEQ can balance speed and quality, and provide a heterogeneous bitwidth assignment for quantization of a large variety
of deep networks with minimal accuracy loss (≤ 0.3% loss) while minimizing the computation and storage costs. With these DNNs,
RELEQ enables conventional hardware and custom DNN accelerator to achieve 2.2× speedup over 8-bit execution.

Index Terms—Neural networks, quantization, autoML.
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1 INTRODUCTION

Deep Neural Networks (DNNs) have made waves across a
variety of domains [1], however their compute efficiency
has become a major constraint in unlocking further appli-
cations and capabilities. To this end, quantization of neural
networks provides a path forward as it reduces the bitwidth
of operations and memory footprint. For instant, in many
scenarios, the bottleneck of running DNNs is in transferring
the weights and data between main memory and compute
cores. Using 8-bit integer rather than 32-bit, we instantly
speed up the memory transfer by 4×.

Albeit alluring, quantization can lead to significant accu-
racy loss if not employed with diligence. To that end, two
fundamental problems need to be addressed. (1) Developing
learning techniques that can perform quantized training of
DNNs. (2) Designing algorithms that identify appropriate
bitwidth per-layer while preserving accuracy. This paper
takes on the second challenge as there are inspiring efforts
that have developed techniques for quantized training [2],
[3].

However, this possibility (discovering bitwidths) is man-
ually laborious as to preserve accuracy, the bitwidth varies
across individual layers and different DNNs [2], [3]. Each
layer has a different role and unique properties in terms
of weight distribution; hence, displays different sensitiv-
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ity towards quantization. Nonetheless, considering layer-
wise quantization opens a rather exponentially large hyper-
parameter space, specially when quantization below eight
bits is considered. For example, ResNet-20 exposes a hyper-
parameter space of size 8l = 820 > 1018, where l = 20
is the number of layers and 8 is the possible bitwidths.
This exponentially large hyper-parameter space grows with
the number of layers making it impractical to exhaustively
assess and determine the bitwidth for each layer.

We develop an end-to-end framework, dubbed RELEQ,
that exploits the sample efficiency of the Proximal Pol-
icy Optimization [4] to explore the quantization hyper-
parameter space. The RL agent starts from a full-precision
previously trained model and learns the sensitivity of final
classification accuracy with respect to the bitwidth of each
layer, determining its bitwidth while keeping classification
accuracy almost intact. Observing that the quantization
bitwidth for a given layer affects the accuracy of subse-
quent layers, our framework implements a Long short-
term memory (LSTM)-based RL framework which enables
selecting bitwidths with the context of previous layers’
bitwidths. Rigorous evaluations with a variety of networks
(AlexNet, CIFAR, LeNet, SVHN, VGG-11, ResNet-20, and
MobileNet) show that RELEQ can effectively find heteroge-
nous bitwidths with minimal accuracy loss (≤0.3% loss)
while minimizing the computation and storage cost. The re-
sults (Table 1) show that there is a high variance in bitwidths
across the layers of these networks. With the seven bench-
mark DNNs, RELEQ enables conventional hardware [5] as
well as a custom DNN accelerator [6] to achieve 2.2−2.7×
speedup over 8-bit execution. These results suggest that
RELEQ takes an effective first step towards automating the
deep quantization of neural networks.
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2 RL FOR DEEP QUANTIZATION OF DNNS

2.1 Method Overview
RELEQ trains an RL agent that determines the bitwidth
for each layer of the network. RELEQ explores the search
space of the bitwidths, layer by layer. The underlying opti-
mization problem is multi-objective (higher accuracy, lower
compute, and reduced memory); however, preserving the
accuracy is the primary objective. With this formulation
of the RL problem, RELEQ employs the state-of-the-art
Proximal Policy Optimization (PPO) [4] to train its policy
and value networks. This section details the components
and the research path we have examined to design them.

2.2 State Space Embedding

Interplay between layers. We design the state space to con-
sider sensitivities and interplay between layers by including
the knowledge about the bitwidth of previous layers, the in-
dex of the layer-under-quantization, layer size, and weights
statistics (e.g. standard deviation).

However, this information is incomplete without
knowing the accuracy of the network given a set of
bitwidths and state of quantization for the entire network.
As such, the parameters used to embed the state space of
RELEQ agent are categorized across two different axes.
(1) “Layer-Specific” parameters which are unique to the
layer (Layer index, Layer Dimensions, Weight Statistics) vs.
“Network-Specific” parameters that characterize the entire
network as the agent steps forward during training process
(state of quantization and relative accuracy). (2) “Static”
parameters that do not change during the training process
vs. “Dynamic” parameters that change during training
depending on the actions taken by the agent while it
explores the search space such as state of quantization and
relative accuracy.

State of quantization and relative accuracy. The “Network-
Specific” parameters reflect some indication of the state of
quantization and relative accuracy. State of Quantization is
a metric to evaluate the benefit of quantization for the
network and it is calculated using the compute and memory
costs of each layer. For a neural network with L layers, we
define compute cost of layer l as the number of Multiply-
Accumulate (MAcc) operations (nMAcc

l ), where (l = 0, ..., L).
Additionally, since RELEQ only quantizes weights, we de-
fine memory cost of layer l as the number of weights (nw

l )
scaled by the ratio of Memory Access Energy (EMemoryAccess)
to MAcc Computation Energy (EMAcc), which is estimated to
be around 120×.

It is intuitive to consider that the sum of memory and
compute costs linearly scale with the number of bits for
each layer (nbits

l ). The nbits
max term is the maximum bitwidth

among the predefined set of bitwidths that’s available for
the RL agent to pick from. Lastly, the State of Quantization
(StateQuantization) is the normalized sum over all layers (L)
that accounts for the total memory and compute costs of the
entire network.

(1)

StateQuantization

=

∑L
l=0[(n

w
l ×

EMemoryAccess

EMAcc
+ nMAcc

l )× nbits
l ]∑L

l=0[n
w
l ×

EMemoryAccess

EMAcc
+ nMAcc

l ]× nbits
max

Besides the potential benefits, captured by
StateQuantization, RELEQ considers the State of Relative
Accuracy to gauge the effects of quantization on the
classification performance. To that end, the State of Relative
Accuracy (StateAccuracy) is defined as the ratio of the
current accuracy (AccCurr) with the current bitwidths for
all layers during RL training, to accuracy of the network
when it runs with full precision (AccFullP ).

(2)StateAccuracy =
AccCurr

AccFullP

Given these embeddings of the observations from the envi-
ronment, the RELEQ agent can take actions, described next.

2.3 Flexible Actions Space
The RELEQ agent steps through each layer sequentially
and chooses the bitwidth of a layer from a discrete set of
bitwidths which are provided as possible choices.

Figure 1(a)(i) shows the representation of action space
in which the set of bitwidths is {1, 2, 3, 4, 5, 6, 7, 8}. As de-
picted, the agent can flexibly choose to change the bitwidth
of a given layer from any bitwidth to any other bitwidth. An
alternative (Figure 1(a)(ii)) that we experimented with was
to only allow RELEQ agent to increment/decrement/keep
the current bitwidth of the layer (B(t)). The experimenta-
tion showed that the convergence is much longer than the
aforementioned flexible action space, which is used, as it
encourages more exploration.

2.4 Asymmetric Reward Formulation for Accuracy
While the state space embedding focused on interplay be-
tween the layers and the action space provided flexibility,
reward formulation for RELEQ aims to preserve accuracy
and minimize bitwidth of the layers simultaneously. This re-
quirement creates an asymmetry between the accuracy and
bitwidth reduction, which is a core objective of RELEQ. The
following Reward Shaping formulation provides the asym-
metry and puts more emphasis on maintaining the accuracy
as illustrated with different color intensities in Figure 1(b)(i).
This reward uses the same terms of StateQuantization and
StateAcc from Section 2.2.

Reward Shaping:
reward = 1.0− (StateQuantization)

a

if (StateAcc < th) then
reward = −1.0

else
Accdiscount = StateAcc

(b/StateAcc)

reward = reward×Accdiscount
end if

This used formulation (1) produces a smooth reward
gradient as the agent approaches the optimum quantization
combination. (2) The varying 2-dimensional gradient speeds
up the agent’s convergence time. In the reward formulation,
th is threshold for relative accuracy below which the accu-
racy loss may not be recoverable and those bitwidths are
completely unacceptable. After some trials, we observe that
a = 0.2, b = 0.4, th = 0.4 provide reasonable convergence
times and accuracy-quantization trade-off; thus, we fixed
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Fig. 1: (a) Action spaces: (i) Flexible action space (used in RELEQ), (ii) Alternative action space with restricted movement. (b) Reward
shaping with three different formulations as functions of the optimization objectives: state of relative accuracy and state of quantization:
(i) Proposed formulation, (ii) direct division, and (iii) direct subtraction. The color palette shows the intensity of the reward. (c) Overview
of RELEQ, which starts from a pre-trained network and delivers its corresponding deeply quantized network.

them throughout the experiments. While Figure 1 (b) (i)
shows the aforementioned formulation, Figures 1 (b) (ii) and
(iii) depict two other alternatives. Figure 1 (b) (ii) is based on
StateAcc/StateQuantization while Figure 1 (b) (iii) is based
on StateAcc − StateQuantization. In summary, based on our
experiments, the formulation for Figure 1(b) (i) offers faster
convergence.

2.5 Network Architecture of Policy and Value Networks

Both Policy and Value are functions of state, so the state
space, defined in Section 2.2, is encoded as a vector and fed
as input to LSTM layer which acts as the first hidden layer
for both Policy and Value networks. Apart from the LSTM,
policy network has two fully connected hidden layers of
128 neurons each and the number of neurons in the final
output layer is equal to the number of available bitwidths
the agent can choose from. Whereas the Value network has
two fully connected hidden layers of 128 and 64 neurons
each. Based on our evaluations, LSTM enables the RELEQ
agent to converge almost ×1.33 faster in comparison to a
network with only fully connected layers.

(a) (b)

(c) (d)

Fig. 2: Action (Bitwidths selection) probability evolution over train-
ing episodes for LeNet.
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3 PUTTING IT ALL TOGETHER: RELEQ IN ACTION

As discussed in Section 2, state, action and reward enable
the RELEQ agent to maneuver the search space with an
objective of quantizing the neural network with minimal
loss in accuracy. We use linear quantization as proposed
in [7]. Figure 1(c) depicts the entire workflow for RELEQ
and this section gives an overview of how everything fits
together in practice.
Learning the policy. Policy in terms of neural network
quantization is to learn to choose the optimal bitwidth for
each layer in the network. Figure 2 shows the evolution of
RELEQ agent’s bitwidth selection probabilities for all layers
of LeNet over training episodes, which reveals how the
agent’s policy changes with respect to selecting a bitwidth
per-layer. As indicated on the graph, the end results suggest
the following quantization patterns, 2, 2, 2, 2 or 2, 2, 3, 2 bits.
For the first two convolution layers, the agent ends up
assigning the highest probability for two bits. For the third
layer (FC1), the probabilities of two bits and three bits are
very close. Lastly, for the fourth layer (FC2), the agent again
tends to select two bits, however, with relatively smaller
confidence compared to layers one and two. With these
observations, we can infer that bitwidth probability profiles
are not uniform across all layers. As such, the agent dis-
tinguishes between the layers, understands the sensitivity
of the objective function to different layers and accordingly
chooses the bitwidths.

4 EXPERIMENTAL RESULTS

4.1 Quantization Levels with RELEQ

Table 1 provides a summary of results with respect to layer-
wise quantization bitwidths achieved by RELEQ. At the
onset of the agent’s exploration, all layers are initialized to
8-bits. As the agent learns the optimal policy, each layer
converges with a high probability to a particular bitwidth.
As shown in the “Quantization Bitwidths” column of Table 1,
RELEQ quantization policies show a spectrum of varying
bitwidth assignments to the layers. The bitwidth for Mo-
bileNet varies with an irregular pattern, which averages to
6.43. ResNet-20 achieves mostly 2 and 3-bit, again with an
irregular interleaving that averages to 2.81. In many cases,
there is significant heterogeneity in the bitwidths and a uni-
form assignment of the bits is not always the desired choice
to preserve accuracy. These results demonstrate that RELEQ
automatically distinguishes different layers and their vary-
ing importance with respect to accuracy while choosing
their respective bitwidths. As shown in the “Accuracy Loss”
column of Table 1, the deeply quantized networks with
RELEQ have less than 0.30% loss in accuracy. To assess
the quality of these bitwidths assignments, we conduct a
Pareto analysis on the DNNs for which we could populate
the search space.

4.2 Validation: Pareto Analysis
Figure 3 (a) depicts the solutions space for four benchmarks
(CIFAR10, LeNet, SVHN, and VGG11). Each point on these
charts is a unique combination of bitwidths that are as-
signed to the layers of the network. The boundary of the
solutions denotes the Pareto frontier and is highlighted by

a dashed line. The solution found by RELEQ is marked
out using an arrow and lays on the desired section of the
Pareto frontier where the accuracy loss can be recovered
through fine-tuning, which demonstrates the quality of the
obtained solutions. It is worth noting that as a result of
the moderate size of these four networks, it was possible
to enumerate the design space, obtain Pareto frontier and
assess ReLeQ quantization policy for each network. How-
ever, such enumeration is infeasible for state-of-the-art deep
networks (e.g., MobileNet, AlexNet) which further stresses
the importance of automation and efficacy of RELEQ.

4.3 Learning and Convergence Analysis

An appropriate evidence for the correctness of a formulated
RL problem is the ability of the agent to consistently yield
improved solutions. Figures 3 (b) shows (through different
quantities (i-v)) that RELEQ consistently yields solutions
that increasingly preserve the accuracy (maximize rewards),
while seeking to minimize the number of bits assigned
to each layer (minimizing the state of quantization) and
eventually converges to a rather stable solution. The trends
are similar for other networks.

4.4 Execution Time and Energy Benefits with RELEQ

Deep quantization with conventional hardware. RELEQ’s
solution can be deployed on conventional hardware, such
as general purpose CPUs to provide improvements. To
manifest this, we evaluated RELEQ using TVM [5] on an
Intel Core i7-4790 CPU. Figure 4 (a) shows the speedup
for each benchmark using TVM compiler. The baseline is
the 8-bit runtime for inference. RELEQ’s solution offers, on
average, 2.2× speedup over the baseline as the result of
merely quantizing the weights that reduces the amount of
computation and data transfer during inference.

Deep quantization with custom hardware accelerators.
To further demonstrate the energy and performance ben-
efits of the solution found by RELEQ, we evaluate it on
Stripes [6], a custom accelerator designed for DNNs, which
exploits bit-serial computation to support flexible bitwidths
for DNN operations. Figure 4 (b) shows the speedup and
energy reduction benefits of RELEQ’s solution on Stripes.
Baseline is the 8-bit inference execution. RELEQ’s solutions
yield, on average, 2.0× speedup and an additional 2.7×
energy reduction. MobileNet achieves 1.2× speedup which
is coupled with a similar degree of energy reduction. On the
other end of the spectrum, ResNet-20 and LeNet achieve
3.0× and 4.0× benefits, respectively.

4.5 Speedup and Energy Reduction over ADMM

We compare RELEQ’s solution in terms of speedup and
energy reduction against ADMM [8], another procedure
for finding quantization bitwidths. As shown in Table 2,
RELEQ’s solution provides 1.25× energy reduction and
1.22× average speedup over ADMM with Stripes for
AlexNet and the benefits are higher for LeNet.
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TABLE 1: Benchmark DNNs and their deep quantization with RELEQ.

Fig. 3: (a) Performance: quantization space and its Pareto frontier for (i) CIFAR-10, (ii) LeNet, (iii) SVHN, and (iv) VGG-11. (b) Convergence:
the evolution of reward and its basic elements: State of Relative Accuracy for (i) CIFAR-10, (ii) SVHN. State of Quantization for (iii) CIFAR-
10, (iv) SVHN, as the agent learns through the episodes. The last plot (v) shows an alternative view by depicting the evolution of reward
for MobileNet. The trends are similar for the other networks.

TABLE 2: Speedup and energy reduction with RELEQ over ADMM [8].

Network Dataset Technique Bitwidth RELEQ speedup
on TVM

RELEQ speedup
on Stripes

Energy Improvement of
RELEQ on Stripes

AlexNet ImageNet
RELEQ {8,4,4,4,4,4,4,8}

1.20X 1.22X 1.25X
ADMM {8,5,5,5,5,3,3,8}

LeNet MNIST
RELEQ {2,2,3,2}

1.42X 1.86X 1.87X
ADMM {5,3,2,3}

5 RELATED WORK

ReLeQ is the initial step in utilizing reinforcement learning
to automatically find the bitwidth for the layers of DNNs
such that their accuracy is preserved.

Reinforcement learning for automatic tuning. RL based
methods have attracted much attention within neural archi-
tecture search (NAS) after obtaining the competitive per-
formance on the CIFAR-10 dataset employing RL as the
search strategy [9]. Different RL approaches differ in how
they represent the agent’s policy. [9] uses an RNN trained
by policy gradient to sequentially sample a string that in
turn encodes a neural architecture.

Aside from NAS, [10] employs RL to prune existing
architectures where a policy gradient method is used to
automatically find the compression ratio for different layers
of a network.

Techniques for selecting bitwidths. Recent work
ADMM [8] runs a binary search to minimize the total
square quantization error in order to decide the bitwidths
for the layers. Then, they use an iterative optimization
technique for fine-tuning. Other work [11] focused on
binarized neural networks. There is a concurrent work
HAQ [12] which also uses RL in the context of quantization.
The following highlights some of the differences. RELEQ
uses a unique reward formulation and shaping that enables
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(a)

(b)

Fig. 4: (a) Speedup with RELEQ for conventional hardware using
TVM over the baseline run using 8 bits. (b) Energy reduction and
speedup with RELEQ for Stripes over the baseline execution when
the accelerator is running 8-bit DNNs.

simultaneously optimizing for two objectives (accuracy
and reduced computation with lower-bitwidth) within a
unified RL process. In contrast, HAQ utilizes accuracy in
the reward formulation and then adjusts the RL solution
through an approach that sequentially decreases the layer
bitwidths to stay within a predefined resource budget. This
approach also makes HAQ focused more towards a specific
hardware platform whereas we are after a strategy that
can generalize. Additionally, we also provide a systemic
study of different design decisions, and have significant
performance gain across diverse benchmarks. The initial
version of our work [13], predates HAQ, and it is the first
to use RL for quantization. Later HAQ was published
in CVPR, and we published initial version of RELEQ in
NeurIPS ML for Systems Workshop.

6 CONCLUSION

This paper sets out to define the automated discovery of
bitwidths for the layers while complying to the constraint
of maintaining the accuracy. As such, this work offered the
RL framework that was able to effectively navigate the huge
search space of quantization and automatically quantize a
variety of networks leading to significant performance and
energy benefits. The results suggest that a diligent design
of our RL framework, which considers multiple concurrent
objectives can automatically yield high-accuracy, yet deeply
quantized, networks.
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