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ABSTRACT

How to leverage cross-document interactions to improve ranking

performance is an important topic in information retrieval research.

The recent developments in deep learning show strength in mod-

eling complex relationships across sequences and sets. It thus mo-

tivates us to study how to leverage cross-document interactions

for learning-to-rank in the deep learning framework. In this paper,

we formally de�ne the permutation equivariance requirement for

a scoring function that captures cross-document interactions. We

then propose a self-attention based document interaction network

that extends any univariate scoring function with contextual fea-

tures capturing cross-document interactions. We show that it sat-

is�es the permutation equivariance requirement, and can generate

scores for document sets of varying sizes.

Our proposed methods can automatically learn to capture docu-

ment interactions without any auxiliary information, and can scale

across large document sets. We conduct experiments on four rank-

ing datasets: the public benchmarks WEB30K and Istella, as well

as Gmail search and Google Drive Quick Access datasets. Experi-

mental results show that our proposed methods lead to signi�cant

quality improvements over state-of-the-art neural ranking models,

and are competitivewith state-of-the-art gradient boosted decision

tree (GBDT) based models on theWEB30K dataset.
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1 INTRODUCTION

Ranking is a central problem in many applications of information

retrieval such as search and recommender systems. Given some
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query or context, the goal of a ranking algorithm is to sort a set

of documents into a ranked list so that the utility of the entire list

is maximized. Learning-to-rank (LTR) employs machine learning

techniques to solve ranking problems. The common formulation is

to �nd a function that can produce scores for the set of documents

given a query. The scores can then be used to sort the documents.

While much of the research in LTR has been devoted to the evo-

lution of ranking loss functions [11], the nature of the learned scor-

ing function has largely remained the same: a univariate scoring

function that computes a relevance score for a document in isola-

tion. How to capture cross-document interactions is a promising

but less well-studied research topic in LTR. Naturally, when cross-

document interactions are considered in a model, the score of each

individualdocument is in�uencedbyotherdocuments thatarescored

together. A desired property for such a model is being permutation

equivariant, that is, the score of each document should not be af-

fected by the order of the input documents, and shu�ing the input

documents produces an identical shu�e on the output scores.

Recently, neural network based approaches have proven e�ec-

tive for LTR applications [4, 14, 15]. In this context, we formally de-

�ne the permutation equivariance requirement for a scoring func-

tion that models cross-document interactions. We propose a novel

self-attentive Document Interaction Network (attn-DIN ) that ex-

tends any univariate scoring function to combine query-document

featureswith contextual cross-document features generated from a

self-attentionmechanism[17], andshowthat itnotonlysatis�es the

permutation equivariance requirement, but also applies to the rank-

ing setting where queries may have varying number of documents.

We conduct our experiments on four ranking datasets: benchmarks

WEB30K and Istella, a Gmail search dataset, and a Google Drive

Quick Access dataset. The �rst three are in a search setting, and the

lastone is ina recommendationsetting.Onall of them,ourproposed

method1 signi�cantly improves over neural network baselines.

2 RELATEDWORK

Most of the previous work in LTR [11] focuses on designing loss

functions, ranging from pointwise to pairwise to listwise ones. Gra-

dient Boosted Decision Trees (e.g., [10]) are regarded as the state-

of-the-art models for LTR on benchmark datasets. Recently, neural

network basedmodels have attracted considerable attention [8, 12].

Thereare twosettings formodelingcross-document interactions:

re-ranking and full ranking. In the former setting, a base ranking is

provided and the documents are reordered using the ranker. For ex-

ample, [1] applies sequence modeling on the top k documents of

the base ranking and then uses the �nal state vector to enrich each

document for the re-ranking scoring. In the latter setting,we do not

have a base ranking but start with a set of documents. For example,

1The implementation will be open-sourced at https://github.com/tensor�ow/ranking.
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RankProb [6] takes a pair of documents as input and uses a DNN

to produce a preference score for the input documents, while Ai et

al. [2] propose a groupwise scoring function tomodel document in-

teractions, sampling a subset of all permutations of each group and

thus not guaranteeing permutation equivariance.

Using attention mechanisms for ranking has been explored by

several works. Romeo et al. [16] and Wang and Klabjan [18] use

RNN-based approaches, whereas this paper uses Transformer self-

attention [17]. AttRN [18] also uses an attentionmechanism to cap-

ture listwise interactions, but the �nal ranking is generated by se-

lecting documents one by one sequentially, making it sensitive to

the input document order, and hence not applicable to full set rank-

ing. SetRank [13] is a recent approach that uses attention for cross-

document interactions, and is subsumed by our method.

3 PERMUTATION EQUIVARIANCE

In LTR, each training example consists of queryq and a list of docu-

mentsd to be ranked w.r.t their relevance to q. LetD = {(x ,y)} be
a training data set wherex := (q,d), andy represents the relevance

labels ford . A scoring function s : Xn → Rn maps x to a vector of

scores ŷ. We overload s to take x or equivalently q andd as inputs.

ŷ = s(x) = s(q,d). (1)

A loss function ℓ(.) can be de�ned between the predicted scores and
the labels. The LTR training objective is to �nd a scoring function

s∗ that minimizes the empirical loss over the training data:

s∗ = argmin
s :Xn→Rn

1

|D|
∑

(x ,y)∈D
ℓ(y, s(x)). (2)

De�nition 3.1 (permutation equivariant functions). Let x ∈ Xn

be a vector of n items to be ranked. Let π ∈ Π
n be a permutation

of indices of [1, ...,n]which represents the rank of the items, where

Π
n is the universe of bijections from [1, ...,n] to itself. A function

f : Xn → Yn is permutation equivariant i�

f (π (x)) = π (f (x)).

For such a function, a permutation applied to the input vector

x will result in the same permutation applied to the output of the

function. Thus, a scoring function s(x) : Rk×n → R
n (where k is

the dimension of query-document pair vector representation, andn

is the number of scored documents) is permutation equivariant i�

s(π (x)) = s(q,π (d)) = π (s(q,d)) = π (s(x)).

4 DOCUMENT INTERACTIONNETWORK

We propose a novel model, Document Interaction Network (attn-

DIN ), to extend aunivariate scoring functionwith features basedon

self-attention mechanism to capture cross-document interactions,

andshowthat it satis�es thepermutationequivariance requirement.

4.1 Self-Attention Layers

Our main building blocks are self-attention layers. Let D ∈ Rn×k
be an input matrix corresponding to n documents represented by

k- dimensional vectors. The attention layer in Transformer [17] is

de�ned based on three projection matrices:WQ ∈ Rk×h ,W K ∈
R
k×h ,WV ∈ Rk×k (where h is the projection size), that project D

Figure 1: Self-Attentive Document Interaction Network.

into a query2matrixQ = DWQ , a keymatrixK = DW K and a value

matrixV = DWV . At a high level, attention is a pooled combination

of value output V across documents, weighted by pairwise scaled-

dot product similaritymatrixA(D) betweenquerymatrixQ andkey

matrixK :

A(D) := QKT

√
h

(3)

Using these weights, a self-attention layer computes a weighted

sum ofV , for any document for index i ∈ [n] and j ∈ [k] as follows:

SA(D)i, j =
n∑

q=1

exp(A(D)i,q )∑n
p=1 exp(A(D)i,p )

Vq, j (4)

Multi-headed self-attention, �rst explored in Transformer [17],

shows that having multiple heads, which attend on di�erent parts

of the input, can be bene�cial. Form heads, the output of several

self-attention layers per head are concatenated and projected us-

ing a linear transformation usingmatricesWout ∈ Rmk×k and bias

term bout ∈ Rk to form the outputMHSA(D) ∈ Rn×k :

MHSA(D) := concatj ∈[m][SAj (D)]Wout + bout (5)

It will be shown in Sec. 4.3 that such an attentionmechanism is per-

mutation equivariant. Additionally, we apply residual connections

and layer normalization [17]. These are element-wise operations

and preserve the permutation equivariant property.

We note that such a self-attentionmostly takes the pairwise doc-

ument interactions. Since permutation equivariant property is pre-

served for function composition (G ◦ F )(x) = G(F (x)), we can stack
multiple self-attention layers to capture higher-order interactions.

4.2 Scoring Function

Ourgoal is to derive apermutation equivariantmultivariate scoring

function that captures cross-document interactions. We propose a

“wide and deep” scoring function that extends a univariate scoring

2Please note that the query here is di�erent from the search query q .



function s(.) to combine self-attention output with query and docu-

ment features through concatenation:

sDIN (q,d) := s(q, concat(d,MHSA(d))). (6)

In this architecture, the output of a stack of self-attention layers (the

“deep”part) is combined ina“wide”univariate scoring functionwith

query and document features to generate scores. We refer to this

scoring method as Document Interaction Network (attn-DIN ), and

show the scoring architecture for a single document di in Figure 1.

Our model handles varying result set sizes by padding d to a

maximum set size of n and masking out the padding in the pooled

weighted combination of value output in self-attention.

4.3 Theoretical Analysis

Toshowthatattn-DIN is permutationequivariant,westart by show-

ingthatself-attention ispermutationequivariant.SinceA(D) is com-

puted by pairwise scaled dot product attention (see Eq. 3), it follows

that A(π (D))i, j = A(D)π (i),π (j). Applying the permutation while

computing self-attention (SA) for any i ∈ [n] and j ∈ [k],

SA(π (D))i, j =
n∑

q=1

exp(A(π (D))i,q )∑n
p=1 exp(A(π (D))i,p )

π (Vq, j )

=

n∑

q=1

exp(A(D)π (i),π (q))∑n
p=1 exp(A(D)π (i),π (p))

Vπ (q), j

=

n∑

q′=1

exp(A(D)π (i),q′)∑n
p′=1 exp(A(D)π (i),p′)

Vq′, j

= SA(D)π (i), j = π (SA(D)i, j ).

Hence, π (SA(D)) = SA(π (D)). This proves that self-attention is

permutation equivariant. AsMHSA is concatenation of several self-

attention layers followedbya linearprojection, it followsthatMHSA

ispermutationequivariant.Additionally, theunivariatescoringfunc-

tion and concat(.) are permutation equivariant trivially.Using these,

we can then show that the “wide and deep” scoring function (de-

noted as sDIN ) is permutation equivariant:

sDIN (q, π (d))
= s(q, concat(π (d),MHSA(π (d))) (using Eq. 6)

= s(q, concat(π (d),π (MHSA(d))) (using MHSA is PE)

= s(q,π (concat(d,MHSA(d))) (using concat is PE)

= π (s(q, concat(d,MHSA(d))) (using s(q, .) is PE)

= π (sDIN (q,d)) (using Eq. 6)

The recently proposed SetRank [14] can be seen as a special case

ofattn-DIN,whereonly thedeepcross-documentattention ispassed

to thescoring function.attn-DIN ismoregeneral: it augmentsquery-

document featureswith these contextualized features and supports

context features (user, session, query) in the scoring function via q.

5 EXPERIMENTS

5.1 Datasets

For our experiments, we use two public learning-to-rank datasets

with numerical features, and two large-scale proprietary datasets.

3We discard queries with no relevant documents, similar to evaluation in [4].

Table 1:Comparison ofNDCG3between various rankingmodels on

theWeb30Kand Istelladatasets. △/▽ indicate statistically signi�cant

increase/decrease of a�n-DIN compared to best neural ranking

baseline (p-value<0.05).

(a) WEB30K NDCG@1 NDCG@5 NDCG@10

LambdaMART (RankLib) 0.4535 0.4459 0.4646

LambdaMART (lightGBM) 0.5057 0.4991 0.5183

LambdaMART + DLCM [1] 0.4630 0.4500 0.4690

GSF(m=64) with Softmax loss [2] 0.4421 0.4446 0.4677

FFNNwith E[ApproxNDCG] [3] 0.4951 0.4820 0.4996

SetRank with Softmax Loss [14] 0.4904 0.4885 0.5101

attn-DIN with Softmax Loss 0.5005△ 0.5014△ 0.5218△

(b) Istella NDCG@1 NDCG@5 NDCG@10

LambdaMART (RankLib) 0.6571 0.6118 0.6591

LambdaMART (lightGBM) 0.7264 0.6883 0.7356

LambdaMART + DLCM [1] 0.6272 0.5848 0.6310

FFNNwith Softmax Loss 0.6645 0.6422 0.6962

SetRank with Softmax Loss [14] 0.6702 0.6419 0.6958

attn-DIN with Softmax Loss 0.6747 0.6455△ 0.6999△

WEB30K&Istella. WEB30Kcomprisesof30Kquerieswith136dense

features per query-document pair, and similarly Istella full dataset

comprises of 33K querieswith 220 dense features, both labeledwith

relevance judgments from0 (not relevant) to 4 (highly relevant).We

use train, validation and test split provided for the datasets (Fold1

forWEB30K). Each query has a variable number of documents, and

weuse atmost 200documents per querywhile trainingbaseline and

proposed methods, but consider all documents during evaluation.

�ick Access. In Google Drive, Quick Access is a zero-state recom-

mendation system, surfacing relevant documents for easy user ac-

cess. The features are all dense and each session has up to 100 doc-

uments, with user clicks as relevance labels. Around 30 million rec-

ommended documents are collected,with a 90%-10% train-test split.

Gmail Search. A list of up-to 6 emails is considered as the candidate

set for each query, and the clicks are used as the relevance labels.

To preserve privacy, we remove personal information, and apply

k-anonymization. Around 200 million queries are collected, with a

90%-10% train-test split. The features comprise of both dense fea-

tures and sparse character and word level n-gram features.

5.2 Baselines

On the public datasets,we compare attn-DIN with theRankLib4and

LightGBM[10] implementationsofLambdaMART,andstate-of-the-

art neural ranking algorithms: SetRank [14], Deep Listwise Con-

textModel (DLCM) [1],Groupwise ScoringFunctions (GSF) [2], and

Feed-Forward Neural Network (with ReLU activations) with Gum-

bel Approximate NDCG loss [3]. We tune the hyperparameters of

LightGBM and set both the number of iteration and the number of

leaves to be 2,000 for WEB30K and 500 for Istella. Since the labels

consist of graded relevance, for evaluation we use Normalized Dis-

counted Cumulative Gain (NDCG) [9].

4https://sourceforge.net/p/lemur/wiki/RankLib/



Table 2:Model performance on Quick Access and Gmail data. Note

that ∆MRR and ∆ARP denote % relative improvement. △/▽ indicate

statistically signi�cant increase/decrease compared to the best

reported listwise neural rankingmodel [15] (p-value<0.05).

(a) Quick Access ∆MRR ∆ARP

GSF(m=4) -0.440 ± 0.177▽ -0.659 ± 0.141▽

attn-DIN +0.312 ± 0.113△ +0.413 ± 0.124△

(b) Gmail Search ∆MRR ∆ARP

GSF(m=3) +1.006 ± 0.247 +1.308 ± 0.246

attn-DIN +1.245 ± 0.228△ +1.430 ± 0.247

On the proprietary datasets, we compare attn-DIN and the best

Groupwise Rankingmodelwith a baseline approach of listwise neu-

ral ranking model [15] (FFNN with Softmax loss). The open source

implementations of LambdaMART do not scale due to the massive

scale of these datasets and the heterogeneous nature of features

(dense and sparse). As the labels are binary clicks, we evaluate us-

ing Mean Reciprocal Rank and Average Relevance Position [15],

and only report relative percentage improvements due to the pro-

prietary nature of these datasets.

5.3 Hyperparameters

We train the neural ranking models to minimize Softmax Cross-

Entropy loss [5] using Adagrad [7] optimizer with a batch size of

128. which are shown to be e�ective for neural rankingmodels, and

focus on the choice of a scoring function. We tune the number of

self-attention layers, number of heads and number of neurons per

layer and report the best models on validation split.

For WEB30K, we use two self-attention layers with 100 neurons

and two heads for attn-DIN, and one self-attention layer with 200

neuronsandoneheadforSetRank.For Istella,weuse twoself-attention

layers with 200 neurons and two heads for attn-DIN, and one self-

attention layer with 200 neurons and two heads for SetRank. The

univariate scoring function, shown in Figure 1, comprises of an in-

put batch normalization layer, followed by 3 feedforward fully con-

nected layers of sizes [1024, 512, 256]with batch normalization and

ReLU activations, and is used for both attn-DIN and SetRank. These

models are trained to 250k steps with early stopping. For Gmail, we

use 5 self-attention layers with 100 neurons and 4 heads and train

for 10million steps. ForQuickAccess, we use 3 self-attention layers

with 100 neurons and 5 heads and train for 5 million steps.

5.4 Model E�ectiveness

In Table 1, we compare the proposed (attn-DIN ) approach with the

baselines outlined in Section 5.2. For feature scaling, we apply a

siдn(x) loд(1+ |x |) transformation on the features forWEB30K and

Istella datasets as it is shown to be e�ective [19] onweb-related data

sets. On public datasets, we observe that the proposed approach sig-

ni�cantlyoutperformsneuralnetworkbaselines, and is competitive

with state-of-the-art gradient boosted decision trees on WEB30K.

On theQuickAccess dataset (Table 2(a)), we analyze the relative im-

provements in MRR, and observe that the proposed approach does

signi�cantly better than the univariate model, while the GSF mod-

els fail to produce any improvements from cross-document interac-

tions. On the Gmail dataset (Table 2(b)), the proposed approach is

signi�cantly better than the univariatemodel, and is superior to the

best GSFmodel (m = 3). For both datasets, we observe a statistically

signi�cant improvement inrelativeMRRoverboththebest reported

listwise ranking model [15] as well as the best GSF model [2].

6 CONCLUSION

In this paper,we study cross-document interactions for learning-to-

rank. We propose the permutation equivariance requirement for a

scoring function that considers document interactions. We further

show that (a) self-attention mechanism can be used to implement

such a permutation equivariant function, and (b) any univariate

scoring function can be extended to capture cross-document inter-

actions using the proposed self-attention mechanism. We conduct

experiments on four datasets. The results show that our proposed

methodscane�ectively capturedocument interactions, outperform

state-of-the-art neural ranking models, and are competitive with

state-of-the-art tree based models on theWEB30K dataset.
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