kstats

Luigi Rizzo, Irizzo@google.com

Code; https://lwn.net/Articles/813303/

https://lwn.net/Articles/813303/

Summary

e (oals, motivation, design strategy
e kstats in a nutshell

e Internals, performance, accuracy...
e Related work

e Conclusions

-- RUNTIME MEASUREMENT --

Goals and motivation to = clook()
work();
ru;time = clock() - tO;
Goal measure runtime or latency for kernel code
-- LATENCY MEASUREMENT --
Targets 0(30ns) accuracy (A from real value) g’fthﬂDE'ﬁck()
O(30ns) resolution (5 between distinct values) ON RECEIVER:

latency = clock() - x.t0;

O(1M) samples per second per CPU

Motivation
study caching effect, lock contention, synchronization latencies

Applications
design, performance evaluation, optimizations, configuration,

troubleshooting

Design strategy

Tool designer: make the tool easy to use and non intrusive

o complexity discourages adoption

o intrusivity alters system behaviour making measurements meaningless

Users: be aware of the limitations of your tools
o key to understanding output data (accuracy, confidence intervals...)
o time-related measurements are especially fragile

o be wary of additional abstraction layers (they may add noise)

kstats in a nutshell

Change-Id: I4befd3df4400d4cca2a3343a8d69431d56668bbd

include/linux/kstats.h | 34 ++++++++++++++++
kernel/Makefile | 1+
kernel/kstats.c | 303 ++++++++++++tttrttbb bbb L

#include <linux/kstats.h>
struct kstats *key = kstats_new("foo", 3 /* frac_bits */);

u64 t0 = ktime_get_ns(); /* about 20ns on x86 */

do_something()
kstats_record(key, ktime_get_ns() - t0); /* 30ns hot cache, 300ns cold */

$ cat /sys/kernel/debug/kstats/foo # export values

slot 55 CPU 1 count 18 avg 480

p 0.002572

slot 55 CPU 2 count 25 avg 480 p 0.003325
slot 55 CPU 224 count 1 avg 480 p 0.001310
slot 55 CPUS 256 count 814 avg 480 p 0.002474
slot 97 CPU 254 count 1150 avg 20130 p 0.447442
slot 97 CPU 255 count 26 avg 20294 p 0.275555
0.651747

slot 97 CPUS 256 count 152585 avg 19809 p

start = clock();

kstats internals work();

runtime = clock() - start;
kstats addresses several orthogonal problems

e P1:instrument the code
o manual
o dynamic probes

e P2: acquire samples
o read a clock, understand its cost and accuracy/resolution

e P3: aggregate values
o tradeoff between accuracy/resolution, time, space

e P4: export data
o choose a useful format, robust to future extensions

e P5: presentation: NO!
o plot, histogram... there are external tools for that!

These are addressed in the rest of the presentation.

start = clock();

General caveats work();

runtime = clock() - start;

Obvious, caveats, but always good to remember:

e clock sources need proper serialization and possibly synchronization

e interrupts, preemption, contention can alter samples
o don't call them errors or outliers: those are what affects our tails
o this is why we collect distributions not just averages

e clock choice affects accuracy, pick the right one for your task
e collection cost affects max sampling rate (unfortunately, highly variable)

P1: Instrumentation E

runtime = clock() - start;

e manual

o easy and fast at runtime, but intrusive
e dynamic probes (~breakpoints)

o supported by linux (kprobe, kretprobe, tracepoints)
attach hooks around the code to be measured

O

o naming the attach point may be non trivial

o compiler optimizations and inlining gets in the way

o significantly more expensive (trampolines, out of line code), affecting accuracy
e BPF

o another layer on top of dynamic code modification
o adds convenience, dependencies, runtime cost, measurement errors

start = clock();

P2: Acquire samples work ()

runtime = clock() - start;

e trivial if the sample is an already available value
o block size, iteration count ...

e otherwise must read a clock twice, compute difference
o need serialized and possibly synchronized clocks
o accuracy is platform dependent
o ktime_get_ns(), local_clock(), have increasingly relaxed features
o the clock read function may take cache or TLB misses (unlikely to be visible,
because the first call will prime caches)
o also possible that the clock read may spin a bit to synchronize with hw or timebase

e expect ~20ns accuracy for ktime_get_ns(), 10-15ns for local_clock()

o the above for back-to-back reads. Tails are 40ns with interrupt disabled
o platform dependent

e | don't have an estimate for the cost of serialization

https://www.felixcloutier.com/x86/rdtscp

P3: Aggregate values

e our target sample rate (1M/s per cpu) is too high to export a trace
o per-CPU aggregation becomes mandatory

e split the range into (logarithmic) buckets. For each sample x do

index = log(x)/log(bucket_range)
bucket[cpul[index].count++
bucket[cpu][index].total += x

e most tools use bucket_range=2 which reduces to index = fls64(x)

o this reduces resolution to 1 bit i.e. all values between N and 2N are merged
o not enough for our purposes!
o smaller bucket_range (e.g. 1.1) increases significant bits

e kstats makes resolution configurable (up to 5 bits) and approximates
logarithm with shift and mask

P3: Aggregate values: actual code

e values have (1 + frac_bits) significant bits
e the sum is scaled to guarantee ~20 significant bits also for large values
e costis ~30ns with hot cache, 300ns with cold cache

void kstats_record(struct kstats *ks, u64 val)
{
/* Leftmost 1 selects the bucket, subsequent frac_bits select the slot within the
* bucket. fls returns 0 when the argument is 0. frac_mask = (1 << frac_bits) - 1
*/
u64 bucket = fls64(val >> ks->frac_bits);
u64 slot = bucket == 0 ? val : ((bucket << ks->frac_bits) |
((val >> (bucket - 1)) & ks->frac_mask));
/* preempt_disable protects from migration, this_cpu_add() uses a non
* interruptible add, safe against hw interrupts which may call kstats_record.
*/
preempt_disable();
this_cpu_add(ks->slots[slot].samples, 1);
this_cpu_add(ks->slots[slot].sum,
bucket < SUM_SCALE ? val : (val >> (bucket - SUM_SCALE)));
preempt_enable();

P4: Export data, control operation

e export and presentation are two different steps
o but several tools merge them, producing histograms or other output
e it may make sense to export raw data

o that still freezes the API and requires metadata (bits, #CPUs, ...)
o it also requires some userspace tool to produce useful output (cdf, pdf)

After trying a few options, | went for text format and minimal kernel preprocessing

export: cat /sys/kernel/debug/kstats/foo

control: echo {reset|start|stop} > /sys/kernel/debug/kstats/foo

P4: export data format

one line per-slot, per cpu

each line is self contained to ease postprocessing
format is friendly to grep, awk, gnuplot, watch, ...
easy to filter by CPU or aggregate, plot cdf or pdf

(@)

(@)

$ cat /sys/kernel/debug/kstats/foo

slot
slot
slot
slot
slot
slot
slot
slot

55
55
55

55
55

97
97
97

CPU ©
CPU 1
CPU 2

CPU 224
CPUS 256

CPU 254
CPU 255
CPUS 256

count
count
count

count
count

count
count
count

589
18
25

1
814

1150
26
152585

avg
avg
avg

avg
avg

avg
avg
avg

480
480
480

480
480

201360
20294
198609

T T T T T

T T T

oo (o> Ja~ Ja~]

(o~ B~ B av)

.027613
.002572
.003325

.001310
.002474

.447442
.275555
.651747

Performance numbers start = clook():
work();

runtime = clock() - start;
Times in ns, each cell has two values:

cold cache (10 calls/s) / hot cache (>100k calls/ns)

Clock source / operation p10 p50 p9o p99 p99.9

rdtsc() # don't use this! 22 / 22 45 /) 22 | 67 |/ 45 67 / 45

local_clock() # !sync 29 / 16 306/ 16 | 40 / 20 40 / 260
ktime_get_ns() 30 / 26 40 / 29 50 / 30 60 / 30
a=b+ 1; (1 thread) 20 / 20 40 / 30 80 / 30 100 / 30
a=>b+ 1; (2 threads) 40 / 250 | 200 / 250 213 / 250 | 2306 / 260 | 265 / 600

kstats_record() 149 / 306 250 / 30 260 / 40 490 / 406 650 / 60

kStatS accuracy volatile int a, b;

start = clock();
work();

runtime = clock() - start;
From the first line we see accuracy is 30ns hot, 60ns cold.

Hence the hot measurements in line 2 are only an upper bound.

For a better estimate of kstats_record() we must measure a longer interval

Clock source / operation p10 p50 poo p99 p99.9
ktime_get_ns() 30 / 26| 40 / 29 50 / 36 60 / 30
kstats_record() 149 / 36 250 / 36 260 / 40 490 / 46 650 / 660
kstats_record() 100 times 543 543 543 675 993

no interrupts

P5: Presentation (external tools)

data format is well suited for post processing

slot 97 CPU 254 count 1150 avg 20130 p 0.447442
slot 97 CPU 255 count 26 avg 20294 p 0.275555
slot 97 CPUS 256 count 152585 avg 19809 p 0.651747

gnuplot is one option for live monitoring

S cd /sys/kernel/debug/kstats

S echo reset > foo; watch grep "'CPU 6 '" foo # show one cpu
$ echo reset > foo; watch grep "'CPUS'" foo # show totals
$ gnuplot

> set terminal dumb size 200,80 ansi256; set logscale x
plot distribution from a live machine. Replace 8:6 with 8:10 for cdf

refresh data

>
>
>
> while (1) { pause 1; reread; replot; }

plot "“<ssh root@otrv2 grep CPUS /sys/kernel/debug/kstats/foo" u 8:6 w 1

P5: Presentation example

|

|

| |
0.9 |-+ | -+t +- |
| | b=t = bbb |

| | B O |

| B T FE e |

| + + |
0.8 |-+ + | +-|
| | + |

| + B |

| | ++++ |
0.7 |-+ | + +-|
| + | |

| |1 |

| |1 |

| |1 |
0.6 |-+ + o+ +-|
| | |

| [|

| -+ |
0.5 |-+ -+ | +-|
| +H+ | |

| | |

| + | |
0.4 |-+ + | +-|
| + | |

| + | |

| =i | |

| + + |

0.3 |-+ + | +-|
| | | |

| + | |

| | | |

0.2 |-+ | | +-|
| + | |

| | | |

| | | |

| | | |

0.1 |-+ + -+ +- |
| | ++ |

| + -+t |

| + + + |

L I e e T T +

1000 10000 100000 le+06

P1: Instrumentation: dynamic probes

e linux supports dynamic code modification (think of breakpoints)

o can attach a call to a kernel function in any point
o through BPF, can make the kernel call user-supplied code

We can replace code changes with probes attached dynamically around the code
under observation!

e beware:
o the desired attach point may not exist in the binary due to optimization, inlining, etc.
o likewise, variables of interest may have disappeared
o invoking the callbacks relies on adapters, trampolines and multiple out-of-line data access

Dynamic probes add 100..1500ns to each sample
o not systematic: the actual value depends on cache state
o even larger impact in case of concurrency
o this defeats some use cases, and may be very misleading in others

P1: Instrumentation: dynamic probes (2)

e Despite their limitations, dynamic probes are useful, and come in 3+ forms:

e kprobe (attach callback to a function, or in principle anywhere)
o atrampoline invokes the user callback with a copy of the registers
o we need two of them, plus storage, to do the timing. Cost: 100..500ns
e kretprobe (attach callbacks on entry and return of a function)
o atrampoline allocates temp storage, invokes the user callbacks on entry and on return.
o Simpler to use, but more expensive. Cost: 100..1500ns
o Current version serializes all entry and exit points. A fix for upstream is under review
e tracepoints (placeholder functions to attach callbacks)
o these are manually added annotations, but many exist already
o more convenient than k*probes, because arguments are passed explicitly to the user function

(There are also dedicated bpf hooks...)

P1: kstats and dynamic probes

kstats has builtin support to wrap a block of code with dynamic probes

e use kretprobe by default, also possible to track time between two places
e we added percpu support to kretprobes to remove a serialization point

cd /sys/kernel/debug/kstats

echo trace do_softirq bits 4 > _control

echo reset > __do_softirq; watch grep "'CPUS'" __do_softirq # show totals
echo remove __do_softirq > _control

watch grep "'CPUS'" __do_softirq

echo trace foo start tracepoint_x end __tracepoint_y > _control

S
$
S
S
S echo trace pcpu:__do_softirqg > _control # pcpu avoids a lock on enter
S
S
$

watch grep "'CPUS'" foo

t0 = ktime_get_ns();

Cost of dynamic probes [uork(): /7 empty function

kstats_record(foo, ktime_get_ns() - t0);

Times in ns, each cell has two values:
cold cache (10 calls/s) / hot cache (>100k calls/ns)

kstats entry p10 p50 p9o

foo # work untraced 30 / 20 50 / 360 60 / 30
foo # work traced 1500 / 236 1580 / 241 | 2100 / 241
work 500 / 90 540 / 90 790 / 99

p99
60 / 30
4900 / 265

1050 / 1260

Hot accuracy goes from 30ns (manual) to 250ns with dynamic probes.
Cold accuracy goes from 60ns (manual) to 1050ns with dynamic probes.
The traced function takes a large hit (200..4900us; it is 30..300ns for manual)

Some use cases

e [Pl dispatch latency

include/linux/smp.h | 3 +++
kernel/smp.c | 23 ++++++++++++HHtrE b+

e network rx latency (nic to socket to application)

e tx latency (tcp_sendmsg to xmit_one)

IPI latency (ns)

+
10000 |-+ |+ +-+ + | | +-|
|+ [O + +| | | +|

|+ [I+ 1 + o+ o+ +|

|+ + |-+ + | | 1+ | + +|

|+ |+ | | | [1 + +|

| | +- + | I 1 | + |

|+ | + | + |11 | -+ +| +|

| + + | | ([+ + | =i + | |

| | | | + o+ | + | + 4+ + +- |
1000 |-+ | +-+ | + | | + | | +- | | + |+ +-|
|+ + + o+ + | + + | + | +-+-+ +-| o+ +|

|+ | +-+ +- | | | |-++ | +-dt + + +|

|+ | + | | -+- ++- | + o+ | +|

|+ +--| + | + o+ o+ o+ | +|

| |+ +- + | + + | |

|+ | + + | + + o+

| + + | | |
100 |-+ | +-| | +-
|+ + + |+l

[+ | |+l

1+ + | + 4|

[+ |+ |+

[+ | + |+l
| (.
[+ |+
|1 [

10 |-| [+-1
[+] | +|

[+] | +|

[+] | +|

| ++ I--1

[+] + +|

[l +|

[l |

| + + + + + + + + + + |

b R L P LT +

1000 2000 4000 8000 16000 32000 64000 128000 256000 512000

Related tools

e kstats' main feature is collect samples and compute distributions with well
defined accuracy and resolution

e the same can be done attaching user-code to kretprobes via BPF.
The following tools (and probably many others) have code for that:

Y))) oo

Key differences:
e dynamic probes accuracy and overhead are inherently 10x worse than inline
calls. May be improved with custom hooks (fenter, fexit) + kernel changes.
e kstats has programmable resolution (default 4 bits).
Most other tools have 1 bit, hardwired (buckets are power of 2). This is
fixable (but may take work depending on collection and presentation are
entangled)

http://www.brendangregg.com/perf.html
https://github.com/iovisor/bpftrace
https://sourceware.org/systemtap/
http://www.brendangregg.com/blog/2016-10-06/linux-bcc-ext4dist-ext4slower.html

Conclusions

e kstats is very small and cheap at runtime (5ns hot, 300ns cold)

e accuracy and resolution may significantly limit usefulness
o dynamic probes problematic/misleading for sub-microsecond measurements
o use > 1bit resolution for fine-grained performance analysis

Code;

https://lwn.net/Articles/813303/

