
RNN-TRANSDUCER WITH STATELESS PREDICTION NETWORK

Mohammadreza Ghodsi, Xiaofeng Liu, James Apfel, Rodrigo Cabrera, and Eugene Weinstein

{ghodsi,xiaofengliu,japfel,rodrigocabrera,weinstein}@google.com
Google

ABSTRACT

The RNN-Transducer (RNNT) outperforms classic Au-
tomatic Speech Recognition (ASR) systems when a large
amount of supervised training data is available. For low-
resource languages, the RNNT models overfit, and can not
directly take advantage of additional large text corpora as in
classic ASR systems.

We focus on the prediction network of the RNNT, since it
is believed to be analogous to the Language Model (LM) in
the classic ASR systems. We pre-train the prediction network
with text-only data, which is not helpful. Moreover, remov-
ing the recurrent layers from the prediction network, which
makes the prediction network stateless, performs virtually as
well as the original RNNT model, when using wordpieces.
The stateless prediction network does not depend on the pre-
vious output symbols, except the last one. Therefore it sim-
plifies the RNNT architectures and the inference.

Our results suggest that the RNNT prediction network
does not function as the LM in classical ASR. Instead, it
merely helps the model align to the input audio, while the
RNNT encoder and joint networks capture both the acoustic
and the linguistic information.

Index Terms— ASR, RNN-Transducer, RNNT, Predic-
tion Network, Stateless

1. INTRODUCTION

Traditionally, Automatic Speech Recognition (ASR) systems
were constructed by joining multiple models, including the
Acoustic Model (AM), the pronunciation model (lexicon),
and the Language Model (LM), which are trained indepen-
dently. The AM is trained with speech-text (paired) data, and
the LM is trained with text-only data.

Recently End-to-End (E2E) ASR models such as the
RNN-Transducer (RNNT) [1, 2, 3] have become very popu-
lar. Compared to classic ASR systems, they directly predict
word sequences (using graphemes or wordpieces) from audio
features. Therefore, they simplify the ASR system, and have
shown better performance in many cases. However, clas-
sic ASR systems benefit from the linguistic information of
text-only data, in the form of an LM, whereas E2E models
are usually trained only with speech-text data without taking

advantage of text-only data (which is typically available in
much larger quantities). Therefore, E2E models may not
perform equally well on long-tail examples (e.g., uncommon
words or proper nouns), or on low-resource languages.

Many recent works have investigated effective ways of us-
ing text-only data to improve E2E models, including fusion
with an external LM [4, 5, 6, 7, 8], knowledge distillation
from an LM [9], augmenting paired data with TTS data [10,
11], etc. Additionally, the encoder-prediction structure of
RNNT models has been understood to resemble the AM-LM
structure in the classic ASR systems [2]. That is, the encoder
network models the acoustic features of speech, similar to an
AM, while the recurrent prediction networks memorizes the
long term label dependencies, and models the linguistic fea-
tures, similar to an LM. If this is the case, it may be possible to
enhance the recurrent prediction network, by training it with
text-only data, and thus improve the overall performance of
the RNNT model. Such approaches include pre-training the
prediction network with text-only data [12], and multi-task
training, where the prediction network is trained with text-
only data in addition to paired speech-text data. However,
while pre-training the encoder with extra data usually helps,
pre-training the prediction network with text data has not been
helpful in our experiments.

In this paper, we show evidence that contradicts the
widely accepted understanding that the prediction network
functions like an LM. Our experiments on multiple languages
show that a stateless (i.e. non-recurrent) prediction network,
that depends only on the last output symbol, works virtually
as well as the original RNNT architecture, using wordpieces.
This simplifies the RNNT architectures and inference also.
These results suggest that the RNNT encoder and joint net-
works can capture both acoustic and linguistic aspects, while
the prediction network merely helps the model choose be-
tween outputting an actual symbol or blank.

2. METHODS

2.1. The RNN Transducer

The RNNT is a streaming [13] E2E model, as illustrated in
Fig. 1a. It typically consists of the following components: the
encoder, the prediction network, and the joint network. Its

Joint network:
Feed Forward

Encoder:
RNN

Prediction:
RNN

Softmax

Embedding

xt
Audio

features

Pr(y | x1… xt, y0 … yu-1)

yu-1
Previous target
(during training)

Last
non-<blank>
output
(during
prediction)

(a) Baseline RNNT

Joint network:
Feed Forward

Encoder:
RNN

Softmax

Embedding

xt
Audio

features

Pr(y | x1… xt, yu-1)

yu-1
Previous target
(during training)

Last
non-<blank>
output
(during
prediction)

(b) RNNT-SLP

Fig. 1: Representation of the baseline RNNT model and the
RNNT with stateless prediction (SLP) network.

(a) 39.3 million utterances (b) 393 thousand utterances

Fig. 2: RNNT training performance on En-US with (a) the
full US English training set, and (b) 1% random sample of
the full set. The x-axis is the number of training steps, and
the y-axis is WER. The performance on train set and dev set
are plotted in cyan and blue respectively.

input is a sequence of audio feature vectors that correspond to
segments of the audio (frames), represented by xt. Its target
is a sequence of sub-word symbols, represented by yu, which
can be graphemes (characters) or wordpieces [14].

The length of the output sequence is usually shorter than
the input, so the model is also allowed to predict a special
blank symbol (), which skips this input frame without
changing the state of the prediction network. At a high level,
the model predicts the probability of the next symbol or blank
ŷ ∈ Y ∪ {} at any given time t, given the audio features
up to xt, and previous non-blank symbols y0 . . . yu−1:

Pr (ŷ|x1 . . . xt, y0 . . . yu−1) (1)

We refer readers to [1, 15] for more detail.

2.2. Pre-training the prediction network

The RNNT’s recurrent prediction network is believed to act
like an LM, capturing the linguistic dependencies between
symbols. Therefore, we try pre-training the prediction net-
work using text only data. That is, we initialize the parame-

ters of the RNNT prediction network (the embedding and the
recurrent layers), from an RNN-LM trained on the text-only
data, then we continue training the RNNT model on paired
data.

2.3. Studying the RNNT behavior

To simulate a low-resource language and better understand
the RNNT behavior, we trained two identical RNNT models:
the first is trained on all available En-US data, and the second
is trained on a 1% random sample of the same data. Fig. 2
shows the Word Error Rate (WER) on train and dev sets for
these models. Note that in the 1% experiment, the model ex-
hibits extreme overfitting with high WER. Given this issue,
we investigate how much data is required to train each part of
the RNNT, and their relative contributions to the overall ac-
curacy. We do this by building on the small data simulation
experiment: we continue training different parts of the overfit
model using all of the data, and measure the improvements.

2.4. RNNT with stateless prediction network (RNNT-
SLP)

Our previous experiments suggest that the RNNT encoder is
more significant than the prediction network. This prompts a
closer look at the prediction network, and the role it plays.

To investigate how much context the prediction network
requires, we remove the recurrent layers from the prediction
network. The resulting RNNT has no hidden state in the pre-
diction network (i.e. it is “stateless”). We use the term RNNT
with StateLess Prediction network (RNNT-SLP) to refer to
this model. Its prediction is conditioned only on the last (out-
put or target) symbol, acting effectively as a 2-gram LM on
the output subword set:

Pr (ŷ|x1 . . . xt, yu−1) (2)

We compare RNNT-SLP with the original RNNT model
(Equation 1) and an end-to-end Connectionist Temporal Clas-
sification (CTC) model that has no dependence on previous
symbols:

Pr (ŷ|x1 . . . xt) (3)

3. RESULTS

3.1. Data sets and model architecture details

Our data preparation, and our baseline RNNT model archi-
tecture are generally the same as [13]. Here we recount only
the most relevant information.

We have chosen 3 languages that represent high, medium,
and low amounts of training data: English (US) has 39.3
million utterances (∼ 30,000 hours) of training data, Span-
ish (Spain) has 13.4 million utterances (∼ 11,000 hours), and
Norwegian has 3.1 million utterances (∼ 2,000 hours). The

Table 1: The RNNT prediction network pre-training results.

Experiment Test WER
Baseline 23.5
Freeze nothing 23.9 (+1.7%)
Freeze prediction network 55.1 (+134%)
Add two layers, freeze two 26.0 (+10.6%)

utterances are anonymized and transcribed, and are represen-
tative of Google’s voice-search traffic. The training set is cre-
ated by artificially corrupting clean utterances using a room
simulator. The dev set is a small fraction of the training set
held out for validation. The test set also contains anonymous
transcribed utterances from the voice-search task.

Our baseline RNNT architecture has an encoder network
that consists of 8 LSTM layers, where each layer has 2,048
hidden units followed by a 640-dimensional projection layer.
The prediction network consists of an embedding layer fol-
lowed by 2 LSTM/projection layers, and the joint network is
a feed-forward layer with 640 hidden units. The total size of
RNNT model is 120M parameters for wordpiece models. For
output symbols, we use either 4096 wordpieces, or less than
100 graphemes.

3.2. Pre-training the prediction network

In pretraining, a RNN-LM with identical architecture to the
RNNT prediction network was trained using a mix of: the
transcripts of the paired training data, public web pages, and
typed search query data. We tried three variations of pre-
training. In the first experiment, the RNNT is trained without
freezing any parameters. In the second experiment we freeze
the prediction network and train only the encoder and the joint
network. The third experiment is an intermediate approach:
we add two extra recurrent layers to the prediction network,
initialize the bottom two from the RNN-LM and freeze just
the bottom two layers. The results of prediction network pre-
training are shown in Table 1. Pre-training was not found to
help in any of these experiments. The best result is when the
prediction network is not frozen. This suggests that what the
RNN-LM learns from the text-only data is not useful for the
RNNT model, and is best “forgotten”.

3.3. The relative importance of the components of the the
RNNT model

To measure how much data is needed to train each component
of the the RNNT model, we set up the following experiment.
We first train the baseline RNNT architecture on a 1% sam-
ple of English data. The WER on for this model is shown
in the first row of Table 2. In the following experiments, we
initialize all parameters of the RNNT model from the 1% ex-
periment, then freeze some components of the RNNT model,
and continue training the rest on 100% of En-US data. This

Table 2: The result of training different components of the
RNNT model on additional data. We first initialize the model
parameters from a model trained on 1% of supervised English
data. Then freeze some parameters, and continue training oth-
ers on 100% of the data. Here PN refers to the prediction
network, and JN refers to the joint network.

Experiment Dev WER
Base model trained on 1% training data 32
Train PN and JN 24
Train PN, JN and top layer of encoder 20
Train encoder 17
Train PN, JN and top 4 layers of encoder 15
Train encoder and JN 15
Train all parameters 13

means that the frozen parameters have been trained on a very
small amount of the data, while the rest are trained on all of
the data.

The most important insight from Table 2 comes from
comparing the WER after tuning the prediction and joint net-
work (24%) to WER after tuning only the encoder (17%).
Using additional data to tune the encoder yields more gains.
Additionally, tuning both the encoder and joint network is
almost as good as tuning all parameters, which suggests that
the prediction network has a relatively small role.

3.4. Stateless prediction network

The effect of using a stateless (non-recurrent) prediction net-
work depends on the type of model output symbols (that
is, graphemes vs wordpieces). Stateless prediction network
causes significant regressions for the grapheme models, but
the errors mainly fit a particular patter illustrated in Table 3.
Namely, for transcripts that contain repeated graphemes (like
‘food’), the model predicts any number of those graphemes
with almost the same probability (that is, anything matching
the regular expression ‘foo*d’). This is because the model
sees only one letter into the past, and does not “remember”
whether it has output one or two ‘o’s. So it can continue
repeating the same symbol many times. Therefore, an impor-
tant job of the prediction network is that it stops the model
from outputting repetitive symbols many times.

The repetition problem is less significant for wordpiece
models, for two reasons. Firstly, because of the way word-
pieces are constructed, the common repetitive patterns (for
example the ones that have linguistic significance, like ‘oo’
and ‘ee’) are represented by distinct wordpieces. Secondly,
there are many more wordpieces than graphemes, so the prob-
ability of two wordpieces that are the same appearing next to
each other is lower.

In fact, we get little or no WER regression from using a
stateless prediction network with wordpieces, as shown in Ta-

Table 3: Example errors of a grapheme RNNT model with
stateless prediction network. These are most likely hypothe-
ses for a single utterance.

kent island seafood
kent island seafod
kent island seafoood
kent island seafooood
cant island seafood
cant island seafod

ble 4. For small and medium size languages, there is no no-
ticeable difference between the stateless prediction network
and the baseline. We did observe a regression on our largest
language (English). However, if we remove the same num-
ber of recurrent layers from encoder instead of prediction net-
work, we observe the same regression. And, with the stateless
prediction network, if we add two more recurrent layers in the
encoder, we recover some of the above regressions. These ex-
periments suggest that the total number of the parameters is
more important than whether the recurrent layers are in the
encoder or the prediction network.

We also compared the RNNT-SLP approach to a CTC
wordpiece model, to study the effect of auto-regression in
the prediction network. Table 5 compares a wordpiece CTC
model and a RNNT-SLP model trained on the same (Span-
ish) training data. The CTC model consists of 8 bidirectional
(2 × 640 unit) LSTM layers, which have the same numbers
of hidden units and projection units as the RNNT-SLP model,
except that the RNNT encoder uses unidirectional LSTM lay-
ers. Thus the CTC model has similar number of parameters
as the RNNT-SLP model. The CTC model is decoded using
beam-search without an LM.

Table 5 shows that the dev set WER is much worse for the
CTC model. This suggests that the independence assump-
tion between all symbols (that the CTC model makes) is too
strong. In practical terms, the RNNT-SLP models a 2-gram
LM (due to the dependence on the last output), whereas the
CTC model lacks any LM information.

4. DISCUSSION

The key insight from this investigation is that the RNNT pre-
diction network is not directly comparable to the LM in the
classical ASR system. Its most important function seems to
be preventing repeated outputs of the same symbol. To do
that, the prediction network needs to drive the blank probabil-
ity of the network, which a conventionally trained RNN-LM
cannot do.

We also compared three sequence-to-sequence architec-
tures with different amounts of dependence on their previous
output symbols: Our experiments show that the RNNT-SLP
is competitive with the baseline RNNT for wordpieces, and

Table 4: Comparing baseline RNNT model WER, with mod-
els with zero recurrent layers in the prediction network. We
also include some other variants with by changing the number
of of layers in the encoder. These three languages represent
relatively small, medium or large amounts of training data.
The pair of numbers in the first column denote the number of
layers in the (encoder, prediction) network respectively. For
example, (8, 0) refers to the stateless prediction network ar-
chitecture.

(a) Norwegian (Norway), trained on 3.1 million utterances.

Model Params Test WER
(8, 2) 120M 22.2
(8, 0) 100M 19.9 (-1.5%)

(b) Spanish (Spain), trained on 13.4 million utterances.

Model Params Test WER
(8, 2) 120M 9.6
(6, 2) 96M 9.7 (+1.0%)
(8, 0) 102M 9.7 (+1.0%)

(c) English (US), trained on 39.3 million utterances.

Model Params Test WER
(8, 2) 120M 6.8
(6, 2) 96M 7.4 (+8.8%)
(8, 0) 102M 7.2 (+5.9%)
(10, 0) 126M 7.1 (+4.4%)

Table 5: Comparing RNNT-SLP with CTC.

Model Params Dev WER
RNNT – stateless PN (8, 0) 102M 13.0
CTC – bidirectional encoder 90M 20.8 (+60.0%)

significantly outperforms CTC. This suggests that it is help-
ful to depend on the label history, but that at least for low and
medium resource languages, the RNNT does not need more
than one wordpiece of history to achieve full performance.

The RNNT-SLP has two additional advantages over the
regular RNNT: It reduces the total number of model param-
eters and simplifies the model architecture. And it simplifies
the beam-search decoding implementation, since it does not
need to keep track of the hidden state of the recurrent layers
in the prediction network for each partial hypothesis.

How to leverage text data for RNNT training and how
to achieve competitive results in low-resource languages re-
main topics for further investigation, but direct training of the
RNNT model using text data does not seem to be a fruitful
approach.

5. REFERENCES

[1] Alex Graves, “Sequence transduction with recurrent
neural networks,” arXiv preprint arXiv:1211.3711,
2012.

[2] Kanishka Rao, Haşim Sak, and Rohit Prabhavalkar,
“Exploring architectures, data and units for streaming
end-to-end speech recognition with rnn-transducer,” in
2017 IEEE Automatic Speech Recognition and Under-
standing Workshop (ASRU). IEEE, 2017, pp. 193–199.

[3] Rohit Prabhavalkar, Kanishka Rao, Tara N Sainath,
Bo Li, Leif Johnson, and Navdeep Jaitly, “A compar-
ison of sequence-to-sequence models for speech recog-
nition.,” in Interspeech, 2017, pp. 939–943.

[4] Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loic Barrault, Huei-Chi Lin, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio, “On using mono-
lingual corpora in neural machine translation,” arXiv
preprint arXiv:1503.03535, 2015.

[5] Anjuli Kannan, Yonghui Wu, Patrick Nguyen, Tara N
Sainath, Zhijeng Chen, and Rohit Prabhavalkar, “An
analysis of incorporating an external language model
into a sequence-to-sequence model,” in 2018 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2018, pp. 1–5828.

[6] Anuroop Sriram, Heewoo Jun, Sanjeev Satheesh, and
Adam Coates, “Cold fusion: Training seq2seq mod-
els together with language models,” arXiv preprint
arXiv:1708.06426, 2017.

[7] Changhao Shan, Chao Weng, Guangsen Wang, Dan Su,
Min Luo, Dong Yu, and Lei Xie, “Component fusion:
Learning replaceable language model component for
end-to-end speech recognition system,” in 2019 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP). IEEE, 2019, pp. 5361–5635.

[8] Shubham Toshniwal, Anjuli Kannan, Chung-Cheng
Chiu, Yonghui Wu, Tara N Sainath, and Karen Livescu,
“A comparison of techniques for language model inte-
gration in encoder-decoder speech recognition,” in 2018
IEEE Spoken Language Technology Workshop (SLT).
IEEE, 2018, pp. 369–375.

[9] Ye Bai, Jiangyan Yi, Jianhua Tao, Zhengkun Tian,
and Zhengqi Wen, “Learn spelling from teach-
ers: Transferring knowledge from language models
to sequence-to-sequence speech recognition,” arXiv
preprint arXiv:1907.06017, 2019.

[10] Takaaki Hori, Ramon Astudillo, Tomoki Hayashi,
Yu Zhang, Shinji Watanabe, and Jonathan Le Roux,

“Cycle-consistency training for end-to-end speech
recognition,” in 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2019, pp. 6271–6275.

[11] Shigeki Karita, Shinji Watanabe, Tomoharu Iwata, Marc
Delcroix, Atsunori Ogawa, and Tomohiro Nakatani,
“Semi-supervised end-to-end speech recognition using
text-to-speech and autoencoders,” in 2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2019, pp. 6166–6170.

[12] Senmao Wang, Pan Zhou, Wei Chen, Jia Jia, and Lei
Xie, “Exploring rnn-transducer for chinese speech
recognition,” arXiv preprint arXiv:1811.05097, 2018.

[13] Yanzhang He, Tara N Sainath, Rohit Prabhavalkar, Ian
McGraw, Raziel Alvarez, Ding Zhao, David Rybach,
Anjuli Kannan, Yonghui Wu, Ruoming Pang, et al.,
“Streaming end-to-end speech recognition for mobile
devices,” in 2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2019, pp. 6381–6385.

[14] Mike Schuster and Kaisuke Nakajima, “Japanese and
korean voice search,” in 2012 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2012, pp. 5149–5152.

[15] Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton, “Speech recognition with deep recurrent neu-
ral networks,” in 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2013, pp. 6645–6649.

