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ABSTRACT

Banding is a common video artifact caused by compressing
low texture regions with coarse quantization. Relatively few
previous attempts exist to address banding and none incorpo-
rate subjective testing for calibrating the measurement. In this
paper, we propose a novel metric that incorporates both edge
length and contrast across the edge to measure video band-
ing. We further introduce both reference and non-reference
metrics. Our results demonstrate that the new metrics have a
very high correlation with subjective assessment and certainly
outperforms PSNR, SSIM, and VQM.

Index Terms— Video Quality Measurement, Banding,
Video Compression Artifacts, Visual Perception

1. INTRODUCTION

The automated measurement of video quality has been of in-
terest to the video processing community for some time. With
the increasing importance of OTT (over the top) streaming
services [1], there has been a focus on the visual perception
of artifacts specifically related to compression [2]. While
the perception of detail loss, blockiness and to some extent
mosquito noise artifacts have received a large amount of at-
tention, there has been relatively little work on the perception
of banding artifacts. This artifact is becoming increasingly
important with the increasing fidelity of displays and improv-
ing content quality streamed to users. Banding artifacts (also
called false contours) usually occur when quantizing the in-
tensity/color of a low texture region (e.g. sky and water) with
insufficient bits, and then the entire region seems to be formed
by multiple bands with gradually changed intensity/color. An
example of banding is shown in figure 1. The banding ex-
ample was created as a result of the effect of transcoding the
original uploaded clip in one of the YouTube ingest pipelines.
In a subjective assessment exercise we measure a huge dif-
ference in MOS (Mean Opinion Scores) for the quality of the
transcoded clip (50 units) with respect to the uploaded orig-
inal. Yet traditional metrics like PSNR and SSIM [3] rate
the quality of the transcode as 0.99 and 50dB respectively.
Clearly therefore the traditional metrics do not align well with
the subjective perception of this artifact.

Fig. 1. Banding artifacts caused by transcoding. Left:Frame
extracted from a clip in a movie on YouTube. Right: Cor-
responding transcoded frame (served from YouTube). In this
case PSNR, SSIM, and VOM are 50.16, 0.99, and 0.01 re-
spectively. Our subjective test on the whole clip shows a huge
MOS difference between original (85.33) and transcoded
(34.61) video. These metrics therefore do not reflect the ob-
served perception of banding artifacts.

In this paper we develop a new algorithm for the detec-
tion of banding in both reference and non-reference cases.
The essence of our algorithm is the delineation of homoge-
nous segments (defined as “Unisegs”) in the observed frame.
The size of segments as well as the relative brightness be-
tween segments is used to assess the visibility of the artifact.
Improving on the earlier work in [4, 5, 6] we present a more
computationally efficient process. In addition, we calibrate
the metric against subjective assessment and report on the
mapping between the metric and observed MOS scores. We
show our metric to be much better correlated with human per-
ception than PSNR, SSIM or VQM[7]. In the next section we
give some background on the topic of banding detection and
then we go on to present our new detector and its assessment.

2. BACKGROUND

As far as we know there are just five previous published at-
tempts to consider banding artifacts in some way [4, 5, 6, 8§,
9]. While [8, 9] do not consider the measurement of band-



ing artifacts, the others [4, 5, 6] all employ the detection of
uniform segments in their measurements. The challenge is
to identify a boundary as indicative of banding (a “’false con-
tour”) rather than a "true” region edge in the image, and such
boundaries cannot be easily found by traditional edge detec-
tors (e.g. Canny). Figure 2 shows the edge map for an image
with visible banding artifacts, which contains so much edge
clutter that it becomes very difficult to find a clean uniseg
boundary. Thus traditional edge detectors cannot be directly
used for detecting the uniseg boundary.

Baugh et al. [6] related the number of unisegs to the vis-
ibility of banding. Their observation was that when the size
of most of the unisegs in an image was less than 10 pixels
in area, then there was no perceivable banding in the image.
However, the visibility of this artifact is related not just to the
size of the uniseg but also to the relative contrast of the bound-
ary pixels. Their work did not consider how a metric related
to the number of unisegs was correlated to the perception of
banding, rather they used this as an uncalibrated indicator of
banding.

Lee et al. [4] segmented the image into smooth and non-
smooth regions, and computed various directional features
(e.g. contrast and Sobel masks) and non-directional features
(e.g. Variance and Entropy) for each pixel in the non-smooth
region to identify it as “banding boundaries” or “’true edges”.
However, the experiment results showed that no single feature
had a good correlation with all test cases.

Bhagavathy et al. [5] identified uniseg boundaries using
the intensity distribution in a block centered at each pixel. For
each block size (1 to 20 pixels), the likelihood of banding is
estimated as the ratio of pixels that differ by 1 from the in-
tensity at the current site. The block with the highest banding
likelihood was used to determine whether there was signifi-
cant banding. However, computing banding likelihoods for
all pixels at all neighborhood scales is very expensive.

In our work we address the shortcomings of previous ef-
forts by incorporating a subjective study into our assessment,
reducing the complexity of the process and proposing both
reference and non-reference metrics for this artifact.

Fig. 2. Cropped input frame (left) and corresponding uniseg
boundaries detected by Canny (middle) and proposed method

(right).

3. BANDING FEATURES

We observe that the two essential features that affect the vis-
ibility of banding are i) the size or area of the bands and ii)
the contrast across the banding contour. It turns out that the
length of the contour is a good enough proxy to capture size
information, and the contrast can be measured by the intensity
coherence around the banding contour.

To find all banding contours, we first find all 4-connected
unisegs in the frame. The segmentation is primitive in the
sense that we look for absolutely no gradient in a uniseg i.e.
connect pixels having exactly the same intensity. This di-
rectly surfaces contours likely to show banding and consid-
erably reduces edge clutter. Small segments (having a size
< 0.2% of the area of the image) are rejected from consider-
ation. The boundaries of remaining unisegs are collected as
possible banding contours. Since one uniseg may have multi-
ple neighboring unisegs, its boundary will be further split into
multiple edges (called Banding Edges), where each banding
edge correspond to one neighboring uniseg. Figure 2 shows
how this process improves upon the use of traditional edge
detection for this purpose.

Define I(p) as the intensity at a pixel site p and N(p)
as the set of pixels within some neighborhood of p. Let B
denote a mask in which all pixels belonging to the boundary
of the ¢th uniseg are labeled as ¢, and 0 otherwise. A site p
between the ith and jth unisegs is labeled as a banding edge
pixel, E; ;j(p) = 1, when:

0 otherwise.

Where Q7 ; = N(p) N {q|B(q) = j, 0 < I(p) — I(q) < T},
and T is a threshold (= 5 here) that rejects edges having a
very high contrast and hence interpreted as true edges and not
banding edges. We use a block of 11 x 11 pixels as our neigh-
borhood. The size feature for banding edge E; ; between two
unisegs is its cardinality |E; ;|. However, this feature is not
good enough to measure banding visibility. Figure 3, shows
bands on both frames, and the lengths of banding edges on
both frames are similar, but obviously the banding degrees of
those two frames are different.

To address this, we separate pixels outside a uniseg but
within the neighborhood of a banding edge into two groups:
one group has the same intensity as the banding edge, and the
other group has different intensity. The ratio of the two group
sizes is defined as a contrast feature, called Edge Coherence.
The intuition is shown in Figure 3. The right image shows
a banding edge in the green/blue boundary which contains
intensities within the green uniseg that are the same as in the
blue uniseg. The banding edge on the right is “dithered” and
so is less visible.

Suppose M is the uniseg map where pixels belonging to
the ¢th uniseg is marked as ¢. The edge coherence for banding
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Fig. 3. Edge Coherence Comparison. The green uniseg in
both frames have visible boundaries, but their strength (band-
ing coherence) are different.

edge E; ;, denoted by Cj ; is defined as:

{alI(q) = I(p)} N O}
"Hall(q) # I(p)} N O
where p € E; ; and O7 ; = N(p) N {q|M(q) # i}

Ci,j =1—min <1

So far we defined two features: banding edge length and
edge coherence. In next section, we will use them to design
both non-reference and reference banding metrics.

4. BANDING METRICS AND THE PIPELINE

The pipeline consists of four components: uniseg genera-
tion, banding edge detection, reference banding edge match-
ing, and banding score evaluation, as shown in Figure 4. In
our system the output YouTube transcode is used to generate
unisegs. That map typically contains large regions in which
there are unisegs which are rejected as being too small. The
uniseg boundaries are further split into banding edges. In the
example shown in Figure 5 we can see there are no banding
edges between the sky and the building, because there are no
unisegs on the building. Each banding edge fragment is then
assigned a length and edge coherence value as in the previous
section. We also measure the contrast r; ; across each band-
ing fragment F; ; as the difference in intensity between the
unisegs ¢ and j.

To generate a reference banding score Q° we use banding
edge detection in the transcoded frames to delineate regions
of interest in the uploaded (original) frames. The correspond-
ing regions are compared and we reject banding edges in the
transcode which show edge coherence similar to the coher-
ence of edges in the original. The remaining edges in the
transcode are then used to generate Q°.

Given banding edges detected in the transcode, we there-
fore project the region around them (including the relevant
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Fig. 4. Banding Detection Pipeline.

Fig. 5. Input source frame (top), uniseg map (middle), and
banding edge map (bottom).



neighbourhood) into the source. This also allows us to ac-
count for different image sizes in transcode and source due
for instance to downsampling operations required for creation
of DASH [10] representations in our transcoding pipeline.
Uniseg extraction then proceeds in the source, and we use
banding edges for large unisegs in the source as the refer-
ence banding edges. When a reference banding edge is found,
the difference of the source and transcode edge coherence is
measured. If the difference is less than the visible coherence
difference (= 0.2 here) then we reject the banding edge in
the transcode since it is visibly similar to that in the source.
We keep all edges in the transcode which do not exist in the
source since these have been introduced by transcoding and
hence will affect Q°.

The final reference score is then calculated over the re-
maining edge fragments in the transcode. Fragments are fur-
ther rejected if C; ; < 0.95 our threshold for fragment visi-
bility. The score then is Q% = >"(1/D)|E; ;| x r; ; over the
whole image. We use 1/D as a normalizing factor for the im-
age size where D is the length of the diagonal. For the video
clips we use in our experiment the score is the average Q°
over the clip.

Our non-reference score Q% therefore is simply the value
above but calculated over all banding edges in an image.
Hence we once more detect banding edge fragments but reject
these only on the basis of visibility in that frame (C; ; < 0.95)
and not on the basis of comparison to the source.

5. SUBJECTIVE EVALUATION

Subjective assessment was performed by allowing subjects to
rate two video clips shown side by side exhibiting different
levels of banding. To generate these levels we transcoded 7
clips of 720p 30fps material with different levels of quanti-
zation (QP in ffmpeg) using VP9 [11]. Three levels of band-
ing were selected from each set of transcodes. Subjects then
assessed 7 x 6 sets of side by side comparisons. The clips
were rated according to the usual BT500 standard yielding
MOS for each banding level example. We used a 55 inch
Samsung 4K Ultra HD TV for assessment with 25 subjects,
and the test took about 1 hour for each participant. Figure
6 shows the MOS for all our clips compared to the scoring
metric. The plots were generated from over 1000 measure-
ments made through our test. As we can see the correlation
is very acceptable: for Q, banding score greater than 5 cor-
responds to MOS lower than 40, which in some sense means
the videos have unacceptable banding artifacts. For the ref-
erence case (¥, a score greater than 5 corresponds to DMOS
(Difference MOS) lower than -20, which means the transcod-
ing process introduced unacceptable banding artifacts. The
fit between MOS and our metrics is based on an exponential
model: MOS = ¢y +c1 - EXP(cy - Q°), where (cg, c1, ¢2)
is (14.485, 58.306, — 0.140) for the non-reference case and
(—50.690, 48.630, —0.206) for the reference case (shown as
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Fig. 6. Correlation between proposed banding scores and
subjective scores for non-reference (left) and reference (right)
cases. The dotted curves are generated by exponential fitting.

PSNR | SSIM | VQM | Baugh[6] | Proposed
MOS | 0.339 | 0.109 | 0.205 0.750 0.821
DMOS | 0.512 | 0.353 | 0.353 0.759 0.845

Table 1. Linear Correlation between Subjective Scores and
Objective Metrics

the dotted curves in Figure 6). The MOS score generated in
this way has a correlation of 0.849 (non-reference) and 0.883
(reference) with the observed MOS score for reference and
non-reference metrics.

The result was also compared against Baugh’s banding
metric proposed in [6] as well as three general objective met-
rics: PSNR, SSIM, and VQM. Non-reference scores for gen-
eral metrics were computed by using the original video as
reference video. Reference scores were the difference be-
tween two corresponding non-reference scores. The linear
correlation coefficients are shown in Table 1, we can see the
proposed banding metric has better correlation with the sub-
jective score than Baugh’s metric and general metrics PSNR,
SSIM, and VQM. The cross validation errors for both non-
reference and reference banding metrics are less than 10 (in
scale of 100), which means that most predicted scores and
their corresponding true scores are in the same banding level.

6. CONCLUSION

In this paper, we present new algorithms for the visual per-
ception of banding artifacts. The key features used in the new
metrics are the contrast across banding edges and the length of
these edges. An important aspect of our process is the use of
primitive segmentation to analyze only boundaries which are
likely to represent banding. Our results show correlation of
better than 0.8 with subjective assessments which compares
very favorably with existing general metrics. The banding de-
tector proposed in this paper treats each frame independently,
which could be further improved by incorporating temporal
information. This is an important feature and we will address
this in future work.
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