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ABSTRACT 
Jitter in interactive systems occurs when visual feedback is per­
ceived as unstable or trembling even though the input signal is 
smooth or stationary. It can have multiple causes such as sens­
ing noise, or feedback calculations introducing or exacerbating 
sensing imprecisions. Jitter can however occur even when 
each individual component of the pipeline works perfectly, as 
a result of the differences between the input frequency and 
the display refresh rate. This asynchronicity can introduce 
rapidly-shifting latencies between the rendered feedbacks and 
their display on screen, which can result in trembling cursors 
or viewports. This paper contributes a better understanding of 
this particular type of jitter. We first detail the problem from a 
mathematical standpoint, from which we develop a predictive 
model of jitter amplitude as a function of input and output fre­
quencies, and a new metric to measure this spatial jitter. Using 
touch input data gathered in a study, we developed a simulator 
to validate this model and to assess the effects of different 
techniques and settings with any output frequency. The most 
promising approach, when the time of the next display refresh 
is known, is to estimate (interpolate or extrapolate) the user’s 
position at a fixed time interval before that refresh. When 
input events occur at 125 Hz, as is common in touch screens, 
we show that an interval of 4 to 6 ms works well for a wide 
range of display refresh rates. This method effectively cancels 
most of the jitter introduced by input/output asynchronicity, 
while introducing minimal imprecision or latency. 
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INTRODUCTION 
Jitter is defined as “irregular random movement (as of a 
pointer or an image on a television screen); also : vibratory 
motion” [20]. In signal processing, jitter is defined as a form 
of timing noise, which can have deterministic and random 
components. In the HCI literature however, it tends to denote 
any form of perceivable tremor [24]. Jitter in interactive sys­
tems is often observed visually, as it typically translates into 
e.g. cursor or viewport displacements, or ‘spatial jitter’ [27]. 
Spatial jitter in interactive systems occurs when feedback in 
response to some input is perceived as unstable or trembling 
when the input signal is smooth or stationary [10]. 

Jitter is known to affect human performance [27] and sub­
jective preferences [24], and is usually assumed to originate 
from imprecise input sensing, scaling factors introduced by 
interaction techniques, and human limbs tremor [27, 10]. For 
instance, interaction techniques like Raycasting can introduce 
large scaling factors that amplify input device noise and hu­
man tremor [6]. ‘Next-point prediction,’ used to compensate 
interactive latency on a software level, can also introduce jitter 
by exacerbating minute imprecision and quantization effects 
in mouse or finger input [24] through extrapolation. These 
causes, however, are all random in nature: noise in the input 
movement, or in the treatment of that input. They all convey 
that some aspects of the interactive loop do not behave as well 
as they could. 

This paper highlights another family of jitter, one that can oc­
cur even when every individual component of the interactive 
loop functions well, and that denotes design rather than techni­
cal flaws. In particular, we describe, discuss, and evaluate how 
the discrepancy between input and output frequencies can gen­
erate spatial jitter, as a result of shifting delays between input 
and output events, and even when every (distinct) hardware 
and software component works as intended. 

This issue is exacerbated in recent devices. As we discuss be­
low, the typical combination of 120-125 Hz input sensing and 
60 Hz output refresh rate found in most mobile devices causes 
little to no extra jitter in theory. However, new mobile devices 
have started to stray from that trend, especially in terms of out­
put frequency: 80 Hz (Oculus), 90 Hz (Google Pixel 4, HTC 
Vive), 120 Hz (iPad Pro), or 144 Hz (Valve Index) refresh rates 
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can be observed in mobile or entertainment devices. We will 
focus on the case of the Google Pixel 4 (120 Hz input, 90 Hz 
output) released recently. The jitter resulting from this combi­
nation of frequencies can be directly compared to its previous 
version (Pixel 3), and compelled its designers to implement 
additional software processes to smooth out the phenomenon. 
We will also discuss these solutions, and characterize their 
trade-offs using input data gathered from 12 participants using 
Pixel 3 and Pixel 4 devices. 

This paper contributes to a better understanding of the impact 
of different input and output frequencies on spatial jitter. We 
first detail the problem from a mathematical standpoint, then 
introduce a new metric to measure spatial jitter. Based on a 
data collection we build a simulator to evaluate the impact of 
display refresh rate on spatial jitter. We used it to compare 
different techniques and parameters for each technique. 

RELATED WORK 

Impact of frame rate 
End-to-end latency in interactive systems has been shown 
to increase as display frame rates decrease. For example, 
switching from a 60 Hz to a 120 Hz screen decreases end­
to-end latency by 16 ms on average [9]. Increased latency 
can in turn degrade performance in 3D selections [31] and 
touch interaction [18]. This has motivated the development of 
input and output devices with very high frequencies to reduce 
latency [25]. Claypool and Claypool showed that (display) 
frame rate has a much greater impact on user performance 
than does resolution in games, especially below 15 Hz [14]. 
This has been confirmed by Janzen and Teather in the context 
of moving target selection [17], suggesting that frame rate 
more strongly affects moving target selection than latency. 

Impact of noise on performance and user perception 
In pointing tasks, Pavlovych and Stuerzlinger identified a trade-
off between spatial jitter and latency, with spatial jitter having 
a strong effect on error rate, roughly inversely proportional to 
the target size [27]. Teather et al. studied the effect of latency 
and jitter in 2D and 3D pointing tasks [30]. They showed that 
latency has a much stronger effect on performance than low 
levels of jitter, but that erratic ‘spikes’ in jitter bring signifi­
cant performance costs. Spatial jitter is also known to affect 
user perception in touch interaction, and is more noticeable in 
panning and dragging tasks than in drawing tasks [24]. 

Characterizing jitter 
Jitter is often represented as an estimation of the variation be­
tween an output signal and a reference value or input signal. In 
interactive systems, it has been measured e.g. as a maximum 
mean-to-peak value [25] or as an average Euclidean distance 
between the signal and its reference [24]. However, establish­
ing that reference can be challenging when the input signal is 
not fully synchronized with the output, e.g. as in direct touch. 
One way is to measure output noise when the device or limb 
is held steady [25]. This method however does not exclude 
the noise stemming from the user’s own jitter. Another ap­
proach consists in obtaining a reference signal from another, 
more reliable source. For example, the static and dynamic 

tracking precisions of the Leap Motion were analyzed using a 
high-precision optical tracking system following the user’s in­
put movement [16]. While very precise, this method requires 
careful hardware setup and a way to track markers to precisely 
measure the signals of interest. 

When input-to-output transformations make it too challenging 
to use the input signal directly, a reference can be approxi­
mated by smoothing the output signal. LaViola used a zero 
phase shift filter to remove high frequency noise in trajectories 
with jitter [19]. Nancel et al. followed the same approach to 
estimate the noise introduced by next-point prediction algo­
rithms [24]. However this approach requires tuning parameters 
for the filter, which is most of the time performed by hand and 
hard to generalize. As with above, it also “blends” the user’s 
own limb jitter together with the system’s. 

Finally, interactive jitter is usually modeled as a stochastic 
process. Pavlovych and Stuerzlinger evaluated the influence 
of spatial jitter by adding artificial noise to a mouse pointer, 
modeling spatial jitter as a uniformly distributed noise with a 
maximum offset expressed in pixels [25]. Taranta et al. fol­
lowed a similar approach to test jitter-filtering techniques [29]. 

Reducing jitter 
Similar to estimating a reference signal, a common way to 
reduce jitter is to filter the signal. Input devices like com­
puter mice measure relative displacements at high frame rates, 
typically between 1,500 and 12,000 Hz [8]. This high time 
resolution appears to be used to average out jitter and other 
noise sources [27]. Other filtering mechanisms may exist, such 
as assigning a threshold speed or displacement under which 
the device or limb is considered static, to smooth out sensing 
noise. Other techniques include moving average [33], Kalman 
filter [32], single and double exponential smoothing [19], or 
the 1 C filter used in interactive systems to reduce jitter while 
minimizing perceived latency [10, 29]. 

Resampling techniques 
Most displays have a fixed refresh rate, typically set at 60 Hz 
for desktop computers. Graphic cards most of the time enable 
vertical synchronization (V-sync) to synchronize the timing of 
the frame buffer swap with the start of a new scanout. This 
allows to display whole frames instead of having new frames 
partially overlapping previous ones, creating visual glitches 
like fractures in straight lines (tearing). 

Some recent screens have variable refresh rates, which al­
lows to synchronize the frequencies of the display and the 
graphics card, up to the display’s maximum refresh rate, 
while avoiding tearing and stuttering issues (frames dis­
played multiple times). AMD’s FreeSync [1] and Nvidia’s 
G-Sync [26] technologies provide this feature to compati­
ble displays and graphic cards. However it is not available 
on mobile devices. In practice, the next framebuffer swap 
timestamp can be estimated from the previous one, using 
CVDisplayLink on macOS [4], WaitForVBlank on Win­
dows [22], CADisplayLink on iOS [3], and FrameCallback 
on Android [2]. 



In comparison to most displays, input devices report events 
at a frequency bound to a nominal (maximum) value. Input 
devices like touch screens or computer mice monitor position 
or displacements, and emit events when changes are detected 
above a predefined threshold amplitude. When such changes 
are detected more often than the nominal frequency, the events 
can be coalesced by the operating system to match it [5]. 

Google Android uses linear interpolation and extrapolation to 
resample touch input event coordinates 5 ms before frame time 
for touch devices, as a way to provide a smoother scrolling 
experience [15]. Chromium recently re-implemented the same 
solution to be more accurate and reduce noise [13]. Besides 
these specific solutions, it remains unclear how different input 
and output frequencies affect visual jitter and extrapolation 
techniques affect the quality of re-sampling. 

Next-point prediction techniques 
Next-point prediction techniques provide means for predicting 
a likely path for the next few input locations [24]. Most of 
these techniques have been designed for touch interaction. De­
pending on the underlying principle they use, these techniques 
can either offer predictions at any point in the future, or only at 
fixed time intervals. Techniques based on polynomial models 
like first [11] and second-order Taylor series or curve-fitting 
can predict over a variable time horizon, as their underlying 
model includes a time parameter. Android and Chromium, 
for instance, use first-order Taylor series. Other techniques 
like Kalman filters, or machine learning approaches trained for 
fixed latencies [23], are designed to predict fixed time horizons. 
Nancel et al. provide a detailed review of each technique [24]. 

THEORETICAL EFFECTS OF IN-OUT ASYNCHRONICITY 
Spatial jitter in next-point prediction [24] is a consequence 
of (1) input sensing noise and quantization that can make 
speed and direction estimation inaccurate, and (2) errors in 
extrapolating an ongoing trajectory over several frames [23]. 
However, jitter can occur even with zero input noise and a 
perfect prediction model — or with no prediction at all. Calcu­
lating a visual feedback as soon as an input event is received, 
and rendering it to be displayed as soon as possible, can intro­
duce jitter when input frequency and output (display) frame 
rate are asynchronous. 

Example of Asynchronicity 
Consider the situation depicted in Fig. 1-top with a 100 Hz 
input stream (10 ms between input events) and a 125 Hz frame 
rate (8 ms between screen updates), both frequencies assumed 
constant for simplicity. Let us also assume that sensing, com­
putation, rendering, and display are instantaneous (this point 
is discussed later). 

t=0 ms An input event is received, and a feedback is calcu­
lated. That feedback is scheduled to be displayed as soon 
as possible, and since all computations are instantaneous, it 
is displayed at t = 0. 

t=8 ms The next frame time occurs. No new event was re­
ceived, so the current feedback still corresponds to t = 0 ms. 
A latency is introduced, despite all typical sources of delay 
(sensing, rendering, etc.) being currently null. 
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Figure 1: Two examples of input (blue dots) / output (green lines) asyn­
chronicity, and how it affects visual trajectories (red line) during point­
ing tasks. Top: 100 Hz input, 125 Hz output: a repetitive pattern of 
shifting lag translates into visual jitter. Bottom: 120 Hz input, 60 Hz 
output: the lag is constant and therefore does not cause jitter. 

t=10 ms A new input event is received, and its feedback is 
calculated and ready to be displayed as soon as possible. 

t=16 ms The feedback is displayed instantaneously. The in­
stantaneous latency is now 16 − 10 = 6 ms. 

t=20 ms New input event and feedback rendering. 

t=24 ms Feedback is displayed, now with 4 ms latency. 

t=30 ms New input event and feedback rendering. 

t=32 ms Feedback is displayed, now with 2 ms latency. 

t=40 ms New input event and feedback rendering. Feedback 
is displayed, now with zero latency. 

t=48 ms Feedback is displayed again, without new input 
event, so instantaneous latency is back to 48 − 40 = 8 ms. 

and so on. 

In this example, a temporal lag of varying amplitude occurs as 
a consequence of the asynchronicity between input and output 
rates, even in the absence of any other noise or delay. This 
particular lag follows a pattern of steadily decreasing from 8 
to 0 ms, then jumping back to 8 ms, and so on. This pattern 
occurs every 40 ms, i.e. at 25 Hz. 

Up until now we assumed, for simplicity, that sensing, compu­
tation, rendering, and display were instantaneous. However, 
non-null hardware and software latencies, assuming they are 
roughly constant, would only offset this pattern without chang­
ing its effect in user experience. In the example above, visual 
feedback would still be produced at 100 Hz, even though it 
would occur some time after each input event; and the vi­
sual output would still occur at 125 Hz, despite rendering 



and display delays. Therefore a pattern equal or similar to 
8,6,4, 2,0,8,6, 4,... (ms) would still be observed. 

Note that the phenomenon of asynchronicity-induced jitter 
does not occur systematically as soon as the input and output 
frequencies differ. For instance if a touch-screen senses fin­
ger position at 120 Hz and the screen updates at 60 Hz (see 
Figure 1-bottom), then the latency at each display event never­
theless remains constant, because the delay between a display 
update and the previous input event (or available feedback) 
remains the same. 

Note also that the presence and amplitude of this phenomenon 
in time units does not necessarily mean that it is always a 
usability issue, or even noticeable, as it does not necessarily 
translates into perceivable cursor or viewport jumps. To be so, 
the resulting spatial jitter needs to be (1) large enough, and 
(2) on screen for a sufficient amount of time. This introduces 
an interesting theoretical trade-off, since the amplitude of 
jitter is likely proportional to speed: fast input movements 
might create larger jumps, but are usually shorter in time than 
slow ones. Slow input movements can happen for a longer 
period of time, e.g. when scrolling text while skimming to 
locate a particular word, but possibly with smaller viewport 
jumps. One also needs to consider that noise occurring at high 
velocity can be less noticeable than at low velocity [10, 23]. 
This theoretical trade-off between amplitude and duration is 
discussed later in the context of a real-case example. 

Generalization 
Let us denote Fd and Fi respectively the display and input 
frequencies. We also denote td j the jth display-update time, 
and tik the kth input-event time, with ( j, k) ∈ I2. Since tdx - tix 
for any x > 0 unless Fd = Fi, let us also define that in the 
following, k( j) denotes the last input event that occurred 
before td j: 

∀ j ∈ I : k( j) = {max(i ∈ I) : tii < td j} (1) 

The amount of asynchronicity-induced lag L( j) between the 
time t = td j of the jth output event, and the time tik( j) of 
the most recent input event prior to td j, is expressed in time 
units, e.g. milliseconds. Assuming that Fd and Fi are roughly 
constant for simplicity, L( j) is necessarily smaller than the 
input period 1/Fi, and is formulated as: 

1
L( j) = td j − tik( j) with 0 ≤ L( j) < (2)

Fi 

In a simple case with constant hardware and software latency, 
we can approximate td and ti as follows: 

j 1 1
td j = Sd + with − < Sd < (3)

Fd Fd Fd 
k 1 1

tik( j) = Si + with − < Si < (4)
Fi Fi Fi 

with Sd and Si some constants representing starting latency 
values at j = k = 0. 

At any display time td j, we can calculate k as follows using 
Equations (1, 2, 3, 4): 

k = Fi × (tik( j) − Si)  
= Fi × (td j − Si) since td j−1 ≤ tik( j) < td j    

j 
= Fi × Sd − Si + (5)

Fd    
j 1

and thus, tik( j) = Si + Fi × Sd − Si + × (6)

Fd Fi
 

Combining Equations (2-6), we can deduce that:     
j j 1

L( j) = S + − Fi × S + × (7)
Fd Fd Fi 

1 1 1 1
with − − ≤ S = Sd − Si < + (8)

Fd Fi Fd Fi 

We can reformulate the above by considering that:    
xi xi + yz xi + yz − (xi + yz) mod y

z + = = 
y y y 

We then obtain   
j S · Fi · Fd + Fi · j − (S · Fi · Fd − Fi · j) mod FdL( j) = S + −

Fd Fi · Fd


[Fi(S · Fd − j)] mod Fd
 
= (9)

Fi · Fd 

If L( j) is constant, regardless of its value, then there is no 
visual noise resulting from it, only constant lag. Variations in 
L( j) cause e.g. the cursor or viewport to jump, as illustrated 
in the previous subsection. Asynchronicity-induced noise 
therefore manifests itself as a differential of L( j). 

We define the temporal amplitude of one (asynchronicity­
induced) cursor jump, for the jth display event, as 

ΔL( j) = L( j) − L( j − 1) (10)          
1 1 j − 1 j 

= + Fi S + − Fi S + (11)
Fd Fi Fd Fd

[Fi(S · Fd − j)] mod Fd − [Fi(S · Fd − j + 1)] mod Fd 
= 

Fi · Fd 
(12) 

with Equation (11) expressed using the “floor” notation sim­
ilar to Equation (7), and Equation (12) expressed using the 
“modulo” notation as in Equation (9). 

Like L( j), ΔL( j) is expressed in time units, so the visual 
amplitude of the resulting jitter is obtained by multiplying 
ΔL( j) to finger speed. This effect also depend on the screen’s 
refresh rate Fd, as higher rates mean more frequent jumps. 

How this phenomenon translates in actual cursor or view­
port jumps during a pointing or scrolling action is complex 
to model, as pointing gestures happen in multiple bursts of 
velocity depending on a number of task and setup factors [21, 
7]. To simplify, we make the assumption that averaging ΔL( j) 



  

6030 350
0.0

2.5

5.0

7.5

10.0

|Δ
L(
j)|

1204024
1000
2Fi =8.3 ms

Input Frequency = 60 Hz

904530 350
0

2

4

6

|Δ
L(
j)|

1806036 5.6 ms

Input Frequency = 90 Hz

1206040 350
Output Frequency (Hz)

0

2

4

|Δ
L(
j)|

2408048 4.2 ms

Input Frequency = 120 Hz

Figure 2: Examples of input/output frequency combinations and the av­
erage jitter that they induce, according to our model. 

over a stroke provides a usable proxy for the visual ampli­
tude of the noise caused by input-output asynchronicity. We 

1use |ΔL| = ∑
n 
j=1 |ΔL( j)|, the mean of the absolute value of n 

ΔL( j) over a pointing stroke, as an indication of overall noise. 
It can be formulated as follows (developed in the appendix): 

2a(1 − a) Fi Fi|ΔL| = with a = − (13)
Fi Fd Fd 

Figure 2 shows the average |ΔL| for combinations of input Fi 
and display Fd rates, averaged over a simulated stroke lasting 3 
seconds (n = (3 − Sd)/Fd). Note that giving random values to 
S yields the exact same graph. We observe several phenomena. 

C First, |ΔL| increases and decreases as a function of Fd 
in right-skewed ‘bumps’ (concave spikes) whose minimum 
seems to be zero. 

1

|ΔL| = 0 ⇐⇒ ΔL( j) = 0 
⇐⇒ [Fi(S · Fd − j)] mod Fd − [Fi(S · Fd − j + 1)] mod Fd = 0 

The modulo operator is distributive, so we know that 

[(a%n) + (b%n)]%n = (a + b)%n 

(here % denotes the mod operator to save space), and so: 

( [Fi(S · Fd − j)] %Fd − [Fi(S · Fd − j + 1)] %Fd )%Fd = 0 
[Fi(S · Fd − j) − Fi(S · Fd − j + 1)] %Fd = 0 

Fi%Fd = 0 
Fi⇐⇒ Fd = ,with c ∈ I (14)
c 

Fi FiThe ‘bumps’ happen every Fdmin = Hz, c ∈ I+ whenc+1 − c 
Fd ≤ Fi (Fig. 2). One last ‘bump’ occurs for Fd ≥ Fi, that 
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Figure 3: |ΔL| for a subset of Fi and Fd values. The HTC Vive specifi­
cations mention a variable range of input frequencies. The Oculus uses 
an 1000-Hz IMU for input, whose drifting is compensated by cameras 
(Constellation) at 60 Hz. 

seems to tend towards zero when Fd becomes infinitely high, 
which fits the expected limit behavior of Fdmin when c = 0. 

C Second, the maximum of |ΔL| seems to be constant through­
out all ‘bumps’ for a given input frequency, but decreases 
as input frequency Fi increases. This maximum value is 

1 Fi 

2

max(|ΔL|) = , and occurs when Fd = , with c ∈ I (the2Fi c+ 1 
2 

mathematical demonstration can be found in appendix). 

According to this model and metric, for any given display 
refresh rate Fd, the amount of noise induced by asynchronic­
ity is null when the input rate Fi = c × Fd, with c ∈ I, 

1and reaches its worst when Fi = Fd(c + 2 ), with jumps of 
1|ΔL( j)| = , in time units. As shown in Fig. 3, the Fd(2×c+1) 

effects of asynchronicity should disappear for high values of 
input frequencies. 

As discussed above, time jitter is only a usability issue when 
its consequences are noticeable, which |ΔL| doesn’t express 
directly. To do so, it needs to be expressed in terms of spatial 
rather than temporal lag, e.g. by multiplying L( j) by the in­
stantaneous input speed at td j. Instantaneous speed profiles are 
however notoriously tricky to model—at least predictively [21, 
7]—so we discuss below how to measure this empirically. 

PRACTICAL ASPECTS OF ASYNCHRONICITY JITTER 

Re-sampling Input Events 
Smoothing jitter can be done in a number of ways, the 
most common being filtering the output signal directly, us­
ing e.g. moving average or the 1 C filter [10, 29]. 

Another approach, specifically relevant to asynchronicity­
induced jitter, consists in estimating input events at a fre­
quency that matches the display’s refresh rate, which in effect 
should make L( j) constant. This approach is currently in use 
in Android [15] and Chromium [13]. It computes the visual 
feedback for the incoming frame using a virtual input event 
re-sampled to occur at a fixed duration dpre before the next 
frame. The timing of the next frame tswap is defined as the 
timestamp of the next GPU swap between the screen buffer 
and the frame buffer. As illustrated in Figure 4, if the last 
input event occurred before tswap − dpre, the location of the 
re-sampled input event is extrapolated using the last few input 
events; otherwise, it can be interpolated between them. Small 
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Figure 4: An idea case of smoothing asynchronicity-induced jitter by 
re-sampling the input signal to match the display refresh rate, using in­
terpolation and extrapolation. 

dpre values therefore increase the chances of extrapolation, 
which in turn can introduce “prediction” side-effects [24, 23] 
(including more jitter). Interpolation offers smooth transitions 
between known input values, but increases the delay between 
input and output signals. 

Measuring spatial jitter 
Jitter is usually measured as a noise, i.e. as a metric of variation 
around a reference signal. This reference signal can represent 
a neutral state, e.g. measuring the amount of spatial jitter 
when a user holds a motion-tracked hand in mid-air. This is 
however not applicable in our situation, since when a finger is 
in contact with the screen but not moving, the touch surface 
will not report any event in many cases. 

The reference signal can also be inferred from the output trajec­
tory itself, e.g. the viewport positions in a scrolling task, using 
filtering to produce a “smooth” trajectory for comparison [19]. 
However, this often requires to tune smoothing parameters by 
hand, as the distinction between noise vs. meaningful trajec­
tory can sometimes only be distinguished via human expertise. 
When trying to use that approach, we noticed that these pa­
rameters can be quite sensitive to input and output frequencies. 
For example, our best guesses for the cutoff frequency of a 
zero-phase shift filter were respectively 0.95 Hz and 0.5 Hz for 
output frequencies of 30 Hz and 90 Hz. While a feasible ap­
proach, hand-tuned parameters also decrease replicability, as 
different practitioners can have different subjective thresholds 
for what constitutes noise vs. trajectory variation. 

Finally, in some situations a reference signal can be obtained 
directly from the input signal. This is trivial when the input 
and output events are fully synchronized, but requires adjust­
ments when not, as is our case here. We use a method similar 
to ΔL( j), but applied to position instead of time: given a ref­
erence time ti, we calculate the signed difference vector D(ti) 
between the positions in the input signal Pin(ti) and in the 
resulting output signal Pout(ti): 

D(ti) = Pout(ti) − Pin(ti) (15) 

This is the spatial equivalent of L( j) in Eq. (2, 9). If this differ­
ence is the same at every frame time, there is no asynchronicity­
induced jitter to observe—only possibly the one already 
present in the input signal. 

Asynchronicity-induced spatial jitter results from variations 
in that difference, which will translate into cursor or viewport 
jumps. Similar to ΔL( j) above, we express instantaneous 
spatial jitter introduced by input-output asynchronicity in terms 
of variations of D, i.e. : 

ΔD(ti) = D(ti) − D(ti-1) (16) 

A general estimation of the asynchronicity-induced spatial 
noise over an entire gesture, measured at times ti ∈ T, can be 
formulated similarly to |ΔL| as a mean of absolute differences: 

n−11 |ΔD| = ∑ |ΔD(ti)| (17)
n i=1 

n−11 
= ∑ |Pout(ti) − Pin(ti) − Pout(ti-1) + Pin(ti-1)| (18)

n i=1 

However, in most setups Pin and Pout are not continuous signals 
but collections of measurements, and they might not always 
contain values corresponding to ti. In this case we need to 
estimate these positions, either using the most recent available 
value, or through interpolation or extrapolation. 

For our purposes, a spatial jitter metric does not need to be 
usable in real time, so the reference signal Pin(ti) can be inter­
polated from values prior and posterior to ti. In what follows 
we denote this interp[Pin(ti)]. The signal Pout to which this ref­
erence is compared, on the other hand, is calculated throughout 
the movement in real time, and therefore cannot take future 
events into account. In the general case without re-sampling, 
and since in the context of direct touch we do not apply any 
spatial transformation like C-D gains, this means that for each 
timestamp tswap,i the value Pout(tswap,i) is the position of the 
last sensed input event prior to tswap,i, as illustrated in Fig. 1. 
Reusing the notations in Equation (1), we denote this as fol­
lows: Pout(ti) = Pin(tk(i)). 

In the case of re-sampling, the reference times are defined as 
t [ = tswap,i − dpre. Since input events can occur prior to tswap,ii 
but after ti

[, some Pout values can be interpolated, and others 
need to be extrapolated:  

extrap[Pin(ti
[)] if tk(i) < ti

[
Pout(ti 

[) = (19)
interp[Pin(ti

[)] otherwise 

Since reference values Pin(ti) are always interpolated, as ex­
plained above, it results that 

D(ti) = Pout(ti) − Pin(ti)  
extrap[Pin(ti

[)] − interp[Pin(ti
[)] if tk(i) < t [

= i (20)
0 otherwise 

Interpolation and extrapolation can be computed using differ­
ent models, linear being the most straightforward (see e.g. in 
Figure 5). Other, more complex models can be used, typically 
using higher-level polynomials and prediction algorithms. We 
will evaluate candidate techniques in the following study. 

SIMULATOR STUDY WITH GOOGLE PIXEL DEVICES 
To evaluate the effects of re-sampling methods on input/output 
asynchronicity-induced jitter, we developed a program that 
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can calculate the visual output of a simple scrolling task on any 
display frame rate, based on existing input data, available at 
ns.inria.fr/loki/async. We first assess the validity of our model 
using a real-case example of similar devices with equal input 
frequency and different frame rates, for which we could collect 
both input and output event timestamps. Then, using existing 
re-sampling techniques, we varied the delay dpre between the 
expected buffer swap time tswap and the targeted input estima­
tion, and observed the resulting trade-offs between reduced 
spatial jitter and added latency. 

We selected the Google Pixel 3 and Pixel 4 as use cases, as the 
latter adopts a 90-Hz display compared to the more common 
60 Hz used in the Pixel 3, while keeping the same touch sens­
ing frequency. Note that Pixel 4 display frequency is 90 Hz 
only during interactions, and normal refresh rate is 60 Hz. 
Internal testing revealed that users could see some unwanted 
jitter before input re-sampling (see above) was implemented 
in the Chromium app. 

Simulator 
Given a set of input strokes, the simulator iterates over each 
individual stroke and artificially replays the received scroll 
events at a controlled output frequency Fd = 1 . The simulator 

Δt 
generates artificial buffer swap times (tswap ) every Δt . For real­
ism, it also applies a random (uniform) phase shift Δi <= Δt to 
determine the initial swap time after the first input event. For 
each artificial frame time td , events with timestamps anterior 
to the current tswap are unstacked and processed to generate an 
output coordinate. In our use-case of direct touch input, we 
do not apply any geometric or scale transformation—such as 
C-D gains, so input and output coordinates remain the same. 
This processing also includes re-sampling with varying dpre 
values, when needed. 

Using these resulting “frames” (coordinates), we applied Equa­
tions (18, 20) to estimate the spatial jitter introduced by the 
asynchronicity-induced lag for each individual stroke, as a 
function of the output frequency parameter Fd, and of dpre 
when relevant. 

Data collection 
In a controlled experiment, we collected a set of strokes from 
participants in a series of scrolling tasks, using the touchscreen 
of two mobile devices: a Google Pixel 3 XL and a Google 

Pixel 4, which share the same input frequency but differ in their 
display frame rate. These strokes were later used to simulate 
the amount of instantaneous, asynchronicity-induced lag using 
real input data, and estimate the amount and amplitude of the 
resulting spatial jitter under different conditions. 

Method and Apparatus 
Both devices have an input frequency of 120Hz (one event 
every 8.33 ms). The Pixel 3 XL has a 6.3" OLED display 
with a definition of 2960 × 1440 pixels (523 dots per inch), 
an output refresh rate of 60 Hz (one frame every 16.67 ms), a 
Qualcomm Snapdragon 845 processor with 8 cores at 2.7 Ghz 
and was running Android 9 Pie. Pixel 4 has a 5.7" OLED 
display, with a definition of 1920 × 1080 pixels (444 dpi), 
an output refresh rate going up to 90 Hz (one frame every 
11.11 ms), a Qualcomm Snapdragon 855 processor with 8 
cores at 2.84 Ghz and was running Android 10. Scrolling 
events were recorded locally on both devices, using a web ap­
plication running in Android Chromium. Each recorded event 
conveyed enough information to reproduce the interaction se­
quence as it happened during data collection: coordinates, 
touch-up and touch-down events, and input timestamp pro­
vided by the driver/OS. Automatic scrolling events for inertia 
were ignored. Logging events using Chromium also allowed 
us to know the buffer swap timestamp (tswap ) for each event, 
i.e. the scheduled display time of each dispatched event’s vi­
sual feedback. The event dispatcher that unstacks incoming 
input events is then aware of the next frame’s timestamp (See 
Chromium sources [12], where args.frame_time is sent 
to the scroll_predictor_ instance). Native re-sampling 
mechanisms were disabled. We did not ask participants 
whether they noticed any issue in particular, but in our own 
pilot tests we did observe some visual jitter on the Pixel 4 
when scrolling, especially at low speeds. This would indicate 
that the theoretical duration/amplitude trade-off mentioned 
earlier in Example of Asynchronicity is tipped in favor of 
duration, at least in this context of direct touch input. 

(a) Search task: par­
ticipants search and 
click on the green 
button 

(b) Navigation task: 
participants scroll to 
the opposite side of 
the page as fast as 
they can, and click 
the green button 

(c) Read task: par­
ticipants click on all 
the green buttons dis­
patched between the 
N sections 

Figure 6: Scrolling tasks mimicking the different scroll behaviors on 
touch devices. 

http://ns.inria.fr/loki/async/
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puted from the Pixel 3 and 4 (orange) and using the simulator (blue). 
Error bars represent 95% CI. The jitter in time units, as measured by 
our model, is overlaid in red on the figure. 

Procedure, Design, and Task 
Similar to Quinn et al. [28], we asked participants to scroll 
long-content web pages on mobiles devices. Web pages were 
composed of N sections. Each section consisted of a paragraph 
of text, an image and another paragraph of text. Sections were 
designed to take a full screen height of the mobile device, as 
illustrated in Fig. 6. 

We asked participants to scroll over the web pages in two di­
rections (top, bottom), on both devices, and under 3 different 
tasks: search, navigation and read (Figure 6). Search con­
sisted in finding and clicking a green button in the middle of 
the web page (at N/2). Navigation consisted in scrolling to 
the opposite side of the web page as fast as the participant 
could, and click a green button. Read consisted in scrolling to 
the opposite side of the web page while clicking all the green 
buttons displayed between each section. 

The experiment used a 2× 3 × 3 ×2 within-subjects design for 
factors: device (Pixel 3 XL or Pixel 4), task (search, navigation, 
read), N (10, 20, 30 sections), and direction (top-to-bottom or 
bottom-to-top). The order of devices, tasks, and directions was 
counterbalanced across participants. We obtained a total of 
432 trials, each consisting of 19.4 strokes on average (min=2, 
max=114, SD=20.7). 

Participants 
Twelve participants (5 females, 7 males) participated in the ex­
periment, all software engineers in a mobile phone technology 
company. We did not instruct them on how to hold the smart-
phones, but to hold and use them like they normally would. 3 
participants put the smartphones on the table and scrolled with 
their index finger. 1 participant used only one hand to hold 
the devices and scrolled with the thumb. 3 participants held 
the devices in one hand and scrolled with the index finger of 
the other hand. Finally, 5 held the devices with 2 hands and 
scrolled with the thumb. Participants were instructed to keep 
the same posture throughout the 20 min study. 

Results 
The distributions of all input periods indicates that 96% of 
input events occurred either 8 ms (63%) or 9 ms (33%) after 
their predecessor for the Pixel 3 XL, and 91% (resp. 80% for 
8 ms and 11% for 9 ms) for the Pixel 4. The distributions of 
all display refresh events (through tswap ) indicates that 98% 
of the output events of the Pixel 3 XL occurred at 60 Hz, 
and 96 % at 90 Hz for the Pixel 4. Overall, the assumption 
of constant output frequency formulated for the simulator’s 
design is confirmed, and the assumption of constant input 
frequency in our theoretical model is mostly confirmed. 

Impact of the Display Rate on Spatial Jitter 
We measured the spatial jitter (Equations (18, 20)) for the 
Pixel 3 XL and Pixel 4, using the recorded input and tswap 
information. As shown in Figure 7, average absolute lag 
differential increases from 9 pixels at 60 Hz, to 26 pixels at 
90 Hz. This difference is in line with direct observations and 
with our model. 

We then used all recorded input from the two devices to sim­
ulate different output frequencies. The resulting simulated 
spatial jitter displays the same trends as our temporal model, 
with a horizontal shift (intercept) of about 10 pixels likely 
due to variable input speed, which our theoretical model does 
not account for. The simulated average spatial jitter at 90 Hz 
is very similar to the one measured in our data collection 
(26 px), and about 4 px off for 60 Hz. The levels of spatial 
jitter obtained through simulation seem coherent both with our 
analysis and with our real-life measures, confirming that some 
asynchronous frequencies increase visual jitter. 

Effects of Linear Re-sampling 
Temporal re-sampling at fixed intervals dpre before new frames 
(tswap ) is generally performed using linear interpolation or 
extrapolation, as in Android and Chromium at dpre = 5 ms. 
Therefore, we first evaluated the effects of linear re-sampling. 
We also varied dpre from 0 to 10 ms, to explore the trade-offs 
between spatial jitter and latency that we expect to occur with 
re-sampling. 

As illustrated in Figure 8, all values of dpre decrease spatial 
jitter for all output frequencies Fd except when jitter was 
already minimal at Fd = Fi/c, c ∈ I, as predicted in Equa­
tion (14). This suggests that higher values of dpre nearly cancel 
asynchronicity-induced spatial jitter. They however come at 
the cost of increased latency. Figure 9 illustrates this trade-off, 
compared to a baseline without re-sampling. For dpre = 10 ms 
(green symbols in Fig. 9), re-sampling can add up to 6 ms 
of latency in average, while dpre = 0 (blue) can reduce the 
latency of the pipeline by nearly 8 ms using extrapolation. 
Such differences can be considered small, but Deber et al. 
have shown that improvements in latency as small as 8 ms 
are noticeable from a wide range of baseline latencies [18]. 
dpre = 4 ms (orange in Fig. 9) appears to offer a good trade-off 
for Fi = 125 H z, as it systematically reduces both spatial jitter 
and latency. Based on our results, the choice of dpre = 5 ms in 
Android and Chromium is a good default value, with only a 
small increase in latency. 
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Figure 8: Average spatial jitter (pixels) over output frequency (Hz) for 
the baseline and different values of linear resampling. Error bars repre­
sent 95% CI. 

Standard Filtering Techniques 
We also assessed how general-purpose filtering techniques 
fare with asynchronicity-induced jitter, in comparison to re-
sampling. We chose simple moving average (MA) as a stan­
dard approach, which has the advantages of being straight­
forward to implement, requiring no parameter tuning, and 
introducing a deterministic and constant amount of latency 
l = 0.5(N − 1)/Fi where N is the number of samples used in 
the moving average and Fi is assumed constant. 

As shown in Figure 9, a moving average with N = 2 introduces 
overall more latency than linear resampling, but reduces spatial 
jitter compared to the baseline, for all output frequencies. 
Linear re-sampling systematically reduces spatial jitter better 
than moving average except for dpre = 0 ms (prediction at 
frametime) for output frequencies of 30, 60, and 120 Hz. 

More sophisticated filtering techniques like the 1e filter could 
introduce less latency for the same reduction of spatial jitter. 
However, the exact latency introduced by such techniques is 
variable and difficult to quantify. Without an accurate estima­
tion of this added latency, we cannot apply our spatial jitter 
metric. Taken together, filtering techniques do not seem best 
suited to solve the problem compared to linear re-sampling. 

Comparison of Extrapolation Techniques 
To re-sample input events, coordinates in the near-future of 
a trajectory can be estimated in a number of ways in addi­
tion to linear extrapolation. Such techniques can be used for 
instance to predict the next few points of a movement in or­
der to compensate latencies [19, 23], allowing for different 
degrees of accuracy and negative side-effects depending on 
the predicted duration [24], or “horizon”. In particular, sec­
ond order polynomial curve fitting (dubbed CU RV E in [24]) 
and Double-Exponential Smoothing Predictor (DESP) from 
LaViola [19] were found to generate fewer side-effects overall 
compared to other predictors [23]. Other prediction techniques 
such as Kalman filters or the TurboTouch Predictor [23] can 
also offer reliable predictions, but are designed to predict at 

Figure 9: Trade-off between spatial jitter (pixels) and latency (ms) for 
the baseline technique, moving average (MA) and linear resampling for 
0, 2, 4, 6, 8 and 10 ms, and different frequencies. Negative latency cor­
responds to some latency compensation compared to the baseline and 
positive values correspond to latency added to the baseline. 
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Figure 10: Average visual jitter (pixels) over output frequency (Hz) for 
the baseline and different predictors. Error bars represent 95% CI. 

fixed horizons. In our case, the horizon to predict h = tswap − t 
is variable, so we did not include these techniques in our tests. 

We compared CU RV E and D E SP to predict 0, 2 and 4 ms 
before frame time (Figure 10). CU RV E shows performance 
very similar to linear extrapolation, reducing spatial jitter even 
when predicting at frame time (dpre = 0). DESP also reduces 
spatial jitter, compared to no re-sampling, but to a lower extent. 
These results could indicate a lower robustness of DES P to 
predict at any time in the future instead of fixed time intervals. 

DISCUSSION 
This work describes and characterizes the phenomenon that 
asynchronous input and output (display) rates can generate 
visual jitter in interactive systems, even when every individual 
component of the interaction pipeline functions perfectly. We 
proposed a mathematical model of this jitter in time units, and 



a metric to evaluate it in spatial units. Both were validated us­
ing real data from devices with equal input rates and different 
display rates, which provided a first confirmation of our model 
and of the validity of the proposed metric. We also explored 
the strengths and weaknesses of various spatial jitter-reduction 
methods, the most promising so far being to re-sample input 
events at fixed delays before frame time. This method is now 
a default input component in Chromium1, with a re-sampling 
parameter that matches our simulated findings. 

Our results offer guidelines for system design, in particular 
Fig. 3 that can be used to estimate how much spatial jitter to ex­
pect from a given combination of input/output rates and guide 
the choice of hardware frequencies. For situations wherein 
such a choice is not possible, we propose a simulator to explore 
re-sampling parameters and assess the jitter/latency trade-off. 

This work does not aim to offer a definitive solution to this 
usability issue, but to initiate an effort to characterize and 
address what seems to be an avoidable problem. The next 
steps of our research will focus around three goals. 

1. Consolidating our theoretical contributions 
While promising, our empirical findings need to be extended to 
more combinations of input/output rates, in order to reinforce 
the validation of our model and simulator. This is not trivial, 
as many input or output devices offer little to no variability 
on their frequencies. We will experiment with high-frequency 
displays that can be “slowed-down” to commercial standards, 
and input devices with controllable rates like gaming mice or 
motion trackers. While we are confident that our theoretical 
contributions will hold in more varied situations, populating 
Figure 7 remains useful to assess their variability in real se­
tups. We will also assess the robustness of our findings with 
scenarios wherein input processing is neither negligible nor 
constant (e.g. 3D games with significant computation upon 
inputs), thereby introducing variable amounts of latency. 

2. Generalizing our findings to noisy interactive pipelines 
To isolate the specific phenomenon of asynchronicity-induced 
jitter, we narrowed our empirical explorations to direct-touch 
interaction. These setups typically have little to no other 
sources of noise, such as limb tremor (e.g. holding an in­
put device in mid-air), input transformations (e.g. applying 
C-D gains), or additional extrapolations (e.g. to compensate 
system latency), making them a good control testbed. How­
ever, we need to validate our findings in noisier environments, 
to confirm whether our temporal jitter model and spatial jit­
ter metric remain usable amidst other sources of noise, and 
whether re-sampling can still help. 

3. User perception of jitter 
We focused this work on scrolling tasks, for simplicity and as 
a frequent example of jitter issues in direct touch. Previous 
work showed that there exist perceptive thresholds for jitter, 
for instance in terms of amplitude [24] and input speed [10]. 
Jitter can also be perceived differently, and generate different 
degrees of frustration, depending on the task at hand [24]. The 
fact that Android implemented a specific software solution to 
tackle this phenomenon may indicate that it was reported as a 
1chrome://flags/#enable-resampling-scroll-events 

significant issue; however, our work so far is limited to geo­
metric characterizations of asynchronicity-induced jitter, and 
would become more applicable with clear perceptive thresh­
olds depending on interaction context. As of now, our model 
(see Fig. 3) indicates that increasing input frequency (Fi) is 
an efficient ‘brute force’ method to decrease the maximum 
amplitude of asynchronicity-induced jitter. Increasing output 
frequency (Fd) is a more complex matter, however, because 
output rates higher than the input rate can still increase jitter 
significantly (e.g. the last ‘bumps’ in Fig. 2). We will test 
our findings on different tasks such as pointing, drawing, and 
writing, and gather systematic subjective feedback to assess 
the perception thresholds above which asynchronicity-induced 
jitter needs to be addressed. 

CONCLUSION 
This work addresses the problem of visual jitter caused by 
asynchronous input and output rates in interactive systems. We 
first describe the phenomenon from a mathematical standpoint, 
from which we formulate a predictive model of temporal jitter 
amplitude as a function of input and output frequencies. From 
this we introduce a metric to measure the corresponding spatial 
jitter. This metric was validated on a real-case setup, through 
the collection of scrolling data on two similar devices having 
the same input rate and different output rates. We further used 
the collected data to simulate a range of output frequencies 
and compare different approaches to reduce ansynchronicity­
induced jitter. Our results validate our model and show that 
re-sampling input events to a timestamp before frame-display 
time is an effective way to cancel asynchronicity-induced jitter, 
while introducing minimal imprecision or latency. In partic­
ular, we show that for devices with 120 Hz input, i.e. most 
touch-screens today, linear re-sampling at 4-6 ms before frame 
time offers the best results. This technique and parameters 
are now used in Chromium on most touch devices. Future 
work will include investigating these issues in different setups, 
especially in the context of virtual reality. 
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Appendix: Characterizing |ΔL| m m + 1 
We develop the formulation of |ΔL|= f (Fi,Fd) in a simple case. la jJ−la( j −1)J= 0 ⇐⇒ ≤ j −1 < j < 

a a 
First, let us define r ∈ R such that m m + 1 ⇐⇒ + 1 ≤ j < (27)

a aFi = Fd × r	 (21) 
Complementarily, la jJ−la( j −1)J= 1 if m2 = m −1:   

Fi ∈ I, and r’s fractional	 m m2 + 1We distinguish r’s floor c = lrJ=
Fipart a = {r}= ∈ [0,1):Fd

  Fd la jJ−la( j −1)J= 1 ⇐⇒ ≤ j and j −1 < 
a a 
m m ≤ j < + 1 (28)⇐⇒ 
a aFi 

= lrJ+ {r}= a + c (22)
Fd

w p 
p 

m m+1 

⇐⇒ x = 

Thus, for any integer x in any interval I with 

m 
a 

= ,a a 
m ∈ I and a ∈ [0,1),

We can re-express |ΔL| from Equation (11) as pwwm m1 if x ∈ + 1,1 
∑ 
n	 laxJ−la(x −1)J= a a 

m+1|ΔL|= |ΔL( j)| m0 if x ∈ + 1,a an j=1 (29)        Furthermore, 

n1 1 1 j −1 j
∑
 Fi S + − Fi S ++= 

Fd Fi Fd Fdn j=1

pw

n	 la jJ−la( j −1)J ∈ {0; 1}1 
= 

nFi 
∑ |c+a+c( j−1)+lFi ·S+a( j−1)J−c j −lFi ·S+a jJ| ⇐⇒ la jJ−la( j −1)J−a ∈ {−a; 1 −a}
j=1 

⇐⇒ | la jJ−la( j −1)J−a| ∈ {a; 1 −a} (30)since c, j ∈ I and Fi > 0 
n1 

To generalize, we can partition any interval I = [1..n] into∑ |a + lFi ·S+a( j−1)J−lFi ·S+a jJ|
j=1 

= 
nFi 

k k+1 with k ∈ [0.. lnaJ]. According to intervals Ik = ,n a a1 
= 

nFi 
∑ |lFi ·S+a jJ−lFi ·S+a( j−1)J−a| (23) Equation (29)-top, laxJ− la(x −1)J = 1 once in every Ik 

j=1 interval, i.e. lnaJ times overall within I. Consequently, 

S = Sd −Si represents the difference of the offsets of the output 
and input signals, assuming their frequency is constant for 
simplicity. If we consider: 

(i) that Si and Sd are defined null at j = 0, then Fi ·S = 0; 
(ii)	 or, that their difference itself S is very small—which 

would likely be the case if all values are expressed in 
the International System of Units, i.e. in seconds and 
hertz—then we could also discard the Fi ·S component; 

(iii)	 or, that S and Fi are expressed in integer values, e.g. inte­
gral amounts of milliseconds and kiloHertz to maintain 
orders of magnitude, then the two Fi ·S components can 
be taken out of the floor functions, and cancel each other. 

In all three cases, we can simplify Equation (23) as: 
n1 |ΔL|= ∑ |la jJ−la( j −1)J−a| (24)

nFi j=1 

By definition, la jJ is the largest integer m ≤ a j: 

m m + 1la jJ = m ∈ I : ≤ j < (25)
a a 
m2 m2 + 1la( j −1)J = m2 ∈ I : ≤ j −1 < (26)
a a 

Since a ∈ [0, 1), la jJ−la( j −1)J is either 0 or 1. In particular, 
it is equal to 0 if the intervals defined in Equations (25) and 
(26) are the same, i.e. if m = m2, and equal to 1 otherwise. 

laxJ−la(x −1)J= 0 the rest of the time, i.e. n −lnaJ times 
within I. Combining this with Equation (30), we obtain that: 

n1 |ΔL|= ∑ |la jJ−la( j −1)J−a|
nFi j=1 

(1 −a)lnaJ+ a(n −lnaJ) 
= 

nFi 

(1 −2a)lnaJ+ na 
=	 (31)

nFi 

naJWhen n is very large, we consider that l ∼ a, and thus: n 

2a(1 −a)|ΔL| ∼ (32)
Fi 

The resulting curve perfectly overlaps the ones obtained 
through repeated simulation (Figure 2). From this, we can eas­
ily characterize the ‘bumps’ formed by the curve of |ΔL|(Fd), 
and in particular their maximum: 

1 
amax = arg max (|ΔL|) = arg max [a(1 −a)] = (33) 

a a 2 
Fi FiFdmax = = 1 for any c ∈ I (34)

c + amax c + 2 

Using Equation (32), we can calculate 

1 
max(|ΔL|) = at Fd = Fdmax (35)

2Fi 
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