Video transcoding optimization based on input perceptual
quality

Yilin Wang, Hossein Talebi, Feng Yang, Joong Gon Yim, Neil Birkbeck, Balu Adsumilli, and
Peyman Milanfar

Google Inc., 1600 Amphitheatre Pkwy., Mountain View, CA, USA 94043

ABSTRACT

Today’s video transcoding pipelines choose transcoding parameters based on rate-distortion curves, which mainly
focus on the relative quality difference between original and transcoded videos. By investigating the recently
released YouTube UGC dataset, we found that human subjects were more tolerant to changes in low quality
videos than in high quality ones, which suggests that current transcoding frameworks can be further optimized
by considering perceptual quality of the input. In this paper, an efficient machine learning metric is proposed
to detect low quality inputs, whose bitrate can be further reduced without sacrificing perceptual quality. To
evaluate the impact of our method on perceptual quality, we conducted a crowd-sourcing subjective experiment,
and provided a methodology to evaluate statistical significance among different treatments. The results show
that the proposed quality guided transcoding framework is able to reduce the average bitrate up to 5% with
insignificant perceptual quality degradation.

Keywords: video transcoding, perceptual video quality, user generated contents, machine learning

1. INTRODUCTION

Balancing the trade-off between bitrate and visual quality is a core problem of video compression/transcoding.
For large-scale video transcoding systems, it is common to use fixed settings (e.g., bitrates or CRFs) to transcode
all videos, which ignores the intrinsic variance across the content. Some recent works':? achieve better per-
formance than fixed settings by optimizing transcoding parameters over the Rate-Distortion (R-D) curves of
individual videos. However, existing R-D curves mainly focus on the relative difference (using PSNR or SSIM?)
between the original and the transcoded versions, whose underlying assumption is that original videos are in
pristine quality. For video sharing platforms like YouTube, the majority of uploaded videos are User Generated
Content (UGC), which are usually non-pristine. Besides relative quality changes, the original quality becomes
another important factor of the perceptual quality for UGC, opening new opportunities for UGC transcoding.

For UGC transcoding, distortions caused by compression do not always negatively impact perceptual quality,
especially when the original quality is bad. Fig. 1 compares two 720P UGC videos with different original quality.
Here the range of Mean Opinion Scores (MOS) is [1, 5]. We can see for the high quality original, there is no
significant change in MOS when transcoding with recommended VP9 settings® (CRF=32), and MOS decreases
by 0.2 if increasing CRF by 10. However, when the original is of low quality, MOS for all three versions are very
close, which implies viewers are not sensitive to compression distortions when the original quality is already below
a certain threshold. Inspired by this phenomenon, we proposed a framework called Quality Guided Transcoding
(QGT), where videos can be transcoded with more aggressive settings (e.g., increased CRFs) if they are in low
quality.

Exploring original quality brings a new viewpoint to UGC transcoding. Many practical problems will be
addressed in this paper, like how to define low quality, how to evaluate model accuracy, and how to design
criteria for insignificant quality changes. The major contributions of this work are as follows:

e An efficient machine learning based metric is proposed, which achieves good performance on detecting
low quality UGC videos. We also discuss how to treat quality prediction as a classification problem, and
calculate reasonable precision and recall (Section 3).
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Figure 1. Viewers are less sensitive to quality changes in low quality videos than in high quality videos. Left: original
videos with high and low perceptual quality. Middle: videos transcoded by VP9 with recommended settings (CRF
32). Right: videos transcoded with increased CRF 42. Sample videos are selected from YouTube UGC dataset*(vid:
Animation_720P-06a6 and NewsClip_720P-35d9). MOS are collected by our subjective experiment.

e We designed a framework to guide transcoding based on input quality, and proposed new transcoding
parameters for low quality videos (Section 4).

e We conducted a crowd-sourced subjective experiment to validate our QGT approach, and provide a general
methodology to evaluate significant difference between variants (Section 5).

2. RELATED WORK

Perceptual quality for UGC videos is a broad concept. Besides compression artifacts, distortions introduced
during the process of video production (like lens blur and camera shake) could also influence viewers’ watching
experience. Traditional public video quality datasets (e.g., LIVE datasets®®) mainly focus on compression
distortions introduced to pristine originals, which contain very limited UGC features. Some public UGC datasets,
like YouTube-8M? and AVA,'° only provide extracted features instead of raw pixel data, making them less useful
for compression research. Large-scale UGC quality datasets*'!*!2 were released in the past two years, which
provide both raw videos and MOS collected from crowd-sourcing platforms. Within these datasets, YouTube’s
UGC dataset (YT-UGC)* is one of the most representative ones. The YT-UGC dataset is sampled from 1.5
million YouTube videos, contains 1500 20-second video clips, covering 15 categories (e.g., Gaming, Sports, and
Music Video) and various resolutions (from 360P to 4K), making it a good basis for research on the practical
applications of video compression and video quality assessment.

Video quality assessment has been studied for decades and is still a challenging research topic. Reference
quality metrics (e.g., PSNR, SSIM, and VMAF!3) are designed for measuring relative quality changes from the
reference (pristine original), and are not suitable for estimating original quality. Since traditional no-reference
metrics'*'® mainly rely on manually designed features that are summarized from limited samples, they don’t
perform well on various UGC conditions. Recent machine learning based metrics!?>2° achieved significant im-
provements, benefiting from models pretrained on large scale datasets (e.g., ImageNet). However, most existing
metrics focus on the accuracy across the full quality range, which is slightly different from our use case (i.e.,



only focusing on low quality boundary). Also, machine learning based metrics are usually computationally ex-
pensive (based on Deep Neural Networks, DNN), making them inefficient to be used as a video quality metric
that performs on every frame. For our use case, high precision on low quality detection is more important than
high correlation in the full quality range, which allows us to build a lightweight model that is fast enough to
investigate every video frame.

3. LOW QUALITY DETECTOR
3.1 Low Quality Detector Training

The hypothesis of quality guided transcoding is that viewers have different sensitivities to compression distortions
in videos with different input quality. The first open question is how to classify videos into two groups: low
quality and non-low quality, which requires a no-reference quality metric. As discussed in Section 2, traditional
no-reference metrics do not perform well on UGC videos, and the existing, computationally expensive DNN-
based metrics are not sufficient for this low quality detection task (which is basically a binary classification
problem). Thus we propose a lightweight model consisting of the first three layers of Inception-v2 model?! (a
7 X 7 convolution layers with stride=2, a max pooling layer with stride=2, and then a 1 x 1 layer as shown in
Fig. 2), followed by a spatial pyramid pooling (SPP)?? layer, and a fully-connected (FC) layer. The predicted
score (low quality probability) is normalized to [0, 1] by a sigmoid function. Note that because of the SPP layer,
the model can take RGB images with arbitrary input resolutions. In our model we implemented 4 scales of the
SPP with average pooling. At training and testing we resize images to 256 x 192 with proper rotations to resize
the largest dimension to 256. The proposed Tensorflow implementation of our model contains nearly 12 thousand
parameters and takes 90 million flops to run on an input image. When compiled for 64-bit intel architectures
with AVX, the resultant model binary is only 180KB, and can process 100 fps for 1080p on a single skylake core,
which is efficient enough for large scale deployment.

Due to limited UGC datasets with associated mean opinion scores, our model was developed through transfer
learning. The model weights were initialized by an image classification Inception-v2 model (using the first three
layers) trained on JFT Dataset (300M images),?® which was used to extract basic image features. The initial
model was then trained on the Visual Quality Dataset®* (250K image, pairwise ranks collected for 3.2M pairs),
which helped the model to learn quality related features. The obtained model is then fine-tuned on our own
pairwise UGC dataset (17K image pairs) to optimize its sensitivity to UGC compression artifacts.

Our own UGC dataset consists of two parts. The first one is 1500 frames extracted from YT-UGC* (one
random frame from each video), where each frame is randomly paired with 7 frames from other videos. We
showed these side-by-side frames to human subjects and asked for their preference (either A > B or A < B).
Each pair was rated by three domain experts, and their average rating was used as the final pairwise rank
value. The second set is an automatically generated pairwise set, where another 1000 frames extracted from
YT-UGC dataset are compressed into three different quality levels (Q1, Q2, Q3). The default order of quality
is: Original >= Q1 >= Q2 >= Q3. Each original frame provides 6 pairs of frames, so in total we have 6000
automatically generated pairs. There is more than one way to generate such compression variants, and in this
paper we compress the original with the H264 codec using CRF values of 30, 35, and 40. The purpose of the
first dataset is to help the model learn UGC style features, and the second dataset forces the model to be more
sensitive to compression distortions. The final training set contains 17K frame pairs.

The model was trained by a Siamese network (Fig. 2), where a pair of images (z;,z;) are fed into networks
that shared the same weights to get corresponding predicted low quality probabilities y; and y;. Besides their
pairwise rank p; j, we also estimated global rank scores (s; and s;) for the two images based on iterative rank
aggregation.?® The overall loss is the sum of pairwise loss and rank loss:

loss(x;, x5) = —pijlog(yi — y;) — (1 — pij) log(1 — (yi — ;) + (si — %:)* + (s5 — y;)>.

pairwise loss rank loss
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Figure 2. The training model based on a Siamese network. Our lightweight model consists of the first three layers of
Inception-v2 model.

3.2 Evaluation on UGC Low Quality Detection

We split the created pairwise UGC dataset into training and test sets by 80/20, and the final model achieved
84% on predicting the pairwise rank on the test set. Fig. 3 shows sample images with various low quality
probabilities, where we can see predicted scores match the decreasing trend of the perceptual quality. We also
found that the image quality became very bad when the score was greater than 0.8.

i

0.7924 0.8798 0.9902

Figure 3. Samples with different predicted low quality probabilities.

We also evaluated the proposed metric with YT-UGC MOS data,?® where the MOS range is [1, 5] where
1 means the worst quality and 5 means excellent quality. Since our metric focused on low quality detection
instead of predicting quality in the full range, we did some pre-processing of the data. Videos were grouped
into three quality levels: low, medium, and high, where MOS 3.0 and 3.8 were set as bars for low and high
quality respectively. Based on this classification, there are 20% low quality, 41% medium quality, and 39% high
quality videos in the YT-UGC dataset. In practice, the boundary between low and medium quality is usually
ambiguous, and the potential risk of mislabeling “medium” as “low” is lower than mislabeling “high” as “low”,
thus we proposed the concept of “weighted precision” and “weighted false positive” for this low quality detection
task, where we assigned a weight m (€ [0, 1]) for the count of true “medium” predicted as “low”, where 0 means
only considering true “high” in false positive computation, and 1 means treating “medium” equally as “high”
in false positive computation. The calculation of recall is not affected by this weight. The following metrics are



used to evaluate the low quality detector:

- pred; ;
Precision = .
pred; ; +m - pred; ,,, + pred, ;
red
Recall = Proc
true;
m - pred, .. + pred
FalsePositive = PIO%,m T PTO%h

pred,,; ,, +m - pred; ,, + pred, ;’

where I, m, h, and nl denote “low”, “medium”, “high”, and “not low” (=“medium”+ “high”), pred, , is the
count of true y predicted as x. true; is the count videos with true z.

Fig. 4 showes weighted precision, recall, and weighted ROC for the proposed low quality metric. In our
application, controlling the impact of mislabeling is more important than bitrate saving (i.e., precision is more
important than recall), so we set the low quality threshold T, = 0.8, whose corresponding weighted precision is
high (0.86 for m = 0 and 0.79 for m = 0.2), while recall is relatively low (0.27) but still acceptable. We also
compares the proposed metric with three popular no-reference metrics: BRISQUE,'* NIQE,'® and VIIDEO.'¢
Since they are also frame-based metrics, the average frame score is used as the final score for the entire video.
Fig. 5 compared their weighted precision, recall, and ROC with m = 0. We can clearly see that existing no-
reference metrics don’t perform well for such low quality detection tasks, and the proposed metric outperforms
the other three metrics in all aspects.
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Figure 4. Weighted precision, recall, and ROC for the proposed metric.
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Figure 5. Comparison of weighted precision, recall, and ROC for BRISQUE, NIQE, VIIDEO, and the proposed metric
with weight m = 0. All metric scores are normalized to [0, 1]. Similar results were observed for other weights.

4. QUALITY GUIDED TRANSCODING FRAMEWORK

With the efficient low quality detector, we propose a framework called Quality Guided Transcoding (QGT, as
shown in Fig. 6): the input video is first split into multiple disjoint 5 second chunks, then each chunk is evaluated
by the low quality detector independently. If the predicted low quality probability is greater than the pre-defined



threshold (7, = 0.8 in this paper), the CRF is increased by X and other parameters (like max and min bitrates)
are kept the same; otherwise, the default CRF is used to transcode the chunk. All transcoded chunks are then
merged together to get the final transcoded video.

Input video

Chunk 1 Chunk N

Low Quality Detector Low Quality Detector

P>Tg P<=Tg P>Tq P<=Tg

Transcoding with
increased CRF

Transcoding with
default CRF

Transcoding with
increased CRF

Transcoding with
default CRF

Merged transcoded video

Figure 6. Framework of Quality Guided Transcoding.

To evaluate the performance of QGT framework, we selected all videos (excluding 4k) from the YT-UGC
dataset, divided them into 5 second chunks, and compressed these videos in their native resolutions by VP9
with recommended 2 pass settings,” where CRF(CQ)=36, 34, 32, and 31 for 360P, 480P, 720P, and 1080P
respectively. Three QGT treatments were evaluated, whose CRF's were increased by 10, 15, and 20 from default
values. Table 1 showed detected low quality ratios and file size savings for different resolutions. We can see low
resolution originals (360p and 480p) have a larger ratio of low quality chunks than higher resolution originals
(720p and 1080p), which matches the common sense of video resolutions (i.e., higher resolution usually has better
quality). In general, applying QGT can reduce file size (or bitrate) by 4 to 8% for 360P and 1 to 2% for 1080P
videos, which are remarkable savings for large scale video sharing platforms like YouTube. However, we cannot
arbitrarily increase CRF because viewers would be annoyed by noticeable quality degradation, which should be
avoided. We need a well defined methodology to identify optimal settings for QGT.

Table 1. Performance of QGT on YouTube UGC dataset

Input resolution 360P 480P 720P 1080P

Total 5s chunks 1030 1234 1253 1632

Detected low quality chunk ratio 24% 18% 10% 9%
VP9 default CRF total size (in MB) 179.8 374.9 926.1 2322.8

QGT (CRF+10) total size (saving ratio) | 172.7 (-3.9%)

362.1 (-3.4%)

905.3 (-2.2%)

2294.6 (-1.2%)

QGT (CRF+15) total size (saving ratio) | 169.7 (-5.5%)

355.5 (-5.1%)

894.3 (-3.4%)

2278.5 (-1.9%)

QGT (CRF+20) total size (saving ratio) | 165.4 (-7.9%)

348.0 (-7.1%)

886.3 (-4.2%)

2266.4 (-2.4%)




5. OPTIMAL SETTINGS FOR QGT

Identifying quality criteria for video transcoding is tricky. It is difficult to directly map quality changes to bitrate
savings, or vice versa. In this paper, we treated the version transcoded with default VP9 two-pass settings as
the base, and a valid treatment should be statistically insignificant from the base.

5.1 Subjective Data Collection

We grouped YT-UGC videos (all in 20s, i.e, 4 x 5s chunks) into three quality conditions: low (4 low quality
chunks), medium (2 low quality chunks), and high (no low quality chunks), based on the predicted low quality
probabilities. Then for each resolution (360P, 480P, 720P, and 1080P) we selected 10 videos for each quality
condition. In total there are 4 resolutions x3 quality conditions x10 videos = 120 test videos. Within each
subset, we also tried to include as many content categories as possible, although some categories (e.g., 1080P
Gaming) had no low quality samples.

Original videos were transcoded at their native resolution with default (recommended) settings for VP9, as
well as CRF increased by 10, 15, and 20. There are 5 x 120 = 600 video clips in total (original, default, CRF+10,
CRF+15, and CRF+20), and corresponding subjective scores (5 quality levels: bad, poor, fair, good, excellent)
were collected by our crowd-sourcing platform.?6 Each subject received about 80 randomly selected videos for
rating, and finally each clip was rated by 30 to 60+ subjects.

Fig. 7 compares MOS between variants. We can see that the difference between original and default versions
(top left) are relatively small, since most nodes (in all three quality conditions) are roughly equally distributed
along the diagonal line. In the other three cases, the default versions in high quality conditions are clearly better
than versions transcoded with increased CRF's (below the diagonal line), which implies the current default CRFs
are already optimal for high quality videos. However, when looking at low and medium quality conditions,
we can see MOS between default and CRF+10 versions (top right) are also very close, which suggests that
it is promising to increase CRF's for those videos without causing noticeable quality degradation. Such results
match the hypothesis of QGT. Since most CRF+20 versions have lower MOS than corresponding default versions
(bottom right), which doesn’t meet QGT quality criterion, it is not a valid candidate. Now there are two potential
treatments (CRF+10 and CRF+15), and we need a more precise approach to validate them.

5.2 Statistical Significance

In this section, we use the Bootstrap Hypothesis Test to evaluate the three proposed CRF values for QGT.
Bootstrap?” is a classical statistical technique for small datasets that provides unbiased estimate that some
attribute of them differ.

Suppose the entire subjective test included M individual videos, each of them has multiple variants (e.g.,
original, default, crf+10, etc). Test videos are grouped into three classes (low, medium, high) based on their
upload quality. N individual subjects finished the test, and each of them only rated a subset (e.g., 80) of the
entire set. The same subject can see multiple variants from the same content.

Let g, ,;,s, De the quality score for the jth variant (treatment) of the ith content rated by subject k. To
estimate the difference between variant v, and v, on a video set, we perform the following sequence of steps:

e Step 1: build a set P that includes all valid < ¢;, si > pairs where subject s, has rated both variant v,
and v, for video c;. The size of P is L.

e Step 2: compute paired differences for all pairs in P:
Draw = {(ge; 0,5 — ‘ICi,vy,Sk) |V <ei, s> €P},
e Step 3: compute mean and t-score for D:

graw = Z d/L7

d€Dyaw

draw

traw = . N7
0(Draw)/L



Figure 7.
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Pairwise MOS comparisons for different variants. Nodes denote individual videos in three different quality
conditions (low, medium, and high). The dash line (in red) means y = x.

e Step 4: build a set D; by independently randomly selecting L elements from D4, (allowing duplicates of
the same element), and compute the sample mean shifted by d;. and corresponding t-score:

di = Y d/L,
deb;

t = Ji_Jraw

YT e/

e Step 5: repeat Step 4 K (e.g., 10000) times to get bootstrap mean and a set of t-scores (Thoot):

meanpoot (U, Vy)

Tboot

(dy +dg+ -+ dk)
K b
-vtK}a

= {ti1,to,..

e Step 6: compute Achieved Significance Level (ASL) for t statistics:

ASLboot (7}17 vy) = Z(tz 2 traw)/Ky if traw Z 07

i

D (ti < traw) /K, if traw < 0.

7

Two statistics meanpoor, and ASLpoot are used as our quality criteria. meanyoo(vg,vy) > 0 means vari-
ant/treatment v, tends to generate videos with better quality than v, does, and vice versa. ASLpoor < 0.05 means
vy and v, are significantly different (roughly corresponding to 95% probability that v, and v, are different).

Summary 1: For low quality videos, it is safe to increase CRF by 10. As the histogram for the
difference between the original version and variants (default, CRF+10, CRF+15, CRF+20) for low quality videos



Table 2. Difference between the original version and variants for videos in low, medium, and high quality conditions,
where default and CRF+10 versions could have slightly better quality than the original version for low quality videos.

Original v.s. Default | v.s. CRF+10 | v.s. CRF+15 | v.s. CRF+20
low quality mean=-0.024 | mean=-0.005 | mean=0.009 | mean=0.031
ASL=0.054 ASL=0.367 ASL=0.300 ASL=0.019

medium quality | mean=0.049 | mean=0.046 | mean=0.059 | mean=0.069
ASL=0.001 ASL=0.003 ASL=0.000 ASL=0.000

high quality mean=0.064 | mean=0.097 | mean=0.109 | mean=0.131
ASL=0.000 ASL=0.000 ASL=0.000 ASL=0.000

shown in Table 2 (first row), mean values meanpoot (0rig, de fault) and meany ot (orig, CRF + 10) are negative,
which means using default setting or CRF+410 actually gives better quality than the original version (as the
example shown in Fig. 8). For other cases, the original version always has better quality than the variants.

Default

CRF+10

Original

Figure 8. For low quality videos, the transcoded version can have better perceptual quality than the original version. In
this example, the original frame has noticeable noise, while the transcoded versions look smoother. Corresponding MOS
for original, default, and CRF+10 are 1.93, 2.07, and 2.06 respectively.

Summary 2: It is promising to increase CRF by 15 for QGT affected videos (low and medium
quality). Table 3 shows the difference between the default version and three variants for videos in low,
medium, and high quality conditions. For the high quality case, all variants have significant difference from
the default version (ASLpoot < 0.05), which validated that default setting is already optimal for high quality
videos. For low and medium quality videos, the differences between default and CRF+10 are insignificant, where
ASLyoot(default, CRF 4 10) are 0.098, and 0.420 respectively. CRF+15 and CRF+20 are also indistinguishable
from default version in medium quality case, but significantly different in low quality case.

Although CRF+15 is significantly different from default in low quality case, it is still promising to apply it.
The reason is that according to Table 2, the default version actually has slightly better quality than the original
version for low quality videos, while CRF+15 is indistinguishable from the original version (ASLyot(0rig, CRF +
15)=0.375).

To conclude, CRF+10 is a safe choice for QGT framework. CRF+15 is also a reasonable choice that may
cause slightly quality degradation but still in the acceptable range.

Discussion of methodology. A 0.1 difference in individual scores may not be distinguishable due to
measurement accuracy. However, the differences we presented in this paper are the delta between average of
means of 10000 Bootstrap samples, where each sample has about 40 videos, or over 1000 scores (in total 10M
scores). A difference of 0.02 presented above means that the majority of 10M scores in one variant is 0.02 higher
than in the other variant, which is sufficient to make reliable conclusions.



Table 3. Difference between default and variants (CRF+10, CRF+15, and CRF+20) for videos in low, medium, and high

quality conditions.

Default v.s. CRF+10 | v.s. CRF+15 | v.s. CRF+20
low quality mean=0.019 | mean=0.033 | mean=0.055
ASL=0.098 ASL=0.017 ASL=0.000

medium quality | mean=-0.003 | mean=0.010 | mean=0.020
ASL=0.420 ASL=0.256 ASL=0.099

high quality mean=0.032 | mean=0.044 | mean=0.066
ASL=0.015 ASL=0.001 ASL=0.000

6. CONCLUSION

In this paper, we proposed quality guided transcoding as a technique to optimize transcoding by considering the
original video quality. We demonstrated that the bitrate of low quality input videos can be reduced without
sacrificing perceptual quality. We discussed how to build and evaluate a low quality detector on UGC data,
and how to chose optimal settings. A novel subjective test methodology based on bootstrap was introduced to
analyze differences between three transcoding treatments. We hope this work can bring new viewpoints and
inspire additional optimizations for UGC transcoding.
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