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Abstract

This paper discusses one of the most challenging practical engi-
neering problems in speaker recognition systems — the version
control of models and user profiles. A typical speaker recogni-
tion system consists of two stages: the enrollment stage, where
a profile is generated from user-provided enrollment audio; and
the runtime stage, where the voice identity of the runtime au-
dio is compared against the stored profiles. As technology ad-
vances, the speaker recognition system needs to be updated for
better performance. However, if the stored user profiles are not
updated accordingly, version mismatch will result in meaning-
less recognition results. In this paper, we describe different ver-
sion control strategies for different types of speaker recognition
systems, according to how they are deployed in the production
environment.

Index Terms: speaker recognition, version control, deploy-
ment, production

1. Introduction

Speaker recognition is the process of recognizing the personal
identity of a spoken utterance. Depending on the number of
speaker candidates to be recognized, it is often referred to as
speaker verification (single candidate) or speaker identifica-
tion (multiple candidates). According to the textual content
of the spoken utterance being recognized, a speaker recogntion
task falls into three categories: fext-dependent speaker recog-
nition [1], where the text of the utterance is always the same
(e.g. akeyword [2] or password), or from a very small set; text-
prompted speaker recognition, where the text of the utterance is
randomly selected from a pre-defined large set to prevent spoof-
ing attacks; and text-independent speaker recognition [3], where
there is no restriction on the text of the utterance.

Regardless of the number of speaker candidates, the text
of utterance, or the specific underlying technology, all speaker
recognition systems require two stages of user interaction when
deployed to production environment: the enrollment stage and
the runtime stage:

* During the enrollment stage, a user provides multiple au-
dio samples to the system, and the system generates a
user profile to represent the voice characteristics of this
user, as shown in Fig. 1.

¢ Once the users have completed the enrollment, the sys-
tem is ready for runtime recognition, where the voice
characteristics of the runtime audio is compared against
the enrolled user profiles, as shown in Fig. 2.

In both the enrollment stage and the runtime stage, the
speaker recognition system needs to extract acoustic features
such as PLP [4], MFCC [5], PNCC [6] or log Mel-filterbanks
from the audio signals. After the acoustic features have been
extracted, a speaker encoder model will be used to represent the
audio by a speaker embedding, such as a GMM supervector [7],
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speaker factors from joint factor analysis [8], an i-vector [9],
or a neural network embedding [10, 11, 12]. In the context
of this paper, the software that implements feature extraction
and speaker encoder will be referred to as the speech engine, as
they are the most computationally expensive components in the
speaker recognition system.

2. The version control problem

After a speaker recognition system has been deployed to pro-
duction environment, we may still want to update the system
for many reasons, including:

1. Updating the feature extraction component for better per-
formance (e.g. using more frequency bands).

2. Updating the underlying speaker encoder technology for
better performance (e.g. migrating from i-vector model
to neural network based model).

3. Based on the same technology, updating the speaker en-
coder model to use a different neural network topology, a
different loss function during training, or different train-
ing datasets.

4. Software optimization and refactoring to improve system
robustness, scalability and maintainability.

Because of the enrollment stage, speaker recognition is a
stateful system — the recognition result of a runtime audio
depends on the output of other audio (i.e. the enrollment au-
dio). This is very different from other speech systems such as
automatic speech recognition (ASR) and language recognition,
where the systems are typically stateless.

As a consequence, the user profiles obtained during the en-
rollment process (Fig. 1) are “version dependent”. Once the
speaker recognition system has been updated to a newer ver-
sion, existing user profiles can no longer be used.

In the following sections, we will discuss strategies to re-
enroll the user profiles based on a new version of the system in
a production environment'. The strategies are different based
on the type of deployment. According to where the speech en-
gine runs and where the user profiles are stored, we categorize
deployment solutions into three types:

1. Device-side deployment: The speech engine runs on
user devices, and the user profiles are also stored on user
devices.

2. Server-side deployment: The speech engine runs on
cloud computing servers, and the user profiles are stored
on cloud databases.

3. Hybrid deployment: The speech engine runs on cloud
computing servers, but the user profiles are stored on
user devices.

I'without loss of generality, we will refer to the new version of the
system as the new “model” in the following sections for simplicity.
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Figure 1: Workflow of the enrollment stage of a speaker recognition system.
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Figure 2: Workflow of the runtime stage of a speaker recognition system.

3. Device-side deployment
3.1. Device-side architecture

In device-side deployment, both the speech engine execution
and the user profile storage happen on the user device. The user
device could be either smartphones, smart home speakers, or
smart security devices. The biggest advantage of device-side
deployment is that, it does not require any Internet communi-
cation with servers. This means both enrollment and runtime
stages can perform smoothly even when there is no Internet con-
nection.

One big challenge of device-side deployment is the lim-
ited computational resources, such as CPU, memory, storage,
and power. In most use cases, the user device (e.g. a smart-
phone) needs to perform many other tasks in parallel, thus the
resource budget for speaker recognition is usually very lim-
ited. There are many approaches to reduce the computational
cost of the speaker recognition system, such as model quan-
tization [13, 14], model compression [15], model sparsifica-
tion [16], or implementing part of the system on specialized
hardware (e.g. digital signal processors).

3.2. Single version updating strategy

Version control for device-side deployment is relatively
straightforward, as illustrated in Fig. 3. The user device only
keeps a single model. After the enrollment stage, the user’s en-
rollment audio will be stored on the device. When there is a
newer version of model available on the model storage server,
the user device will download this newer model. Once the
download completes, it will immediately trigger a process that
uses the newly downloaded model to generate the new version
of user profiles based on the enrollment audio. This process
guarantees that the version of user profiles stored on the user
device always match the version of the model.

4. Server-side deployment
4.1. Server-side architecture

In server-side deployment, both speech engine executation and
user profile storage happen on backend servers, which is the
opposite of device-side deployment. The biggest advantage of
server-side deployment is that, the user device only needs to
perform very simple operations, such as obtaining the enroll-
ment audio from the user, and communication with the servers.
All complicated logic and resource-intensive tasks will be im-
plemented on the servers.

The typical architecture of server-side deployment can be
illustrated in Fig. 4:

* During the enrollment stage, the user device first up-
loads the enrollment audio to the backend database via
the frontend reverse proxy server; next, the speech en-
gine on the cloud computing server generates the user
profile based on the enrollment audio; and finally, the
user profile will be stored in the backend database. Both
the enrollment audio and the user profile are stored to-
gether with the user’s unique ID.

* During runtime stage, the user device sends the runtime
audio together with a set of candidate user IDs to the
frontend server; the frontend will fetch the profiles for
the candidate users from the backend database, and send
them together with the runtime audio to the cloud com-
puting server; finally, the speech engine on the cloud
computing server will send the recognition result back
to the user device.

The request and response schema for enrollment and run-
time stages can be roughly described as below:

EnrollmentRequest {
string user_id;
vector<Audio> enrollment_audio;

}

EnrollmentResponse {}
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Figure 3: Version control for device-side deployment. The storage server stores all historical models, and provides a shortcut URL
for the user device to download the latest model. When the development team uploads a new model, the URL to the latest model will

redirect to this new model.

RuntimeRequest {
Audio runtime_audio;
vector<string> user_id;

}

RuntimeResponse {
map<string, Result> user_id_to_result;

}

The problem with the above architecture is obvious: During
runtime stage, if the model on the cloud computing server has
been updated to a newer version, it will mismatch with the user
profiles stored in the database. In the remaining of this section,
we will introduce three different version control strategies to
handle this problem.

4.2. Single version offline updating strategy

Among all model updating strategies for server-side deploy-
ment, single version offline updating is the simplest one. Before
we update the speaker recognition models in the cloud comput-
ing servers, the frontend server will first stop dispatching any
new enrollment or runtime requests to the backend. Instead,
the frontend will respond the user device with a special error
message, indicating that the backend servers are currently being
maintained and updated, and the user device should try again
later.

Once the models in the cloud servers have been updated,
a background process will be triggered to rerun the enrollment
process for all users — the speech engine will process the en-
rollment audio for each user, generate a new user profile based
on the new model, and replace the existing user profile in the
database. Once this large-scale re-enrollment process has been
completed, all user profiles in the database will have the same
version as the models in the cloud computing servers, and the
frontend could resume to accept new enrollment and runtime
requests again.

Although this single version offline updating strategy is rel-
atively simple and easy to implement, its disadvantages are also
obvious:

1. Itrequires a downtime period of the entire speaker recog-
nition service. If the users are geographically concen-
trated and the use cases are relatively simple, the updat-
ing can be typically scheduled to happen in the local late
midnight when we expect very few requests. However,
if the users are distributed across multiple time zones,

we may expect requests to the service 24 hours a day,
thus the downtime will cause significant frustrations to
the user experience.

2. Unlike device-side deployment, where each device only
stores the profiles for the owners of the device, in server-
side deployment, the database needs to store the profiles
of all users. For large-scale applications, the number of
users could be huge, thus rerunning enrollment for all
users will be a very computationally intensive task. It
may not complete within the scheduled downtime.

4.3. Single version online updating strategy

To avoid the downtime issue in the single version offline updat-
ing strategy, an alternative solution is the single version online
updating strategy. In this strategy, we associate each speaker
recognition model with a unique version identifier string. Dur-
ing the enrollment stage, when we store the user profile in
the database, it is stored together with the version identifier of
the model that generated it. Then in the runtime stage, when
the frontend server receives a new runtime request, it will first
check whether the version identifier of the user profile in the
database matches the version identifier of the model in the cloud
computing server:

¢ If the version identifiers match each other, the frontend
server will directly trigger the runtime logic as illustrated
in Fig. 4b.

o If the version identifiers do not match, the frontend
server will trigger another process to rerun the enroll-
ment for the user. After the re-enrollment completes, the
versions of the user profile and the model are guaranteed
to match each other, and the frontend server will trigger
the runtime logic.

As we can see, the single version online updating strat-
egy postpones the re-enrollment process to an on-demand, per-
request manner. This guarantees that the speaker recognition
service will be available 24 hours a day without downtime.

However, this strategy also has one disadvantage. Once
the model in the cloud computing server has been updated, the
next runtime request from each user will always experience in-
creased latency due to the re-enrollment. The significance of the
latency increase depends on the efficiency of the re-enrollment
process. However, since model updating typically happens ev-
ery few weeks or months, this increased latency is possibly ac-
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Figure 4: Architecture of server-side deployment of a speaker recognition system. The frontend server is the reverse proxy between the
user device and the backend servers; the cloud server performs resource-intensive tasks such as feature extraction and neural network
inference; and the database stores each user’s enrollment audio and profile. (a) Enrollment stage workflow. (b) Runtime stage workflow.
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Figure 5: The version bouncing problem for distributed speaker
recognition system.

ceptable for most applications — it only happens once for each
user after each model update.

Additionally, for large-scale distributed systems, single ver-
sion online updating strategy has another challenge known as
version bouncing. In a distributed system, there will be multi-
ple cloud computing servers, each serving a copy of the speech
engine. When we update the models for the cloud computing
servers to a newer version, the update process typically will not
finish synchronously on different machines. This will result in
a state that some of the cloud computing servers are serving the
new model version, while the other cloud computing servers
are still serving the old model version. If a user device sends
runtime requests to different servers, the re-enrollment process
may happen multiple times, upgrading and degrading the model
version in turn, as illustrated in Fig. 5.

There are several methods to avoid the version bouncing
problem:

1. The frontend server can periodically send synchroniza-
tion requests to all cloud computing servers, and main-
tain a table to record the current model version of each
cloud computing server. With this table, if a user pro-
file has been updated, the runtime request will only be
dispatched to a cloud computing server with the updated
model.

2. The frontend server can implement a load balancing al-
gorithm based on the hash value of the user’s ID, such
that requests for each user are always dispatched to the
same cloud computing server. This will guarantee that
re-enrollment will only update user profile from old ver-
sion to new version once.

3. Finally, we can store multiple versions of profiles for
each user in the database. Once the re-enrollment for a
user has completed, we will store both the old version
and the new version of this user’s profile. For future
runtime requests, no matter which version of model is
served in the cloud computing server, no re-enrollment
will be needed as both versions of profiles are available.

4.4. Double version updating strategy

As we mentioned before, the single version offline updating
strategy requires service downtime for each model update, and
the single version online updating strategy will cause increased
latency for runtime requests. Here we introduce the double ver-
sion updating strategy, which will overcome these drawbacks.

In the double version updating strategy, we always serve
two versions of models in the cloud computing servers at the
same time, and always store two versions of user profiles in the
database. During enrollment stage, we always enroll with both
models; and during runtime stage, we use the “newest available
model”. The coexistence of two versions guarantees that even if
we have updated one model to a newer version, the other model
is still available, allowing for a grace period for the user profiles
to be updated.

There are typically two ways to simultaneously serve two
models in the cloud computing servers. First, we could di-
vide the cloud computing servers into two groups, each group
serving one model. The group partition is fixed, so the fron-
tend server does not need to periodically synchronize with the
cloud computing servers. Alternatively, each cloud computing
server could serve two models at the same time with separate
processes.

Assuming different versions of models are served in differ-
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Figure 6: Double version updating strategy for server-side deployment.

ent groups of servers, we use Fig. 6 as an example to illustrate
this strategy. Originally, the cloud computing servers are serv-
ing model V1 and model V2 simultaneously, and we store both
user profile V1 and V2 in the database. When the development
team releases a newer model V3, it will replace the group of
cloud computing servers that are still serving the oldest model
V1. During this process, the frontend is still handling all enroll-
ment and runtime requests:

* Enrollment requests will be dispatched to both cloud
computing servers serving model V2 and V3. User pro-
files for both V2 and V3 will be produced and stored in
the database.

» For a runtime request, if the user profiles have not been
updated (only V1 and V2), the request will be dispatched
to a cloud computing server serving model V2. Because
user profile V2 is available, the runtime recognition can
be performed smoothly without additional latency (as is
the case in Fig. 6). At the same time, the frontend will
trigger a re-enrollment process in the background to re-
place user profile V1 by user profile V3.

* For a runtime request, if the user profiles have already
been updated to V2 and V3, the request will be dis-
patched to a cloud computing server serving model V3
(another case not described in Fig. 6).

As we can see, in the double version updating strategy,
while background processes are updating the models on cloud
servers to the newer version, and updating user profiles to the
newer version, the speaker recognition service will still be al-
ways available without additional latency. There will usually be
sufficient time to update all user profiles until the next model re-
lease. Apparently, this is the most elegant version control solu-
tion for server-side deployment. However, the implementation
of double version updating strategy is quite complicated, thus
may not be the optimal solution for smaller projects with short
development cycles.

5. Hybrid deployment
5.1. Hybrid architecture

In Section 3 and Section 4, we discussed the version control
strategies for device-side and server-side deployment. Although
device-side deployment is simple and requires no Internet com-
munications, it’s not available for many applications where the
on-device computational resource budgets are limited. At the
same time, storing user profiles on server-side databases may
results in privacy concerns [17].

An alternative solution is the hybrid deployment, where the
speech engine execution happens on cloud computing servers,
but the user profiles are stored on user devices, as illustrated in
Fig. 7:

¢ During enrollment stage, the user device first sends the

enrollment audio to the frontend server; then the speech
engine produces the user profile from the enrollment au-
dio; finally, the frontend server will send the user profile
back to the user device. Once the enrollment stage com-
pletes, the servers will immediately delete the user pro-
file from the memory; the user device is responsible for
storing the user profiles.

* In the runtime stage, the user device sends the runtime
audio together with candidate user profiles to the fron-
tend server; the speech engine will compare the voice
identity of the runtime audio against the candidate user
profiles; finally, the recognition results will be sent back
to the user device. The user profiles are typically en-
crypted when being stored on the user device and com-
municated to the servers for security.

Similar to Section 4.1, we provide the rough request and
response schema for enrollment and runtime stages of hybrid
deployment as below:

EnrollmentRequest {
string user_id;
vector<Audio> enrollment_audio;

}

EnrollmentResponse {
bytes profile;
}
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RuntimeRequest {
Audio runtime_audio;
map<string, bytes> user_id_to_profile;

}

RuntimeResponse {
map<string, Result> user_id_to_result;

}

The hybrid deployment is very similar to the server-side de-
ployment, except that user profiles are stored in the user devices
instead of in a backend database. Because all device-server
communications can only be initiated by the user device, the
servers cannot access the user profiles at any given time, which
poses a new challenge to the hybrid deployment.

5.2. Single version online updating strategy

For hybrid deployment, we could use a single version online up-
dating strategy that is very similar to the strategy we introduced
in Section 4.3 for server-side deployment. When the user de-
vice sends a runtime request to the frontend server, it will first
check whether the user profile version matches the version of
the model in the cloud computing server. If the versions do not
match, it will trigger the enrollment stage to update the user pro-
file, then perform runtime recognition after the re-enrollment
completes.

Similar to server-side deployment, single version online up-
dating strategy will cause increased latency to the first run-
time request for each user after the model has been updated.
This could be mitigated by implementing a daily handshaking
communication between the user device and the server, initi-
ated by the user device. This handshaking communication will
simply check whether the version matches between the device
and the server; if they mismatch, it will silently trigger the re-
enrollment in the background. The handshaking communica-
tion could happen at the late midnight in the device’s local time
zone to minimize user interference.

5.3. Double version updating strategy

For hybrid deployment, we could also use a similar double ver-
sion updating strategy as the one introduced in Section 4.4 for
server-side deployment. In this strategy, the cloud computing
servers always serve two versions of models, and the user de-
vices also always store two versions of user profiles. During en-

rollment stage, the server always produce two versions of user
profiles and send them back to the user device. At runtime, even
if one server-side model has been updated to a newer version,
the other model is still available for those devices whose user
profiles have not been updated.

For hybrid deployment, even if we use the double version
updating strategy, we still need to make sure that all user devices
complete the update within a certain time frame. Otherwise, if
some user devices missed two server-side model updates, both
versions of user profiles stored on the device will not be usable.
One solution is to implement a periodic handshaking communi-
cation between the user device and the server, as we mentioned
in Section 5.2.

6. Conclusions

In this paper, we introduced the concept of version control in
speaker recognition systems. Version control is a common and
challenging problem when deploying speaker recognition sys-
tems to production environments. Based on how we execute the
speech engine and how we store the user profiles, we categorize
speaker recognition deployment into three types: device-side
deployment, server-side deployment, and hybrid deployment.
We introduced version control strategies for each type of de-
ployment, and discussed the advantages and disadvantages of
each strategy.
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Appendices

.

A. Glossary

Speaker embedding: A vector representing the voice
characteristics of a spoken utterance.

Speaker encoder: The algorithm that generates the
speaker embedding from the acoustic features of an ut-
terance.

Speech engine: The software that implements acoustic
feature extraction and speaker encoder.

User profile: The aggregated speaker embedding gen-
erated from multiple enrollment audio samples provided
by the user.

Model: The model used by the speaker encoder algo-
rithm. In deep learning based approaches, the model is
usually a neural network.

Frontend: In server-side and hybrid deployment, the re-
verse proxy server that dispatches requests from user de-
vices to backend servers.

Cloud server: In server-side and hybrid deployment, the
backend server that runs the speech engine.

Database: In server-side deployment, the backend
database that stores enrollment audio and user profiles.
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