
Modeling and Reducing Spatial Jitter caused

by Asynchronous Input and Output Rates

Axel Antoine1,2,3,4,5, Mathieu Nancel5,2,3, Ella Ge1, Jingje Zheng1,

Navid Zolghadr1, Géry Casiez2,3,4,5,6

1Google, Kitchener, Canada 2Univ. Lille, UMR 9189 - CRIStAL, Lille, France

3CNRS, UMR 9189, Lille, France 4Centrale Lille, Lille, France

5Inria, France 6Institut Universitaire de France (IUF)

mathieu.nancel@inria.fr, {eirage, jingjiezheng, nzolghadr}@google.com,

{axel.antoine, gery.casiez}@univ-lille.fr

ABSTRACT
Jitter in interactive systems occurs when visual feedback is per­
ceived as unstable or trembling even though the input signal is
smooth or stationary. It can have multiple causes such as sens­
ing noise, or feedback calculations introducing or exacerbating
sensing imprecisions. Jitter can however occur even when
each individual component of the pipeline works perfectly, as
a result of the differences between the input frequency and
the display refresh rate. This asynchronicity can introduce
rapidly-shifting latencies between the rendered feedbacks and
their display on screen, which can result in trembling cursors
or viewports. This paper contributes a better understanding of
this particular type of jitter. We first detail the problem from a
mathematical standpoint, from which we develop a predictive
model of jitter amplitude as a function of input and output fre­
quencies, and a new metric to measure this spatial jitter. Using
touch input data gathered in a study, we developed a simulator
to validate this model and to assess the effects of different
techniques and settings with any output frequency. The most
promising approach, when the time of the next display refresh
is known, is to estimate (interpolate or extrapolate) the user’s
position at a fixed time interval before that refresh. When
input events occur at 125 Hz, as is common in touch screens,
we show that an interval of 4 to 6 ms works well for a wide
range of display refresh rates. This method effectively cancels
most of the jitter introduced by input/output asynchronicity,
while introducing minimal imprecision or latency.

Author Keywords
jitter; spatial jitter; noise; input frequency; output frequency;
resampling; asynchronicity.

CCS Concepts
•Human-centered computing → Graphics input devices;

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner /author(s).

UIST ’20, October 20–23, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7514-6/20/10.

INTRODUCTION
Jitter is defined as “irregular random movement (as of a
pointer or an image on a television screen); also : vibratory
motion” [20]. In signal processing, jitter is defined as a form
of timing noise, which can have deterministic and random
components. In the HCI literature however, it tends to denote
any form of perceivable tremor [24]. Jitter in interactive sys­
tems is often observed visually, as it typically translates into
e.g. cursor or viewport displacements, or ‘spatial jitter’ [27].
Spatial jitter in interactive systems occurs when feedback in
response to some input is perceived as unstable or trembling
when the input signal is smooth or stationary [10].

Jitter is known to affect human performance [27] and sub­
jective preferences [24], and is usually assumed to originate
from imprecise input sensing, scaling factors introduced by
interaction techniques, and human limbs tremor [27, 10]. For
instance, interaction techniques like Raycasting can introduce
large scaling factors that amplify input device noise and hu­
man tremor [6]. ‘Next-point prediction,’ used to compensate
interactive latency on a software level, can also introduce jitter
by exacerbating minute imprecision and quantization effects
in mouse or finger input [24] through extrapolation. These
causes, however, are all random in nature: noise in the input
movement, or in the treatment of that input. They all convey
that some aspects of the interactive loop do not behave as well
as they could.

This paper highlights another family of jitter, one that can oc­
cur even when every individual component of the interactive
loop functions well, and that denotes design rather than techni­
cal flaws. In particular, we describe, discuss, and evaluate how
the discrepancy between input and output frequencies can gen­
erate spatial jitter, as a result of shifting delays between input
and output events, and even when every (distinct) hardware
and software component works as intended.

This issue is exacerbated in recent devices. As we discuss be­
low, the typical combination of 120-125 Hz input sensing and
60 Hz output refresh rate found in most mobile devices causes
little to no extra jitter in theory. However, new mobile devices
have started to stray from that trend, especially in terms of out­
put frequency: 80 Hz (Oculus), 90 Hz (Google Pixel 4, HTC
Vive), 120 Hz (iPad Pro), or 144 Hz (Valve Index) refresh rates

DOI: https://doi.org/10.1145/3379337.3415833

https://doi.org/10.1145/3379337.3415833
mailto:gery.casiez}@univ-lille.fr
mailto:nzolghadr}@google.com
mailto:mathieu.nancel@inria.fr

can be observed in mobile or entertainment devices. We will
focus on the case of the Google Pixel 4 (120 Hz input, 90 Hz
output) released recently. The jitter resulting from this combi­
nation of frequencies can be directly compared to its previous
version (Pixel 3), and compelled its designers to implement
additional software processes to smooth out the phenomenon.
We will also discuss these solutions, and characterize their
trade-offs using input data gathered from 12 participants using
Pixel 3 and Pixel 4 devices.

This paper contributes to a better understanding of the impact
of different input and output frequencies on spatial jitter. We
first detail the problem from a mathematical standpoint, then
introduce a new metric to measure spatial jitter. Based on a
data collection we build a simulator to evaluate the impact of
display refresh rate on spatial jitter. We used it to compare
different techniques and parameters for each technique.

RELATED WORK

Impact of frame rate
End-to-end latency in interactive systems has been shown
to increase as display frame rates decrease. For example,
switching from a 60 Hz to a 120 Hz screen decreases end­
to-end latency by 16 ms on average [9]. Increased latency
can in turn degrade performance in 3D selections [31] and
touch interaction [18]. This has motivated the development of
input and output devices with very high frequencies to reduce
latency [25]. Claypool and Claypool showed that (display)
frame rate has a much greater impact on user performance
than does resolution in games, especially below 15 Hz [14].
This has been confirmed by Janzen and Teather in the context
of moving target selection [17], suggesting that frame rate
more strongly affects moving target selection than latency.

Impact of noise on performance and user perception
In pointing tasks, Pavlovych and Stuerzlinger identified a trade-
off between spatial jitter and latency, with spatial jitter having
a strong effect on error rate, roughly inversely proportional to
the target size [27]. Teather et al. studied the effect of latency
and jitter in 2D and 3D pointing tasks [30]. They showed that
latency has a much stronger effect on performance than low
levels of jitter, but that erratic ‘spikes’ in jitter bring signifi­
cant performance costs. Spatial jitter is also known to affect
user perception in touch interaction, and is more noticeable in
panning and dragging tasks than in drawing tasks [24].

Characterizing jitter
Jitter is often represented as an estimation of the variation be­
tween an output signal and a reference value or input signal. In
interactive systems, it has been measured e.g. as a maximum
mean-to-peak value [25] or as an average Euclidean distance
between the signal and its reference [24]. However, establish­
ing that reference can be challenging when the input signal is
not fully synchronized with the output, e.g. as in direct touch.
One way is to measure output noise when the device or limb
is held steady [25]. This method however does not exclude
the noise stemming from the user’s own jitter. Another ap­
proach consists in obtaining a reference signal from another,
more reliable source. For example, the static and dynamic

tracking precisions of the Leap Motion were analyzed using a
high-precision optical tracking system following the user’s in­
put movement [16]. While very precise, this method requires
careful hardware setup and a way to track markers to precisely
measure the signals of interest.

When input-to-output transformations make it too challenging
to use the input signal directly, a reference can be approxi­
mated by smoothing the output signal. LaViola used a zero
phase shift filter to remove high frequency noise in trajectories
with jitter [19]. Nancel et al. followed the same approach to
estimate the noise introduced by next-point prediction algo­
rithms [24]. However this approach requires tuning parameters
for the filter, which is most of the time performed by hand and
hard to generalize. As with above, it also “blends” the user’s
own limb jitter together with the system’s.

Finally, interactive jitter is usually modeled as a stochastic
process. Pavlovych and Stuerzlinger evaluated the influence
of spatial jitter by adding artificial noise to a mouse pointer,
modeling spatial jitter as a uniformly distributed noise with a
maximum offset expressed in pixels [25]. Taranta et al. fol­
lowed a similar approach to test jitter-filtering techniques [29].

Reducing jitter
Similar to estimating a reference signal, a common way to
reduce jitter is to filter the signal. Input devices like com­
puter mice measure relative displacements at high frame rates,
typically between 1,500 and 12,000 Hz [8]. This high time
resolution appears to be used to average out jitter and other
noise sources [27]. Other filtering mechanisms may exist, such
as assigning a threshold speed or displacement under which
the device or limb is considered static, to smooth out sensing
noise. Other techniques include moving average [33], Kalman
filter [32], single and double exponential smoothing [19], or
the 1 C filter used in interactive systems to reduce jitter while
minimizing perceived latency [10, 29].

Resampling techniques
Most displays have a fixed refresh rate, typically set at 60 Hz
for desktop computers. Graphic cards most of the time enable
vertical synchronization (V-sync) to synchronize the timing of
the frame buffer swap with the start of a new scanout. This
allows to display whole frames instead of having new frames
partially overlapping previous ones, creating visual glitches
like fractures in straight lines (tearing).

Some recent screens have variable refresh rates, which al­
lows to synchronize the frequencies of the display and the
graphics card, up to the display’s maximum refresh rate,
while avoiding tearing and stuttering issues (frames dis­
played multiple times). AMD’s FreeSync [1] and Nvidia’s
G-Sync [26] technologies provide this feature to compati­
ble displays and graphic cards. However it is not available
on mobile devices. In practice, the next framebuffer swap
timestamp can be estimated from the previous one, using
CVDisplayLink on macOS [4], WaitForVBlank on Win­
dows [22], CADisplayLink on iOS [3], and FrameCallback
on Android [2].

In comparison to most displays, input devices report events
at a frequency bound to a nominal (maximum) value. Input
devices like touch screens or computer mice monitor position
or displacements, and emit events when changes are detected
above a predefined threshold amplitude. When such changes
are detected more often than the nominal frequency, the events
can be coalesced by the operating system to match it [5].

Google Android uses linear interpolation and extrapolation to
resample touch input event coordinates 5 ms before frame time
for touch devices, as a way to provide a smoother scrolling
experience [15]. Chromium recently re-implemented the same
solution to be more accurate and reduce noise [13]. Besides
these specific solutions, it remains unclear how different input
and output frequencies affect visual jitter and extrapolation
techniques affect the quality of re-sampling.

Next-point prediction techniques
Next-point prediction techniques provide means for predicting
a likely path for the next few input locations [24]. Most of
these techniques have been designed for touch interaction. De­
pending on the underlying principle they use, these techniques
can either offer predictions at any point in the future, or only at
fixed time intervals. Techniques based on polynomial models
like first [11] and second-order Taylor series or curve-fitting
can predict over a variable time horizon, as their underlying
model includes a time parameter. Android and Chromium,
for instance, use first-order Taylor series. Other techniques
like Kalman filters, or machine learning approaches trained for
fixed latencies [23], are designed to predict fixed time horizons.
Nancel et al. provide a detailed review of each technique [24].

THEORETICAL EFFECTS OF IN-OUT ASYNCHRONICITY
Spatial jitter in next-point prediction [24] is a consequence
of (1) input sensing noise and quantization that can make
speed and direction estimation inaccurate, and (2) errors in
extrapolating an ongoing trajectory over several frames [23].
However, jitter can occur even with zero input noise and a
perfect prediction model — or with no prediction at all. Calcu­
lating a visual feedback as soon as an input event is received,
and rendering it to be displayed as soon as possible, can intro­
duce jitter when input frequency and output (display) frame
rate are asynchronous.

Example of Asynchronicity
Consider the situation depicted in Fig. 1-top with a 100 Hz
input stream (10 ms between input events) and a 125 Hz frame
rate (8 ms between screen updates), both frequencies assumed
constant for simplicity. Let us also assume that sensing, com­
putation, rendering, and display are instantaneous (this point
is discussed later).

t=0 ms An input event is received, and a feedback is calcu­
lated. That feedback is scheduled to be displayed as soon
as possible, and since all computations are instantaneous, it
is displayed at t = 0.

t=8 ms The next frame time occurs. No new event was re­
ceived, so the current feedback still corresponds to t = 0 ms.
A latency is introduced, despite all typical sources of delay
(sensing, rendering, etc.) being currently null.

0
2
4
6
8

L(
j)

(m
s)

Fin=100 Hz, Fout=125 Hz, delay = 0.1 ms

00 16 32 48
Time (ms)

0
2
4
6
8

10
12

Y
 (m

m
) a

t 2
0

cm
/s Frame updates (tdj)

Input events (tik)
Visible response

0

5

L(
j)

(m
s)

Fin=120 Hz, Fout=60 Hz, delay = 5 ms

0 5 22 38 55
Time (ms)

0
2
4
6
8

10
12

Y
 (m

m
) a

t 2
0

cm
/s Frame updates (tdj)

Input events (tik)
Visible response

Figure 1: Two examples of input (blue dots) / output (green lines) asyn­
chronicity, and how it affects visual trajectories (red line) during point­
ing tasks. Top: 100 Hz input, 125 Hz output: a repetitive pattern of
shifting lag translates into visual jitter. Bottom: 120 Hz input, 60 Hz
output: the lag is constant and therefore does not cause jitter.

t=10 ms A new input event is received, and its feedback is
calculated and ready to be displayed as soon as possible.

t=16 ms The feedback is displayed instantaneously. The in­
stantaneous latency is now 16 − 10 = 6 ms.

t=20 ms New input event and feedback rendering.

t=24 ms Feedback is displayed, now with 4 ms latency.

t=30 ms New input event and feedback rendering.

t=32 ms Feedback is displayed, now with 2 ms latency.

t=40 ms New input event and feedback rendering. Feedback
is displayed, now with zero latency.

t=48 ms Feedback is displayed again, without new input
event, so instantaneous latency is back to 48 − 40 = 8 ms.

and so on.

In this example, a temporal lag of varying amplitude occurs as
a consequence of the asynchronicity between input and output
rates, even in the absence of any other noise or delay. This
particular lag follows a pattern of steadily decreasing from 8
to 0 ms, then jumping back to 8 ms, and so on. This pattern
occurs every 40 ms, i.e. at 25 Hz.

Up until now we assumed, for simplicity, that sensing, compu­
tation, rendering, and display were instantaneous. However,
non-null hardware and software latencies, assuming they are
roughly constant, would only offset this pattern without chang­
ing its effect in user experience. In the example above, visual
feedback would still be produced at 100 Hz, even though it
would occur some time after each input event; and the vi­
sual output would still occur at 125 Hz, despite rendering

and display delays. Therefore a pattern equal or similar to
8,6,4, 2,0,8,6, 4,... (ms) would still be observed.

Note that the phenomenon of asynchronicity-induced jitter
does not occur systematically as soon as the input and output
frequencies differ. For instance if a touch-screen senses fin­
ger position at 120 Hz and the screen updates at 60 Hz (see
Figure 1-bottom), then the latency at each display event never­
theless remains constant, because the delay between a display
update and the previous input event (or available feedback)
remains the same.

Note also that the presence and amplitude of this phenomenon
in time units does not necessarily mean that it is always a
usability issue, or even noticeable, as it does not necessarily
translates into perceivable cursor or viewport jumps. To be so,
the resulting spatial jitter needs to be (1) large enough, and
(2) on screen for a sufficient amount of time. This introduces
an interesting theoretical trade-off, since the amplitude of
jitter is likely proportional to speed: fast input movements
might create larger jumps, but are usually shorter in time than
slow ones. Slow input movements can happen for a longer
period of time, e.g. when scrolling text while skimming to
locate a particular word, but possibly with smaller viewport
jumps. One also needs to consider that noise occurring at high
velocity can be less noticeable than at low velocity [10, 23].
This theoretical trade-off between amplitude and duration is
discussed later in the context of a real-case example.

Generalization
Let us denote Fd and Fi respectively the display and input
frequencies. We also denote td j the jth display-update time,
and tik the kth input-event time, with (j, k) ∈ I2. Since tdx - tix
for any x > 0 unless Fd = Fi, let us also define that in the
following, k(j) denotes the last input event that occurred
before td j:

∀ j ∈ I : k(j) = {max(i ∈ I) : tii < td j} (1)

The amount of asynchronicity-induced lag L(j) between the
time t = td j of the jth output event, and the time tik(j) of
the most recent input event prior to td j, is expressed in time
units, e.g. milliseconds. Assuming that Fd and Fi are roughly
constant for simplicity, L(j) is necessarily smaller than the
input period 1/Fi, and is formulated as:

1
L(j) = td j − tik(j) with 0 ≤ L(j) < (2)

Fi

In a simple case with constant hardware and software latency,
we can approximate td and ti as follows:

j 1 1
td j = Sd + with − < Sd < (3)

Fd Fd Fd
k 1 1

tik(j) = Si + with − < Si < (4)
Fi Fi Fi

with Sd and Si some constants representing starting latency
values at j = k = 0.

At any display time td j, we can calculate k as follows using
Equations (1, 2, 3, 4):

k = Fi × (tik(j) − Si)
= Fi × (td j − Si) since td j−1 ≤ tik(j) < td j

j
= Fi × Sd − Si + (5)

Fd
j 1

and thus, tik(j) = Si + Fi × Sd − Si + × (6)

Fd Fi

Combining Equations (2-6), we can deduce that:
j j 1

L(j) = S + − Fi × S + × (7)
Fd Fd Fi

1 1 1 1
with − − ≤ S = Sd − Si < + (8)

Fd Fi Fd Fi

We can reformulate the above by considering that:
xi xi + yz xi + yz − (xi + yz) mod y

z + = =
y y y

We then obtain
j S · Fi · Fd + Fi · j − (S · Fi · Fd − Fi · j) mod FdL(j) = S + −

Fd Fi · Fd

[Fi(S · Fd − j)] mod Fd

= (9)

Fi · Fd

If L(j) is constant, regardless of its value, then there is no
visual noise resulting from it, only constant lag. Variations in
L(j) cause e.g. the cursor or viewport to jump, as illustrated
in the previous subsection. Asynchronicity-induced noise
therefore manifests itself as a differential of L(j).

We define the temporal amplitude of one (asynchronicity­
induced) cursor jump, for the jth display event, as

ΔL(j) = L(j) − L(j − 1) (10)
1 1 j − 1 j

= + Fi S + − Fi S + (11)
Fd Fi Fd Fd

[Fi(S · Fd − j)] mod Fd − [Fi(S · Fd − j + 1)] mod Fd
=

Fi · Fd
(12)

with Equation (11) expressed using the “floor” notation sim­
ilar to Equation (7), and Equation (12) expressed using the
“modulo” notation as in Equation (9).

Like L(j), ΔL(j) is expressed in time units, so the visual
amplitude of the resulting jitter is obtained by multiplying
ΔL(j) to finger speed. This effect also depend on the screen’s
refresh rate Fd, as higher rates mean more frequent jumps.

How this phenomenon translates in actual cursor or view­
port jumps during a pointing or scrolling action is complex
to model, as pointing gestures happen in multiple bursts of
velocity depending on a number of task and setup factors [21,
7]. To simplify, we make the assumption that averaging ΔL(j)

6030 350
0.0

2.5

5.0

7.5

10.0

|Δ
L(
j)|

1204024
1000
2Fi =8.3 ms

Input Frequency = 60 Hz

904530 350
0

2

4

6

|Δ
L(
j)|

1806036 5.6 ms

Input Frequency = 90 Hz

1206040 350
Output Frequency (Hz)

0

2

4

|Δ
L(
j)|

2408048 4.2 ms

Input Frequency = 120 Hz

Figure 2: Examples of input/output frequency combinations and the av­
erage jitter that they induce, according to our model.

over a stroke provides a usable proxy for the visual ampli­
tude of the noise caused by input-output asynchronicity. We

1use |ΔL| = ∑
n
j=1 |ΔL(j)|, the mean of the absolute value of n

ΔL(j) over a pointing stroke, as an indication of overall noise.
It can be formulated as follows (developed in the appendix):

2a(1 − a) Fi Fi|ΔL| = with a = − (13)
Fi Fd Fd

Figure 2 shows the average |ΔL| for combinations of input Fi
and display Fd rates, averaged over a simulated stroke lasting 3
seconds (n = (3 − Sd)/Fd). Note that giving random values to
S yields the exact same graph. We observe several phenomena.

C First, |ΔL| increases and decreases as a function of Fd
in right-skewed ‘bumps’ (concave spikes) whose minimum
seems to be zero.

1

|ΔL| = 0 ⇐⇒ ΔL(j) = 0
⇐⇒ [Fi(S · Fd − j)] mod Fd − [Fi(S · Fd − j + 1)] mod Fd = 0

The modulo operator is distributive, so we know that

[(a%n) + (b%n)]%n = (a + b)%n

(here % denotes the mod operator to save space), and so:

([Fi(S · Fd − j)] %Fd − [Fi(S · Fd − j + 1)] %Fd)%Fd = 0
[Fi(S · Fd − j) − Fi(S · Fd − j + 1)] %Fd = 0

Fi%Fd = 0
Fi⇐⇒ Fd = ,with c ∈ I (14)
c

Fi FiThe ‘bumps’ happen every Fdmin = Hz, c ∈ I+ whenc+1 − c
Fd ≤ Fi (Fig. 2). One last ‘bump’ occurs for Fd ≥ Fi, that

200 400 600 800 1000
Fin(Hz)

60

90

120

F o
ut

 (H
z)

Pixel 3 XL
(1.22 ms)

Pixel 4
(3.8)

HTC Vive (0 to ~1.6 ms)

Oculus IMU
(0.75 ms)

Oculus Constellation
(6.25 ms)

iPad Pro 2018
(0.0 ms)

0

2

4

6

8

10

|ΔL(j)| (m
s)

Figure 3: |ΔL| for a subset of Fi and Fd values. The HTC Vive specifi­
cations mention a variable range of input frequencies. The Oculus uses
an 1000-Hz IMU for input, whose drifting is compensated by cameras
(Constellation) at 60 Hz.

seems to tend towards zero when Fd becomes infinitely high,
which fits the expected limit behavior of Fdmin when c = 0.

C Second, the maximum of |ΔL| seems to be constant through­
out all ‘bumps’ for a given input frequency, but decreases
as input frequency Fi increases. This maximum value is

1 Fi

2

max(|ΔL|) = , and occurs when Fd = , with c ∈ I (the2Fi c+ 1
2

mathematical demonstration can be found in appendix).

According to this model and metric, for any given display
refresh rate Fd, the amount of noise induced by asynchronic­
ity is null when the input rate Fi = c × Fd, with c ∈ I,

1and reaches its worst when Fi = Fd(c + 2), with jumps of
1|ΔL(j)| = , in time units. As shown in Fig. 3, the Fd(2×c+1)

effects of asynchronicity should disappear for high values of
input frequencies.

As discussed above, time jitter is only a usability issue when
its consequences are noticeable, which |ΔL| doesn’t express
directly. To do so, it needs to be expressed in terms of spatial
rather than temporal lag, e.g. by multiplying L(j) by the in­
stantaneous input speed at td j. Instantaneous speed profiles are
however notoriously tricky to model—at least predictively [21,
7]—so we discuss below how to measure this empirically.

PRACTICAL ASPECTS OF ASYNCHRONICITY JITTER

Re-sampling Input Events
Smoothing jitter can be done in a number of ways, the
most common being filtering the output signal directly, us­
ing e.g. moving average or the 1 C filter [10, 29].

Another approach, specifically relevant to asynchronicity­
induced jitter, consists in estimating input events at a fre­
quency that matches the display’s refresh rate, which in effect
should make L(j) constant. This approach is currently in use
in Android [15] and Chromium [13]. It computes the visual
feedback for the incoming frame using a virtual input event
re-sampled to occur at a fixed duration dpre before the next
frame. The timing of the next frame tswap is defined as the
timestamp of the next GPU swap between the screen buffer
and the frame buffer. As illustrated in Figure 4, if the last
input event occurred before tswap − dpre, the location of the
re-sampled input event is extrapolated using the last few input
events; otherwise, it can be interpolated between them. Small

0 6 22
Time (ms)

0

2

4

6

8

Y
 (m

m
) a

t 2
0

cm
/s

tswap
dpre
Input events (tik)
Interpolated input
Extrapolated input
Visible response

Figure 4: An idea case of smoothing asynchronicity-induced jitter by
re-sampling the input signal to match the display refresh rate, using in­
terpolation and extrapolation.

dpre values therefore increase the chances of extrapolation,
which in turn can introduce “prediction” side-effects [24, 23]
(including more jitter). Interpolation offers smooth transitions
between known input values, but increases the delay between
input and output signals.

Measuring spatial jitter
Jitter is usually measured as a noise, i.e. as a metric of variation
around a reference signal. This reference signal can represent
a neutral state, e.g. measuring the amount of spatial jitter
when a user holds a motion-tracked hand in mid-air. This is
however not applicable in our situation, since when a finger is
in contact with the screen but not moving, the touch surface
will not report any event in many cases.

The reference signal can also be inferred from the output trajec­
tory itself, e.g. the viewport positions in a scrolling task, using
filtering to produce a “smooth” trajectory for comparison [19].
However, this often requires to tune smoothing parameters by
hand, as the distinction between noise vs. meaningful trajec­
tory can sometimes only be distinguished via human expertise.
When trying to use that approach, we noticed that these pa­
rameters can be quite sensitive to input and output frequencies.
For example, our best guesses for the cutoff frequency of a
zero-phase shift filter were respectively 0.95 Hz and 0.5 Hz for
output frequencies of 30 Hz and 90 Hz. While a feasible ap­
proach, hand-tuned parameters also decrease replicability, as
different practitioners can have different subjective thresholds
for what constitutes noise vs. trajectory variation.

Finally, in some situations a reference signal can be obtained
directly from the input signal. This is trivial when the input
and output events are fully synchronized, but requires adjust­
ments when not, as is our case here. We use a method similar
to ΔL(j), but applied to position instead of time: given a ref­
erence time ti, we calculate the signed difference vector D(ti)
between the positions in the input signal Pin(ti) and in the
resulting output signal Pout(ti):

D(ti) = Pout(ti) − Pin(ti) (15)

This is the spatial equivalent of L(j) in Eq. (2, 9). If this differ­
ence is the same at every frame time, there is no asynchronicity­
induced jitter to observe—only possibly the one already
present in the input signal.

Asynchronicity-induced spatial jitter results from variations
in that difference, which will translate into cursor or viewport
jumps. Similar to ΔL(j) above, we express instantaneous
spatial jitter introduced by input-output asynchronicity in terms
of variations of D, i.e. :

ΔD(ti) = D(ti) − D(ti-1) (16)

A general estimation of the asynchronicity-induced spatial
noise over an entire gesture, measured at times ti ∈ T, can be
formulated similarly to |ΔL| as a mean of absolute differences:

n−11 |ΔD| = ∑ |ΔD(ti)| (17)
n i=1

n−11
= ∑ |Pout(ti) − Pin(ti) − Pout(ti-1) + Pin(ti-1)| (18)

n i=1

However, in most setups Pin and Pout are not continuous signals
but collections of measurements, and they might not always
contain values corresponding to ti. In this case we need to
estimate these positions, either using the most recent available
value, or through interpolation or extrapolation.

For our purposes, a spatial jitter metric does not need to be
usable in real time, so the reference signal Pin(ti) can be inter­
polated from values prior and posterior to ti. In what follows
we denote this interp[Pin(ti)]. The signal Pout to which this ref­
erence is compared, on the other hand, is calculated throughout
the movement in real time, and therefore cannot take future
events into account. In the general case without re-sampling,
and since in the context of direct touch we do not apply any
spatial transformation like C-D gains, this means that for each
timestamp tswap,i the value Pout(tswap,i) is the position of the
last sensed input event prior to tswap,i, as illustrated in Fig. 1.
Reusing the notations in Equation (1), we denote this as fol­
lows: Pout(ti) = Pin(tk(i)).

In the case of re-sampling, the reference times are defined as
t [= tswap,i − dpre. Since input events can occur prior to tswap,ii
but after ti

[, some Pout values can be interpolated, and others
need to be extrapolated:

extrap[Pin(ti
[)] if tk(i) < ti

[
Pout(ti

[) = (19)
interp[Pin(ti

[)] otherwise

Since reference values Pin(ti) are always interpolated, as ex­
plained above, it results that

D(ti) = Pout(ti) − Pin(ti)
extrap[Pin(ti

[)] − interp[Pin(ti
[)] if tk(i) < t [

= i (20)
0 otherwise

Interpolation and extrapolation can be computed using differ­
ent models, linear being the most straightforward (see e.g. in
Figure 5). Other, more complex models can be used, typically
using higher-level polynomials and prediction algorithms. We
will evaluate candidate techniques in the following study.

SIMULATOR STUDY WITH GOOGLE PIXEL DEVICES
To evaluate the effects of re-sampling methods on input/output
asynchronicity-induced jitter, we developed a program that

0 6 22
Time (ms)

0

2

4

6

Y
 (m

m
) tswap

Input extrapolation
D(t)
Input events (tik)
Interpolated input
Extrapolated input
Visible response

Figure 5: D(t) calculation in a realistic setup with re-sampling. When
the last input event before a frame happens after t [= tswap − dpre , inter-i
polation is used, otherwise the input is extrapolated to match ti[.

can calculate the visual output of a simple scrolling task on any
display frame rate, based on existing input data, available at
ns.inria.fr/loki/async. We first assess the validity of our model
using a real-case example of similar devices with equal input
frequency and different frame rates, for which we could collect
both input and output event timestamps. Then, using existing
re-sampling techniques, we varied the delay dpre between the
expected buffer swap time tswap and the targeted input estima­
tion, and observed the resulting trade-offs between reduced
spatial jitter and added latency.

We selected the Google Pixel 3 and Pixel 4 as use cases, as the
latter adopts a 90-Hz display compared to the more common
60 Hz used in the Pixel 3, while keeping the same touch sens­
ing frequency. Note that Pixel 4 display frequency is 90 Hz
only during interactions, and normal refresh rate is 60 Hz.
Internal testing revealed that users could see some unwanted
jitter before input re-sampling (see above) was implemented
in the Chromium app.

Simulator
Given a set of input strokes, the simulator iterates over each
individual stroke and artificially replays the received scroll
events at a controlled output frequency Fd = 1 . The simulator

Δt
generates artificial buffer swap times (tswap) every Δt . For real­
ism, it also applies a random (uniform) phase shift Δi <= Δt to
determine the initial swap time after the first input event. For
each artificial frame time td , events with timestamps anterior
to the current tswap are unstacked and processed to generate an
output coordinate. In our use-case of direct touch input, we
do not apply any geometric or scale transformation—such as
C-D gains, so input and output coordinates remain the same.
This processing also includes re-sampling with varying dpre
values, when needed.

Using these resulting “frames” (coordinates), we applied Equa­
tions (18, 20) to estimate the spatial jitter introduced by the
asynchronicity-induced lag for each individual stroke, as a
function of the output frequency parameter Fd, and of dpre
when relevant.

Data collection
In a controlled experiment, we collected a set of strokes from
participants in a series of scrolling tasks, using the touchscreen
of two mobile devices: a Google Pixel 3 XL and a Google

Pixel 4, which share the same input frequency but differ in their
display frame rate. These strokes were later used to simulate
the amount of instantaneous, asynchronicity-induced lag using
real input data, and estimate the amount and amplitude of the
resulting spatial jitter under different conditions.

Method and Apparatus
Both devices have an input frequency of 120Hz (one event
every 8.33 ms). The Pixel 3 XL has a 6.3" OLED display
with a definition of 2960 × 1440 pixels (523 dots per inch),
an output refresh rate of 60 Hz (one frame every 16.67 ms), a
Qualcomm Snapdragon 845 processor with 8 cores at 2.7 Ghz
and was running Android 9 Pie. Pixel 4 has a 5.7" OLED
display, with a definition of 1920 × 1080 pixels (444 dpi),
an output refresh rate going up to 90 Hz (one frame every
11.11 ms), a Qualcomm Snapdragon 855 processor with 8
cores at 2.84 Ghz and was running Android 10. Scrolling
events were recorded locally on both devices, using a web ap­
plication running in Android Chromium. Each recorded event
conveyed enough information to reproduce the interaction se­
quence as it happened during data collection: coordinates,
touch-up and touch-down events, and input timestamp pro­
vided by the driver/OS. Automatic scrolling events for inertia
were ignored. Logging events using Chromium also allowed
us to know the buffer swap timestamp (tswap) for each event,
i.e. the scheduled display time of each dispatched event’s vi­
sual feedback. The event dispatcher that unstacks incoming
input events is then aware of the next frame’s timestamp (See
Chromium sources [12], where args.frame_time is sent
to the scroll_predictor_ instance). Native re-sampling
mechanisms were disabled. We did not ask participants
whether they noticed any issue in particular, but in our own
pilot tests we did observe some visual jitter on the Pixel 4
when scrolling, especially at low speeds. This would indicate
that the theoretical duration/amplitude trade-off mentioned
earlier in Example of Asynchronicity is tipped in favor of
duration, at least in this context of direct touch input.

(a) Search task: par­
ticipants search and
click on the green
button

(b) Navigation task:
participants scroll to
the opposite side of
the page as fast as
they can, and click
the green button

(c) Read task: par­
ticipants click on all
the green buttons dis­
patched between the
N sections

Figure 6: Scrolling tasks mimicking the different scroll behaviors on
touch devices.

http://ns.inria.fr/loki/async/

30 40 50 60 70 80 90 100 110 120
0

5

10

15

20

25

30
Simulated (px)

Real (px)

Output frequency (Hz)

S
p

at
ia

l
ji

tt
er

 (
pi

xe
ls

)

2

3

4

|
L(j)|

(m
s)

Modeled (ms)

1

0

Figure 7: Average spatial jitter (pixels) per output frequency (Hz), com­
puted from the Pixel 3 and 4 (orange) and using the simulator (blue).
Error bars represent 95% CI. The jitter in time units, as measured by
our model, is overlaid in red on the figure.

Procedure, Design, and Task
Similar to Quinn et al. [28], we asked participants to scroll
long-content web pages on mobiles devices. Web pages were
composed of N sections. Each section consisted of a paragraph
of text, an image and another paragraph of text. Sections were
designed to take a full screen height of the mobile device, as
illustrated in Fig. 6.

We asked participants to scroll over the web pages in two di­
rections (top, bottom), on both devices, and under 3 different
tasks: search, navigation and read (Figure 6). Search con­
sisted in finding and clicking a green button in the middle of
the web page (at N/2). Navigation consisted in scrolling to
the opposite side of the web page as fast as the participant
could, and click a green button. Read consisted in scrolling to
the opposite side of the web page while clicking all the green
buttons displayed between each section.

The experiment used a 2× 3 × 3 ×2 within-subjects design for
factors: device (Pixel 3 XL or Pixel 4), task (search, navigation,
read), N (10, 20, 30 sections), and direction (top-to-bottom or
bottom-to-top). The order of devices, tasks, and directions was
counterbalanced across participants. We obtained a total of
432 trials, each consisting of 19.4 strokes on average (min=2,
max=114, SD=20.7).

Participants
Twelve participants (5 females, 7 males) participated in the ex­
periment, all software engineers in a mobile phone technology
company. We did not instruct them on how to hold the smart-
phones, but to hold and use them like they normally would. 3
participants put the smartphones on the table and scrolled with
their index finger. 1 participant used only one hand to hold
the devices and scrolled with the thumb. 3 participants held
the devices in one hand and scrolled with the index finger of
the other hand. Finally, 5 held the devices with 2 hands and
scrolled with the thumb. Participants were instructed to keep
the same posture throughout the 20 min study.

Results
The distributions of all input periods indicates that 96% of
input events occurred either 8 ms (63%) or 9 ms (33%) after
their predecessor for the Pixel 3 XL, and 91% (resp. 80% for
8 ms and 11% for 9 ms) for the Pixel 4. The distributions of
all display refresh events (through tswap) indicates that 98%
of the output events of the Pixel 3 XL occurred at 60 Hz,
and 96 % at 90 Hz for the Pixel 4. Overall, the assumption
of constant output frequency formulated for the simulator’s
design is confirmed, and the assumption of constant input
frequency in our theoretical model is mostly confirmed.

Impact of the Display Rate on Spatial Jitter
We measured the spatial jitter (Equations (18, 20)) for the
Pixel 3 XL and Pixel 4, using the recorded input and tswap
information. As shown in Figure 7, average absolute lag
differential increases from 9 pixels at 60 Hz, to 26 pixels at
90 Hz. This difference is in line with direct observations and
with our model.

We then used all recorded input from the two devices to sim­
ulate different output frequencies. The resulting simulated
spatial jitter displays the same trends as our temporal model,
with a horizontal shift (intercept) of about 10 pixels likely
due to variable input speed, which our theoretical model does
not account for. The simulated average spatial jitter at 90 Hz
is very similar to the one measured in our data collection
(26 px), and about 4 px off for 60 Hz. The levels of spatial
jitter obtained through simulation seem coherent both with our
analysis and with our real-life measures, confirming that some
asynchronous frequencies increase visual jitter.

Effects of Linear Re-sampling
Temporal re-sampling at fixed intervals dpre before new frames
(tswap) is generally performed using linear interpolation or
extrapolation, as in Android and Chromium at dpre = 5 ms.
Therefore, we first evaluated the effects of linear re-sampling.
We also varied dpre from 0 to 10 ms, to explore the trade-offs
between spatial jitter and latency that we expect to occur with
re-sampling.

As illustrated in Figure 8, all values of dpre decrease spatial
jitter for all output frequencies Fd except when jitter was
already minimal at Fd = Fi/c, c ∈ I, as predicted in Equa­
tion (14). This suggests that higher values of dpre nearly cancel
asynchronicity-induced spatial jitter. They however come at
the cost of increased latency. Figure 9 illustrates this trade-off,
compared to a baseline without re-sampling. For dpre = 10 ms
(green symbols in Fig. 9), re-sampling can add up to 6 ms
of latency in average, while dpre = 0 (blue) can reduce the
latency of the pipeline by nearly 8 ms using extrapolation.
Such differences can be considered small, but Deber et al.
have shown that improvements in latency as small as 8 ms
are noticeable from a wide range of baseline latencies [18].
dpre = 4 ms (orange in Fig. 9) appears to offer a good trade-off
for Fi = 125 H z, as it systematically reduces both spatial jitter
and latency. Based on our results, the choice of dpre = 5 ms in
Android and Chromium is a good default value, with only a
small increase in latency.

30 40 50 60 70 80 90 100 110 120
0

5

10

15

20

25

30

35

Baseline
0 ms
1 ms
2 ms
3 ms
4 ms
5 ms
6 ms
7 ms
8 ms
9 ms
10 ms

Output frequency (Hz)

Sp
at

ia
l j

itt
er

 (p
ix

el
s)

−5 0 5 10

0

5

10

15

20

25

30
100 Hz
110 Hz
120 Hz
30 Hz
40 Hz
50 Hz
60 Hz
70 Hz
80 Hz
90 Hz

Baseline
MA
0 ms
2 ms
4 ms
6 ms
8 ms
10 ms

Latency compared to baseline (ms)

S
pa
ti
al
 j
it
te
r 
(p
ix
el
s)

Figure 8: Average spatial jitter (pixels) over output frequency (Hz) for
the baseline and different values of linear resampling. Error bars repre­
sent 95% CI.

Standard Filtering Techniques
We also assessed how general-purpose filtering techniques
fare with asynchronicity-induced jitter, in comparison to re-
sampling. We chose simple moving average (MA) as a stan­
dard approach, which has the advantages of being straight­
forward to implement, requiring no parameter tuning, and
introducing a deterministic and constant amount of latency
l = 0.5(N − 1)/Fi where N is the number of samples used in
the moving average and Fi is assumed constant.

As shown in Figure 9, a moving average with N = 2 introduces
overall more latency than linear resampling, but reduces spatial
jitter compared to the baseline, for all output frequencies.
Linear re-sampling systematically reduces spatial jitter better
than moving average except for dpre = 0 ms (prediction at
frametime) for output frequencies of 30, 60, and 120 Hz.

More sophisticated filtering techniques like the 1e filter could
introduce less latency for the same reduction of spatial jitter.
However, the exact latency introduced by such techniques is
variable and difficult to quantify. Without an accurate estima­
tion of this added latency, we cannot apply our spatial jitter
metric. Taken together, filtering techniques do not seem best
suited to solve the problem compared to linear re-sampling.

Comparison of Extrapolation Techniques
To re-sample input events, coordinates in the near-future of
a trajectory can be estimated in a number of ways in addi­
tion to linear extrapolation. Such techniques can be used for
instance to predict the next few points of a movement in or­
der to compensate latencies [19, 23], allowing for different
degrees of accuracy and negative side-effects depending on
the predicted duration [24], or “horizon”. In particular, sec­
ond order polynomial curve fitting (dubbed CU RV E in [24])
and Double-Exponential Smoothing Predictor (DESP) from
LaViola [19] were found to generate fewer side-effects overall
compared to other predictors [23]. Other prediction techniques
such as Kalman filters or the TurboTouch Predictor [23] can
also offer reliable predictions, but are designed to predict at

Figure 9: Trade-off between spatial jitter (pixels) and latency (ms) for
the baseline technique, moving average (MA) and linear resampling for
0, 2, 4, 6, 8 and 10 ms, and different frequencies. Negative latency cor­
responds to some latency compensation compared to the baseline and
positive values correspond to latency added to the baseline.

30 40 50 60 70 80 90 100 110 120
0

5

10

15

20

25

30

35

Baseline
Linear 0 ms
Linear 2 ms
Linear 4 ms
Curve 0 ms
Curve 2 ms
Curve 4 ms
DESP 0 ms
DESP 2 ms
DESP 4 ms

Output frequency (Hz)

Sp
at

ia
l j

itt
er

 (p
ix

el
s)

Figure 10: Average visual jitter (pixels) over output frequency (Hz) for
the baseline and different predictors. Error bars represent 95% CI.

fixed horizons. In our case, the horizon to predict h = tswap − t
is variable, so we did not include these techniques in our tests.

We compared CU RV E and D E SP to predict 0, 2 and 4 ms
before frame time (Figure 10). CU RV E shows performance
very similar to linear extrapolation, reducing spatial jitter even
when predicting at frame time (dpre = 0). DESP also reduces
spatial jitter, compared to no re-sampling, but to a lower extent.
These results could indicate a lower robustness of DES P to
predict at any time in the future instead of fixed time intervals.

DISCUSSION
This work describes and characterizes the phenomenon that
asynchronous input and output (display) rates can generate
visual jitter in interactive systems, even when every individual
component of the interaction pipeline functions perfectly. We
proposed a mathematical model of this jitter in time units, and

a metric to evaluate it in spatial units. Both were validated us­
ing real data from devices with equal input rates and different
display rates, which provided a first confirmation of our model
and of the validity of the proposed metric. We also explored
the strengths and weaknesses of various spatial jitter-reduction
methods, the most promising so far being to re-sample input
events at fixed delays before frame time. This method is now
a default input component in Chromium1, with a re-sampling
parameter that matches our simulated findings.

Our results offer guidelines for system design, in particular
Fig. 3 that can be used to estimate how much spatial jitter to ex­
pect from a given combination of input/output rates and guide
the choice of hardware frequencies. For situations wherein
such a choice is not possible, we propose a simulator to explore
re-sampling parameters and assess the jitter/latency trade-off.

This work does not aim to offer a definitive solution to this
usability issue, but to initiate an effort to characterize and
address what seems to be an avoidable problem. The next
steps of our research will focus around three goals.

1. Consolidating our theoretical contributions
While promising, our empirical findings need to be extended to
more combinations of input/output rates, in order to reinforce
the validation of our model and simulator. This is not trivial,
as many input or output devices offer little to no variability
on their frequencies. We will experiment with high-frequency
displays that can be “slowed-down” to commercial standards,
and input devices with controllable rates like gaming mice or
motion trackers. While we are confident that our theoretical
contributions will hold in more varied situations, populating
Figure 7 remains useful to assess their variability in real se­
tups. We will also assess the robustness of our findings with
scenarios wherein input processing is neither negligible nor
constant (e.g. 3D games with significant computation upon
inputs), thereby introducing variable amounts of latency.

2. Generalizing our findings to noisy interactive pipelines
To isolate the specific phenomenon of asynchronicity-induced
jitter, we narrowed our empirical explorations to direct-touch
interaction. These setups typically have little to no other
sources of noise, such as limb tremor (e.g. holding an in­
put device in mid-air), input transformations (e.g. applying
C-D gains), or additional extrapolations (e.g. to compensate
system latency), making them a good control testbed. How­
ever, we need to validate our findings in noisier environments,
to confirm whether our temporal jitter model and spatial jit­
ter metric remain usable amidst other sources of noise, and
whether re-sampling can still help.

3. User perception of jitter
We focused this work on scrolling tasks, for simplicity and as
a frequent example of jitter issues in direct touch. Previous
work showed that there exist perceptive thresholds for jitter,
for instance in terms of amplitude [24] and input speed [10].
Jitter can also be perceived differently, and generate different
degrees of frustration, depending on the task at hand [24]. The
fact that Android implemented a specific software solution to
tackle this phenomenon may indicate that it was reported as a
1chrome://flags/#enable-resampling-scroll-events

significant issue; however, our work so far is limited to geo­
metric characterizations of asynchronicity-induced jitter, and
would become more applicable with clear perceptive thresh­
olds depending on interaction context. As of now, our model
(see Fig. 3) indicates that increasing input frequency (Fi) is
an efficient ‘brute force’ method to decrease the maximum
amplitude of asynchronicity-induced jitter. Increasing output
frequency (Fd) is a more complex matter, however, because
output rates higher than the input rate can still increase jitter
significantly (e.g. the last ‘bumps’ in Fig. 2). We will test
our findings on different tasks such as pointing, drawing, and
writing, and gather systematic subjective feedback to assess
the perception thresholds above which asynchronicity-induced
jitter needs to be addressed.

CONCLUSION
This work addresses the problem of visual jitter caused by
asynchronous input and output rates in interactive systems. We
first describe the phenomenon from a mathematical standpoint,
from which we formulate a predictive model of temporal jitter
amplitude as a function of input and output frequencies. From
this we introduce a metric to measure the corresponding spatial
jitter. This metric was validated on a real-case setup, through
the collection of scrolling data on two similar devices having
the same input rate and different output rates. We further used
the collected data to simulate a range of output frequencies
and compare different approaches to reduce ansynchronicity­
induced jitter. Our results validate our model and show that
re-sampling input events to a timestamp before frame-display
time is an effective way to cancel asynchronicity-induced jitter,
while introducing minimal imprecision or latency. In partic­
ular, we show that for devices with 120 Hz input, i.e. most
touch-screens today, linear re-sampling at 4-6 ms before frame
time offers the best results. This technique and parameters
are now used in Chromium on most touch devices. Future
work will include investigating these issues in different setups,
especially in the context of virtual reality.

ACKNOWLEDGMENTS
This work was partially supported by ANR (Causality, ANR­
18-CE33-0010-01) and the Google Faculty Research Awards
Program.

REFERENCES
[1] AMD. 2015. FreeSync. (2015). Retrieved April 13th,

2020 from

https://www.amd.com/en/technologies/free-sync

[2] Android. 2020. Choreographer.FrameCallback. (2020).
Retrieved April 13th, 2020 from
https://developer.android.com/reference/android/view/
Choreographer.FrameCallback

[3] Apple. 2020a. CADisplayLink. (2020). Retrieved April
13th, 2020 from https://developer.apple.com/
documentation/quartzcore/cadisplaylink?language=objc

[4] Apple. 2020b. CVDisplayLink. (2020). Retrieved April
13th, 2020 from https://developer.apple.com/
documentation/corevideo/cvdisplaylink?language=objc

chrome://flags/#enable-resampling-scroll-events
http://mathieu.nancel.net/causality
https://www.amd.com/en/technologies/free-sync
https://developer.android.com/reference/android/view/Choreographer.FrameCallback
https://developer.android.com/reference/android/view/Choreographer.FrameCallback
https://developer.apple.com/documentation/quartzcore/cadisplaylink?language=objc
https://developer.apple.com/documentation/quartzcore/cadisplaylink?language=objc
https://developer.apple.com/documentation/corevideo/cvdisplaylink?language=objc
https://developer.apple.com/documentation/corevideo/cvdisplaylink?language=objc

[5] Apple. 2020c. Getting High-Fidelity Input with
Coalesced Touches. (2020). Retrieved April 30th, 2020
from https://developer.apple.com/documentation/uikit/
touches_presses_and_gestures/handling_touches_in_
your_view/getting_high-fidelity_input_with_coalesced_
touches?language=objc

[6] Marc Baloup, Thomas Pietrzak, and Géry Casiez. 2019.
RayCursor: A 3D Pointing Facilitation Technique Based
on Raycasting. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems
(CHI ’19). Association for Computing Machinery, New
York, NY, USA, Article Paper 101, 12 pages. DOI:
http://dx.doi.org/10.1145/3290605.3300331

[7] Robin T Bye and Peter D Neilson. 2008. The BUMP
model of response planning: variable horizon predictive
control accounts for the speed-accuracy tradeoffs and
velocity profiles of aimed movement. Hum Mov Sci 27,
5 (oct 2008), 771–798. DOI:
http://dx.doi.org/10.1016/j.humov.2008.04.003

[8] Géry Casiez, Stéphane Conversy, Matthieu Falce,
Stéphane Huot, and Nicolas Roussel. 2015. Looking
through the Eye of the Mouse: A Simple Method for
Measuring End-to-End Latency Using an Optical Mouse.
In Proceedings of the 28th Annual ACM Symposium on
User Interface Software & Technology (UIST ’15).
Association for Computing Machinery, New York, NY,
USA, 629–636. DOI:
http://dx.doi.org/10.1145/2807442.2807454

[9] Géry Casiez, Thomas Pietrzak, Damien Marchal,
Sébastien Poulmane, Matthieu Falce, and Nicolas
Roussel. 2017. Characterizing Latency in Touch and
Button-Equipped Interactive Systems. In Proceedings of
the 30th Annual ACM Symposium on User Interface
Software and Technology (UIST ’17). Association for
Computing Machinery, New York, NY, USA, 29–39.
DOI:http://dx.doi.org/10.1145/3126594.3126606

[10] Géry Casiez, Nicolas Roussel, and Daniel Vogel. 2012.
1C Filter: A Simple Speed-Based Low-Pass Filter for
Noisy Input in Interactive Systems. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’12). Association for
Computing Machinery, New York, NY, USA,
2527–2530. DOI:
http://dx.doi.org/10.1145/2207676.2208639

[11] Elie Cattan, Amélie Rochet-Capellan, Pascal Perrier,
and François Bérard. 2015. Reducing Latency with a
Continuous Prediction: Effects on Users’ Performance
in Direct-Touch Target Acquisitions. In Proc. 2015
International Conference on Interactive Tabletops and
Surfaces (ITS ’15). ACM, 205–214. DOI:
http://dx.doi.org/10.1145/2817721.2817736

[12] Chromium. 2019a. InputHandlerProxy (Line 1265).
(2019). Retrieved May 5th, 2020 from https://chromium.
googlesource.com/chromium/src.git/+/refs/tags/84.0.
4136.2/ui/events/blink/input_handler_proxy.cc

[13]	 Chromium. 2019b. Linear resampling. (2019). Retrieved
May 5th, 2020 from https://chromium.googlesource.
com/chromium/src.git/+/refs/tags/84.0.4136.2/ui/
events/blink/prediction/linear_resampling.cc

[14] Mark Claypool and Kajal Claypool. 2009. Perspectives,
Frame Rates and Resolutions: It’s All in the Game. In
Proceedings of the 4th International Conference on
Foundations of Digital Games (FDG ’09). Association
for Computing Machinery, New York, NY, USA, 42–49.
DOI:http://dx.doi.org/10.1145/1536513.1536530

[15] Google. 2010. Android Input Transport (Line 53).
(2010). Retrieved May 5th, 2020 from
https://android.googlesource.com/platform/frameworks/
native/+/refs/tags/android-10.0.0_r36/libs/input/
InputTransport.cpp

[16] Jože Guna, Grega Jakus, Matevž Poga ̌cnik, Sašo
Tomaži ̌c, and Jaka Sodnik. 2014. An Analysis of the
Precision and Reliability of the Leap Motion Sensor and
Its Suitability for Static and Dynamic Tracking. Sensors
14, 2 (Feb. 2014), 3702–3720. DOI:
http://dx.doi.org/10.3390/s140203702

[17] Benjamin F. Janzen and Robert J. Teather. 2014. Is 60
FPS Better than 30? The Impact of Frame Rate and
Latency on Moving Target Selection. In CHI ’14
Extended Abstracts on Human Factors in Computing
Systems (CHI EA ’14). Association for Computing
Machinery, New York, NY, USA, 1477–1482. DOI:
http://dx.doi.org/10.1145/2559206.2581214

[18]	 Ricardo Jota, Albert Ng, Paul Dietz, and Daniel Wigdor.
2013. How Fast is Fast Enough? A Study of the Effects
of Latency in Direct-Touch Pointing Tasks. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13). Association
for Computing Machinery, New York, NY, USA,
2291–2300. DOI:
http://dx.doi.org/10.1145/2470654.2481317

[19] Joseph J. LaViola. 2003. Double Exponential
Smoothing: An Alternative to Kalman Filter-Based
Predictive Tracking. In Proceedings of the Workshop on
Virtual Environments 2003 (EGVE ’03). Association for
Computing Machinery, New York, NY, USA, 199–206.
DOI:http://dx.doi.org/10.1145/769953.769976

[20] Merriam-Webster. 2020. Jitter. (2020). Retrieved April
6th, 2020 from
https://www.merriam-webster.com/dictionary/jitter

[21]	 D E Meyer, R A Abrams, S Kornblum, C E Wright, and
J E Smith. 1988. Optimality in human motor
performance: ideal control of rapid aimed movements.
Psychol Rev 95, 3 (jul 1988), 340–370. DOI:
http://dx.doi.org/10.1037/0033-295x.95.3.340

[22] Microsoft. 2020. WaitForVBlank. (2020). Retrieved
April 13th, 2020 from
https://docs.microsoft.com/en-us/windows/win32/api/
dxgi/nf-dxgi-idxgioutput-waitforvblank

https://developer.apple.com/documentation/uikit/touches_presses_and_gestures/handling_touches_in_your_view/getting_high-fidelity_input_with_coalesced_touches?language=objc
https://developer.apple.com/documentation/uikit/touches_presses_and_gestures/handling_touches_in_your_view/getting_high-fidelity_input_with_coalesced_touches?language=objc
https://developer.apple.com/documentation/uikit/touches_presses_and_gestures/handling_touches_in_your_view/getting_high-fidelity_input_with_coalesced_touches?language=objc
https://developer.apple.com/documentation/uikit/touches_presses_and_gestures/handling_touches_in_your_view/getting_high-fidelity_input_with_coalesced_touches?language=objc
http://dx.doi.org/10.1145/3290605.3300331
http://dx.doi.org/10.1016/j.humov.2008.04.003
http://dx.doi.org/10.1145/2807442.2807454
http://dx.doi.org/10.1145/3126594.3126606
http://dx.doi.org/10.1145/2207676.2208639
http://dx.doi.org/10.1145/2817721.2817736
https://chromium.googlesource.com/chromium/src.git/+/refs/tags/84.0.4136.2/ui/events/blink/input_handler_proxy.cc
https://chromium.googlesource.com/chromium/src.git/+/refs/tags/84.0.4136.2/ui/events/blink/input_handler_proxy.cc
https://chromium.googlesource.com/chromium/src.git/+/refs/tags/84.0.4136.2/ui/events/blink/input_handler_proxy.cc
https://chromium.googlesource.com/chromium/src.git/+/refs/tags/84.0.4136.2/ui/events/blink/prediction/linear_resampling.cc
https://chromium.googlesource.com/chromium/src.git/+/refs/tags/84.0.4136.2/ui/events/blink/prediction/linear_resampling.cc
https://chromium.googlesource.com/chromium/src.git/+/refs/tags/84.0.4136.2/ui/events/blink/prediction/linear_resampling.cc
http://dx.doi.org/10.1145/1536513.1536530
https://android.googlesource.com/platform/frameworks/native/+/refs/tags/android-10.0.0_r36/libs/input/InputTransport.cpp
https://android.googlesource.com/platform/frameworks/native/+/refs/tags/android-10.0.0_r36/libs/input/InputTransport.cpp
https://android.googlesource.com/platform/frameworks/native/+/refs/tags/android-10.0.0_r36/libs/input/InputTransport.cpp
http://dx.doi.org/10.3390/s140203702
http://dx.doi.org/10.1145/2559206.2581214
http://dx.doi.org/10.1145/2470654.2481317
http://dx.doi.org/10.1145/769953.769976
https://www.merriam-webster.com/dictionary/jitter
http://dx.doi.org/10.1037/0033-295x.95.3.340
https://docs.microsoft.com/en-us/windows/win32/api/dxgi/nf-dxgi-idxgioutput-waitforvblank
https://docs.microsoft.com/en-us/windows/win32/api/dxgi/nf-dxgi-idxgioutput-waitforvblank

[23] Mathieu Nancel, Stanislav Aranovskiy, Rosane
Ushirobira, Denis Efimov, Sebastien Poulmane, Nicolas
Roussel, and Géry Casiez. 2018. Next-Point Prediction
for Direct Touch Using Finite-Time Derivative
Estimation. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology
(UIST ’18). Association for Computing Machinery, New
York, NY, USA, 793–807. DOI:
http://dx.doi.org/10.1145/3242587.3242646

[24] Mathieu Nancel, Daniel Vogel, Bruno De Araujo,
Ricardo Jota, and Géry Casiez. 2016. Next-Point
Prediction Metrics for Perceived Spatial Errors. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST ’16). ACM,
New York, NY, USA, 271–285. DOI:
http://dx.doi.org/10.1145/2984511.2984590

[25] Albert Ng, Julian Lepinski, Daniel Wigdor, Steven
Sanders, and Paul Dietz. 2012. Designing for
Low-Latency Direct-Touch Input. In Proceedings of the
25th Annual ACM Symposium on User Interface
Software and Technology (UIST ’12). Association for
Computing Machinery, New York, NY, USA, 453–464.
DOI:http://dx.doi.org/10.1145/2380116.2380174

[26] NVidia. 2014. G-Sync. (2014). Retrieved April 13th,
2020 from https://www.nvidia.com/en-us/geforce/
products/g-sync-monitors/

[27] Andriy Pavlovych and Wolfgang Stuerzlinger. 2009.
The Tradeoff between Spatial Jitter and Latency in
Pointing Tasks. In Proceedings of the 1st ACM SIGCHI
Symposium on Engineering Interactive Computing
Systems (EICS ’09). Association for Computing
Machinery, New York, NY, USA, 187–196. DOI:
http://dx.doi.org/10.1145/1570433.1570469

[28] Philip Quinn, Sylvain Malacria, and Andy Cockburn.
2013. Touch Scrolling Transfer Functions. In

Proceedings of the 26th Annual ACM Symposium on
User Interface Software and Technology (UIST ’13).
ACM, New York, NY, USA, 61–70. DOI:
http://dx.doi.org/10.1145/2501988.2501995

[29] Eugene M. Taranta, Seng Lee Koh, Brian M.
Williamson, Kevin P. Pfeil, Corey R. Pittman, and
Joseph J. LaViola. 2019. Pitch Pipe: An Automatic
Low-Pass Filter Calibration Technique for Pointing
Tasks. In Proceedings of the 45th Graphics Interface
Conference on Proceedings of Graphics Interface 2019
(GI’19). Canadian Human-Computer Communications
Society, Waterloo, CAN, Article Article 27, 8 pages.
DOI:http://dx.doi.org/10.20380/GI2019.27

[30] Robert J. Teather, Andriy Pavlovych, Wolfgang
Stuerzlinger, and I. Scott MacKenzie. 2009. Effects of
tracking technology, latency, and spatial jitter on object
movement. In 2009 IEEE Symposium on 3D User
Interfaces. IEEE. DOI:
http://dx.doi.org/10.1109/3dui.2009.4811204

[31] Colin Ware and Ravin Balakrishnan. 1994. Reaching for
Objects in VR Displays: Lag and Frame Rate. ACM
Trans. Comput.-Hum. Interact. 1, 4 (Dec. 1994),
331–356. DOI:
http://dx.doi.org/10.1145/198425.198426

[32] Greg Welch and Gary Bishop. 2001. An Introduction to
the Kalman Filter. (2001). Retrieved April 30th, 2020
from http:
//www.cs.unc.edu/~tracker/ref/s2001/kalman/index.html

[33] Andrew Wilson. 2012. Sensor- and Recognition-Based
Input for Interaction. In Human-Computer Interaction
Handbook : Fundamentals, Evolving Technologies, and
Emerging Applications, Jan Fagerberg, David C.
Mowery, and Richard R. Nelson (Eds.). CRC Press,
Chapter 7, 133–156.

http://dx.doi.org/10.1145/3242587.3242646
http://dx.doi.org/10.1145/2984511.2984590
http://dx.doi.org/10.1145/2380116.2380174
https://www.nvidia.com/en-us/geforce/products/g-sync-monitors/
https://www.nvidia.com/en-us/geforce/products/g-sync-monitors/
http://dx.doi.org/10.1145/1570433.1570469
http://dx.doi.org/10.1145/2501988.2501995
http://dx.doi.org/10.20380/GI2019.27
http://dx.doi.org/10.1109/3dui.2009.4811204
http://dx.doi.org/10.1145/198425.198426
http://www.cs.unc.edu/~tracker/ref/s2001/kalman/index.html
http://www.cs.unc.edu/~tracker/ref/s2001/kalman/index.html

Appendix: Characterizing |ΔL| m m + 1
We develop the formulation of |ΔL|= f (Fi,Fd) in a simple case. la jJ−la(j −1)J= 0 ⇐⇒ ≤ j −1 < j <

a a
First, let us define r ∈ R such that m m + 1 ⇐⇒ + 1 ≤ j < (27)

a aFi = Fd × r	 (21)
Complementarily, la jJ−la(j −1)J= 1 if m2 = m −1:

Fi ∈ I, and r’s fractional	 m m2 + 1We distinguish r’s floor c = lrJ=
Fipart a = {r}= ∈ [0,1):Fd

 Fd la jJ−la(j −1)J= 1 ⇐⇒ ≤ j and j −1 <
a a
m m ≤ j < + 1 (28)⇐⇒
a aFi

= lrJ+ {r}= a + c (22)
Fd

w p
p

m m+1

⇐⇒ x =

Thus, for any integer x in any interval I with

m
a

= ,a a
m ∈ I and a ∈ [0,1),

We can re-express |ΔL| from Equation (11) as pwwm m1 if x ∈ + 1,1
∑
n	 laxJ−la(x −1)J= a a

m+1|ΔL|= |ΔL(j)| m0 if x ∈ + 1,a an j=1 (29) Furthermore,

n1 1 1 j −1 j
∑
 Fi S + − Fi S ++=

Fd Fi Fd Fdn j=1

pw

n	 la jJ−la(j −1)J ∈ {0; 1}1
=

nFi
∑ |c+a+c(j−1)+lFi ·S+a(j−1)J−c j −lFi ·S+a jJ| ⇐⇒ la jJ−la(j −1)J−a ∈ {−a; 1 −a}
j=1

⇐⇒ | la jJ−la(j −1)J−a| ∈ {a; 1 −a} (30)since c, j ∈ I and Fi > 0
n1

To generalize, we can partition any interval I = [1..n] into∑ |a + lFi ·S+a(j−1)J−lFi ·S+a jJ|
j=1

=
nFi

k k+1 with k ∈ [0.. lnaJ]. According to intervals Ik = ,n a a1
=

nFi
∑ |lFi ·S+a jJ−lFi ·S+a(j−1)J−a| (23) Equation (29)-top, laxJ− la(x −1)J = 1 once in every Ik

j=1 interval, i.e. lnaJ times overall within I. Consequently,

S = Sd −Si represents the difference of the offsets of the output
and input signals, assuming their frequency is constant for
simplicity. If we consider:

(i) that Si and Sd are defined null at j = 0, then Fi ·S = 0;
(ii)	 or, that their difference itself S is very small—which

would likely be the case if all values are expressed in
the International System of Units, i.e. in seconds and
hertz—then we could also discard the Fi ·S component;

(iii)	 or, that S and Fi are expressed in integer values, e.g. inte­
gral amounts of milliseconds and kiloHertz to maintain
orders of magnitude, then the two Fi ·S components can
be taken out of the floor functions, and cancel each other.

In all three cases, we can simplify Equation (23) as:
n1 |ΔL|= ∑ |la jJ−la(j −1)J−a| (24)

nFi j=1

By definition, la jJ is the largest integer m ≤ a j:

m m + 1la jJ = m ∈ I : ≤ j < (25)
a a
m2 m2 + 1la(j −1)J = m2 ∈ I : ≤ j −1 < (26)
a a

Since a ∈ [0, 1), la jJ−la(j −1)J is either 0 or 1. In particular,
it is equal to 0 if the intervals defined in Equations (25) and
(26) are the same, i.e. if m = m2, and equal to 1 otherwise.

laxJ−la(x −1)J= 0 the rest of the time, i.e. n −lnaJ times
within I. Combining this with Equation (30), we obtain that:

n1 |ΔL|= ∑ |la jJ−la(j −1)J−a|
nFi j=1

(1 −a)lnaJ+ a(n −lnaJ)
=

nFi

(1 −2a)lnaJ+ na
=	 (31)

nFi

naJWhen n is very large, we consider that l ∼ a, and thus: n

2a(1 −a)|ΔL| ∼ (32)
Fi

The resulting curve perfectly overlaps the ones obtained
through repeated simulation (Figure 2). From this, we can eas­
ily characterize the ‘bumps’ formed by the curve of |ΔL|(Fd),
and in particular their maximum:

1
amax = arg max (|ΔL|) = arg max [a(1 −a)] = (33)

a a 2
Fi FiFdmax = = 1 for any c ∈ I (34)

c + amax c + 2

Using Equation (32), we can calculate

1
max(|ΔL|) = at Fd = Fdmax (35)

2Fi

	Introduction
	Related work
	Impact of frame rate
	Impact of noise on performance and user perception
	Characterizing jitter
	Reducing jitter
	Resampling techniques
	Next-point prediction techniques

	Theoretical Effects of In-Out Asynchronicity
	Example of Asynchronicity
	Generalization

	Practical Aspects of Asynchronicity Jitter
	Re-sampling Input Events
	Measuring spatial jitter

	Simulator Study with Google Pixel Devices
	Simulator
	Data collection
	Method and Apparatus
	Procedure, Design, and Task
	Participants

	Results
	Impact of the Display Rate on Spatial Jitter
	Effects of Linear Re-sampling
	Standard Filtering Techniques
	Comparison of Extrapolation Techniques

	Discussion
	Conclusion
	Acknowledgments
	References

