

Adversarial Atacks on an Oblivious Recommender
Konstantina Christakopoulou∗

Google Inc., Mountain View, California
chri3275@umn.edu

ABSTRACT
Can machine learning models be easily fooled? Despite the recent
surge of interest in learned adversarial attacks in other domains, in
the context of recommendation systems this question has mainly
been answered using hand-engineered fake user profles. This paper
attempts to reduce this gap. We provide a formulation for learning
to attack a recommender as a repeated general-sum game between
two players, i.e., an adversary and a recommender oblivious to the
adversary’s existence. We consider the challenging case of poison-
ing attacks, which focus on the training phase of the recommender
model. We generate adversarial user profles targeting subsets of
users or items, or generally the top-K recommendation quality.
Moreover, we ensure that the adversarial user profles remain unno-
ticeable by preserving proximity of the real user rating/interaction
distribution to the adversarial fake user distribution. To cope with
the challenge of the adversary not having access to the gradient
of the recommender’s objective with respect to the fake user pro-
fles, we provide a non-trivial algorithm building upon zero-order
optimization techniques. We ofer a wide range of experiments, in-
stantiating the proposed method for the case of the classic popular
approach of a low-rank recommender, and illustrating the extent of
the recommender’s vulnerability to a variety of adversarial intents.
These results can serve as a motivating point for more research into
recommender defense strategies against machine learned attacks.

CCS CONCEPTS
• Information systems → Recommender systems.

KEYWORDS
Learned Adversarial Attacks; Recommender Systems
ACM Reference Format:
Konstantina Christakopoulou and Arindam Banerjee. 2019. Adversarial
Attacks on an Oblivious Recommender. In Thirteenth ACM Conference on
Recommender Systems (RecSys ’19), September 16–20, 2019, Copenhagen, Den-
mark. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3298689.
3347031

1 INTRODUCTION
Machine learning models for recommendation, which help us make
our daily decisions (e.g. from which news articles to read, to which
∗Work performed while at the University of Minnesota, Twin Cities.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specifc permission and/or a
fee. Request permissions from permissions@acm.org.
RecSys ’19, September 16–20, 2019, Copenhagen, Denmark
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6243-6/19/09. . . $15.00
https://doi.org/10.1145/3298689.3347031

Arindam Banerjee
University of Minnesota, Twin Cities

banerjee@cs.umn.edu

products to purchase), are exposed to threats from adversarial par-
ties. Recently, we have seen a plethora of real-life examples where
adversaries desire to infuence users’ beliefs and decisions for their
own malicious purposes: fake social media accounts being created
to promote news articles about a political ideology; false online
product reviews being posted to bias users’ opinions favorably or
against certain products; and so on. Thus, studying the degree to
which machine learning models for recommendation can be manip-
ulated is important. This is a problem well-aligned with the goals
of studying machine learned models’ robustness to adversarial ex-
amples, to ultimately build safer artifcial intelligence [23].

To be concrete, an adversarial attack against a recommendation
system has the form of injecting a small set of adversarial user
profles, i.e., users who rate/interact with items with some intent,
such as promote an item, or reduce the recommendation quality
for some users. A signifcant amount of research has happened
studying the problem of robustness of recommender models against
adversarial user profles. However, they have only focused on hand-
engineering such adversarial examples — e.g. users rating the target
item with a small/large score, and the rest of the items with e.g.
normal distributed scores to mimic the true rating distribution [22].

Instead, inspired by pioneering works on adversarial attacks
for other domains such as classifcation [11], our goal is to revisit
the question of adversarial attacks on a recommendation system
from a machine learned, optimization perspective. In attacks for
classifcation settings, the goal is to fnd the minimal perturbation
vector to add to the feature vector of an example so that an oblivious
classifer misclassifes the perturbed example. In our setting, we
need to fnd a matrix of fake users×items, so that the distance
between the rating/interaction distributions of real and fake users
is small, and the adversary’s intent is accomplished.

Despite the similarities of the considered setting with adversarial
examples in classifcation, there are important diferences/challenges
to consider. (1) Recommender models typically rely on the collabo-
rative fltering principle, i.e., similar users tend to rate/interact with
items in a similar fashion. On the one hand, this interdependency
among users and items might improve robustness, as predictions
are not based on individual instances but on various instances
jointly. On the other hand, the information propagation among
these instances might lead to cascading efects, where attacks on a
single instance can infuence many others. This coupling of users
and items makes attacks on recommendation systems very diferent
from attacks in the classifcation setting: the latter focus on ma-
nipulating an individual instance to enforce its wrong prediction,
while in the recommendation setting the adversary has the power
to manipulate other users/items at the same time. (2) In the image
classifcation domain, for the adversarial perturbations to be unno-
ticeable, one enforces a maximum deviation per pixel value. How
can we capture the notion of undetectable attack in a recommender
system? (3) The recommendation model parameters are learned

322

mailto:banerjee@cs.umn.edu
https://doi.org/10.1145/3298689.3347031
mailto:permissions@acm.org
https://doi.org/10.1145/3298689
mailto:chri3275@umn.edu

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

in an iterative fashion over users and items; the model has to be
retrained on the manipulated data. Thus, attacks on recommenders
are inherently related to the challenging poisoning attacks, where
the assumption that the parameters are static as in the classifcation
model is not realistic. (4) How can we overcome that the adversary
lacks access to the recommender’s gradient with respect to the ma-
nipulated data, aka. the fake user profles? This difers from most
attacks on classifers using the model’s gradient for the attack.

Given these challenges, we propose a principled approach for
adversarial attacks on recommendation systems. Our method is
applicable for any recommendation model — but we only showcase
the method’s potential for the popular low-rank recommendation
models. We assume that the recommender is oblivious, i.e., is un-
aware of the adversary’s existence. Moreover, we assume that the
adversary has knowledge of the recommender’s model and algo-
rithm (so that it can ft similar substitute models on new/fake data),
and can only inject a few fake users in the actual recommender.

Overall, our contributions are: (1) General approach: We propose
a framework for adversarial attacks on oblivious recommenders.
Our attacks can inject fake users during the recommender’s training,
and thus manipulate certain parts of the recommender structure,
while ensuring unnoticeable changes by preserving important data
characteristics. We introduce new types of attacks where we ex-
plicitly target the top-K recommendations; our machine learning
approach allows us to optimize general intents, beyond those tar-
geted by the hand-engineered user profles in the so far considered
shilling attacks. (2) Algorithm: We devise an algorithm for comput-
ing these attacks based on zero-order optimization techniques, to
overcome the challenge that the adversary does not have access to
the recommender’s gradient. This is non-trivial as there is an itera-
tive procedure involved; in order for the adversary to know whether
their generated fake users help optimize further their adversarial
intent, the adversary needs to evaluate and optimize the recom-
mender’s optimization objective with respect to the just generated
fake users. (3) Experiments: As a striking example of a malicious
attack, we illustrate that in order to ruin the predicted scores of a
specifc item for users who would have loved or hated that item, it
sufces to minimize the predicted score of the user with the highest
predicted score before the attack, i.e., to target just this single (user,
item) entry. Overall, this and other considered attacks highlight the
need to handle machine learned attacks on recommenders.

2 RELATED WORK
Adversarial Attacks on Recommender Systems. Attacking a
recommender system by injecting fake users (i.e., “shilling attacks")
has a long history — e.g., [2, 4, 18, 21, 22]. However, they have
focused on hand-engineering user profles, while we ofer an ap-
proach to learn end-to-end such attacks for a large range of intents.

The closest line of work to ours is the one of poisoning attacks,
such as [16], [7] optimized for factorized-based collaborative fl-
tering or graph-based recommenders respectively. [27] considers
attacks on graphs for node classifcation, and considers similar chal-
lenges as in poisoning attacks, interdependencies among nodes,
and the need for unnoticeability. [16] has a close setting to ours, but
provides an attack method only specifc to the low-rank or nuclear-
norm collaborative fltering recommender, using frst-order KKT

Konstantina Christakopoulou and Arindam Banerjee

conditions for the gradient computation and a bayesian formulation
for detecting fake users, and focuses on a subset of our attacks.

Generating Adversarial Perturbations. While most works
have focused on generating adversarial perturbations for evasion
attacks, poisoning attacks are far less studied, as they require a
bi-level optimization problem that considers learning the model.
Almost all works exploit the gradient or other moments of a given
diferentiable surrogate loss function to guide the search over unno-
ticeable perturbations [9, 11, 19, 20, 25]. For the recommendation
setting, such methods are not applicable, as the adversary does
not have access to the gradient. Also, the interdependency among
users and items leads to attacks of considerably bigger size than
e.g. one-pixel attacks [25], or small-norm perturbation attacks.

The work of [14] is perhaps the most related, as it considers
learned adversarial perturbations for recommendation ranking
models, but has a distinct diference: it considers perturbations
in the learned embeddings (of the popular bayesian personalized
ranking model), demonstrates its vulnerability to such perturba-
tions, and ofers adversarial learning techniques similar to the
classifcation-based ones to improve robustness. In sharp contrast,
we operate on the level of learning entire fake user profles, which
is closer to the real-life setting of adversaries attacking a recom-
mender, and we consider the challenging poisonous attack case,
where the model needs to be retrained on both real and fake data.

Generative Adversarial Networks (GANs) in recommenda-
tion. Although other works have considered GANs [10] in the con-
text of recommender systems [5, 15, 26], they only use them to
augment the data so that the recommendation quality is improved.
Our setting is fundamentally diferent: we simply rely on GANs
for the frst round of the “game” between the adversary and the
recommender, so that the real and fake user distributions are close.

Providing defense strategies against attacks ([8, 14, 23]) and
developing robust recommender systems [4, 18] is out of the scope
of this paper, so we do not discuss these approaches here.

3 PROBLEM FORMULATION
Preliminaries. We start by introducing the notation, and by de-
scribing the setting under consideration. Let Adv denote the model
performing the attack on the recommender, and Rec the oblivi-
ous recommender under attack. The goal of the recommendation
system Rec is to build a model with parameters θR to minimize a
suitable loss function between true and predicted ratings over all
users and items. Let I be the set of items, and U the set of real
users, present in the recommendation system. We will denote with
m = |I | the number of items and with n = |U| the number of real
users, where | · | is the cardinality of a set. Let X ∈ Rn×m denote
the matrix of ratings/interactions of real users on the items. Let the
adversary Adv have a certain budget of k fake user profles, where
k ≪ n. Each fake user profle is represented as a m-dimensional
vector, i.e., how the user has rated/interacted with the diferent
items in I, with zero values denoting missing ratings/absence of
interaction. Adv outputs a matrix Z ∈ Rk×m , where each row zi′
for {i ′ }1

k is a fake user profle. The total of real and fake users is
′denoted by n ′, where n = n + k .

The goal of the adversary Adv is to generate fake users such that
two goals are achieved: (G1) the fake users are indistinguishable

323

 Adversarial Atacks on an Oblivious Recommender RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

from the real users based on reasonable metrics, (e.g., fake rating/
interaction distributions are similar to real users, eigen-spectrum
of the fake user ratings is similar to that of real user ratings, or an
anomaly detection method cannot tell real from fake users apart,
etc.), and (G2) an attack with a suitable adversarial intent, (e.g.,
Rec’s predicted scores for a target subset of real users and/or items
are pushed down, a target item is removed from the target user’s
top-K recommendation list, etc.), is successful when the fake users
Z generated from Adv are added to the dataset. We will refer to (G1)
as the unnoticeability goal, and (G2) as the adversarial intent.

Attack Model Formulation as a Min-Max Game. The attack
model can be formulated as a general-sum game between two play-
ers: the row player, i.e., the recommender Rec, and the column
player, i.e., the adversary Adv. Both players consider a loss function
(the negative of a payof function) they wish to minimize. Let fR
denote the loss function of Rec, and fA be the loss function of Adv.
The recommender Rec, parameterized by θR , maps tuples of user,
item, rating (u, j,y) to the predicted rating of user u on item j. The
actions of Rec include all θR (e.g., for low-rank recommenders, each
θR corresponds to a pair of U ,V latent factor matrices). The actions
of Adv include all fake user profles Z .

The way the parameters θR , Z are updated is the following. In a
repeated game setting, let (t t θ , Z) be the current parameterizations R
of the two players. In the next step, the goal of each player is to
fnd optimal parameters t 1 θ + and t +1 Z respectively such that their R
corresponding expected loss is minimized:

 t +1 1 θ = argmin (t t t, , fR θR Z) Z + f θ ,R = argmin A(R Z (1)
θR Z

)

Next, we instantiante the learning procedures for the two players.

4 OBLIVIOUS RECOMMENDER
We Rec oblivious
of the adversary; hence, it optimizes its loss over the parameters θR
using all given data. Before the attack, the recommender model is
learned over only the Creal original training user-item-rating tuples
{ C realuc , j c ,yc } . During/after the attack, the recommender’s c = 1 model
is trained on both the real user-item-score data uc , C realjc ,y c c 1 (rep-
resented as a sparse matrix ∈ Rn×m

{ } =
 X) and the Cfake non-zero

ratings of the k fake user profles (succinctly represented as a sparse
matrix Z ∈ Rk×m produced by Adv). This results in an augmented
training C set of {uc , alljc ,yc } , c=1 with Call = Creal + Cfake, and cor-
responding augmented ratings matrix [X ; Z] where [;] denotes
concatenation of two matrices over the rows. Rec learns a func-
tion parameterized by mapping input tuples { }Call

θR uc , jc ,yc c= 1 to
estimated scores C { ˆ allyc }c=1 , so that the loss fR is minimized over Call:

1 !Call
min fR (θR , Z) = min ℓ(yc , ŷc (uc , jc ; θR , Z , (2)
θR θR all C c=1

))

where ℓ(·) is a suitable loss between the real and predicted scores.

assume that the recommender is to the existence

5 GENERATING ADVERSARIAL USERS
Given θR
function fR , our goal is to learn a set of k ≪ n fake users, aka. the
matrix Z , so that if these users are injected to the recommender,
the recommender’s performance, measured in some way, drops.

an oblivious recommender with parameters and objective

Let the index h specify the target user/item/set:uh ∈ U be the tar-
get user, ih the target item, or Uh /Ih the target set of users/items re-
spectively. While in the image/graph node classifcation setting the
goal is to change the target example’s predictions, in the recommen-
dation setting, the goal is to hurt the recommendation performance
or remove a certain item from the top-K list of recommendations.

Importantly, given the interdependence among users and items
(e.g., coupled via the latent factors U , V), the attacker can target a
single item/user h, but can infuence a whole subset of users-items.

To ensure that the attacker can not modify the learned user-item
structure completely, we limit the number of allowed fake users by
a budget k , where k ≪ n.

For the augmented data with fake user profles, the optimal
∗parameters θR are learned, matching the poisonous attack setting;

thus, we have a bi-level optimization problem.

5.1 Unnoticeable Users
In an adversarial attack scenario, the attackers try to modify the
input data such that the changes are unnoticeable. Unlike to image
data, where this can be easily verifed visually and by using simple
constraints, in the recommendation setting this is much harder for
the following reason: sufciently large user-item rating/interaction
matrices are not suitable for visual inspection, and the structure of
users-items is discrete preventing from the use of infnitely small
changes. Also, instead of minimally perturbing (e.g., by one-pixel),
in the recommendation setting multiple user accounts/profles are
typically injected into the data to achieve the adversarial intent.

How can we ensure unnoticeable attacks in our setting? Only
limiting the budget of fake users to k ≪ n might not be enough.
We want a realistically looking user-item rating/interaction matrix
after the injection of these profles. Thus, we generate fake users
preserving specifc inherent properties of the real user distribution.

Distribution-preserving adversarial users. Concretely, for
every item j ∈ I, we need the rating/interaction distribution over
all fake users ′ fake∈ U denoted as j u Q to be close to the rat-
ing/interaction distribution over all real users u ∈ U, denoted as j P .
Particularly, we want the average distribution distance among these
two distributions for all items j ∈ I to be minimized, as measured
by the Jensen-Shannon divergence:

1 !|I | 1 1 ((j | | (j 1 D P P + j) j j j
2 2 Q + D(Q | | P + 2 Q , (3) |I |

=1
())

j

where D denotes the Kullback-Leibler divergence.
To fnd a matrix ∈ Rk×m Z whose resulting j Q distributions

are close to the j P distributions resulting from the X ∈ Rn×m real
rating/interaction matrix, the framework of generative adversarial
networks (GANs) [10] is a great ft. The GANs framework consists
of jointly training a pair of networks — a Discriminator network D
learning to discriminate fake from real samples, and a Generator
network G learning to generate samples with the goal of fooling
the discriminator D to not being able to distinguish them from real.
In our case, samples are m-dimensional sparse rating/interaction
vectors (user profles).

In fact, the global minimum of the training criterion of the Gener-
ator network of GANs is achieved if and only if the Jensen-Shannon

324

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Konstantina Christakopoulou and Arindam Banerjee

divergence between the real and the fake data distributions is mini-
mized; this is exactly Equation (3) which captures our unnoticeabil-
ity constraint. At convergence, the conditional distribution of the
generator G should be able to give fake user samples which a fake
user detection module D cannot discriminate from real ones.

This forms the frst stage of the attacker strategy — train GANs
on the real rating/interaction data until convergence; and obtain
an initial sample of fake users Z1 = ZGAN ∈ Rk×m , by sampling
from the conditional posterior of the generator. This initial sample
Z 1 is then used as input to the second stage, i.e., that of optimizing
the adversarial intent, described in what follows.

We will see in experiments, (Figure 1), that augmenting the data
X with ZGAN results in preserving the eigen-spectrum properties.
Also, based on visualizations (omitted) we observed that the sparsity
structure is preserved (e.g. a fake user cannot rate all items), and
the samples comprising ZGAN do not result in a single user being
replicated multiple times (which would be detectable).

These observations together suggest that we can produce fake
users which will not be detectable by fraud detection modules typically
relying on distribution properties shifts [4].

5.2 Optimizing the Adversarial Intent
The attacker wants to use the fake user profles (matrix Z) as a way
to achieve its adversarial intent as encoded by fA. Concretely, the
problem of interest to the adversary is:

min fA(Z) s.t. QZ ∼ P real , (4)
Z
twhere the argument θ is dropped from the list of fA’s arguments R

for brevity, QZ denotes the distribution constructed by the fake
users and P real the distribution constructed by the real users.

fA is general: It can vary from minimizing the predicted score
ŷ(u,h) on a target user-item pair (Section 6.3), or the mean pre-" dicted score of a target item u ∈U,!Ra(h) ŷ(u,h) (6.4), to target-
ing the user with the maximum predicted score for an item —
maxu ∈U,!Ra(h) ŷ(u,h) (6.5). It can also encode targeting the model-
ing of an item group (6.6), or a user group’s experience (6.7).

To approximate solving (4), we use an iterative procedure. First,
we initialize Z by setting them to the sample of fake users Z1 =
ZGAN ∈ Rk×m we obtained by sampling from the conditional pos-
terior of the converged GAN’s generator network G. Then, for
iterations {t}T1 we update Zt +1 so to optimize fA:

Z̃t +1 = Zt − η∇Zt fA(Z), (5)
where η is the learning rate, and ∇Zt fA is the gradient of the ad-
versarial loss w.r.t the fake users at iteration t Zt .

However, if we just do that, the gradient descent updates bear
the danger of the Q Z̃ fake user samples distribution to move t +1

further away from the real one P real. To prevent this, we instead
employ a projected gradient descent variant, where ∀t , we also do:

Zt +1 = Πallowed range(Z̃t +1), (6)
where the projection Π is to ensure that the marginals of real and
fake users remain close after the descent (e.g., for a star-based
recommender, allowed range = [min. # stars, max. # stars].

Challenges in Gradient Computation. Now the question is,
how can we compute the gradient ∇Zt fA in (5)? One main challenge

which makes the learning of Z for the adversary non-trivial is that
there is a two-step process going on: (1) Given some fake ratings,
learn θR (say, a low-rank model) based on the recommendation
system objective fR , typically using non-convex optimization. (2)
Use the learned model parameters of the recommender to evaluate
the adversarial objective fA. As a result, the adversary typically
cannot compute the gradient w.r.t. Z .

For illustration purposes, let us consider as adversarial intent:
minimize the predicted score of item h over all real users who have
not rated/interacted with the item. For the case of a low-rank recom-" mender, this can be encoded as: minZt

1 T
u vh ,| {u!Ra(h)} | u!Ra(h) u

where uu denotes the u-th row of latent factor U , vh denotes the
h-th row of latent factor V , and u ! Ra(h) denotes the set of users
who have not rated item h. At frst glance, we can see that the loss
is a function of the recommender’s parameters, and not Z . But, the
parameters of the recommender are in fact a function of Z—more

tgenerally, fA is a function of (Z ,θ). After playing fake matrix Z ,R
the adversary player gets to observe the loss only for this single Z
played, and not the loss it would have incurred had it played other
actions/matrices. Thus, the adversary gets limited information, or
else bandit feedback. Put diferently, the gradient of the loss is not
directly given for the optimization of fA over Z .

Approximate Solution. To obtain an approximation of the gra-
dient, we build upon zero-order optimization works in bandit opti-
mization [1, 6] and related methods in stochastic and evolutionary
optimization [3, 12]. The idea is that if we can only perform query
evaluations, to obtain the gradient of fA(Z), we need to query fA(Z)
at two nearby points: Zt and Zt + αZ0, for a small α and a suit-
able fxed matrix Z0. Then we can compute the gradient as the
directional derivative along the direction Z0:

∇fA(Zt) = (fA(Zt + αZ0) − fA(Zt))Z0/α . (7)

Instead of a two-point evaluation, aka. on Zt and Z0, we can use
K directions and compute the gradient using all K directions. For
this, we use a refnement of [1]. For the K directions, we use the K
top left and right singular vectors of the fake user matrix at round
t Zt , obtained from a Singular Value Decomposition (SVD) on Zt :

KZt = B̃ΣC̃T . Assuming each direction is indexed by h, where {h}1 ,
let Z (h) be the rank-1 matrices built from each left singular vector
b̃h and right singular vector c̃h of Zt :

Z (h) T = b̃h c̃h , h = 1, 2, . . .K , (8)

where K is the rank of Zt . Then, using these rank-1 matrices Z (h)

as K possible directions, we can compute the matrix gradient:

!1 K
∇fA(Zt) = (fA(Zt + αZ (h)) − fA(Zt))Z (h) (9)

α
h=1

Notice that the computation of the approximate gradient, as defned
in (9), involves K + 1 evaluations of the function fA(Z), with K the
total number of directions used, or else the rank of Zt . To make
things faster, we use warm-start: we frst evaluate fA(Zt), then, for
any fA(Zt + αZ (h)), we use the fnal parameters learned for fA(Zt)
to warm start the iterates.

Algorithm 2 gives an overview of our overall proposed learning
approach for learning to attack an oblivious recommender.

325

Adversarial Atacks on an Oblivious Recommender RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

Algorithm 1 Constructing the gradient for ∇Zt fA

Require: Zt , Objective fA, rank K of Zt
1: Construct the K directions Z (h) by doing singular value de-

composition on Zt (Eq. (8)), and get the top-K rank-1 singular
matrices.

2: for each of the K directions Z (h), and the Zt do
3: Evaluate fA on the direction Z (h) or Zt . This entails injecting

the fake users Z (h) or Zt during the recommender’s training,
and getting a new estimate of the recommender’s parameters.

4: end for
5: Output the gradient approximation ∇Zt fA based on the evalu-

ation of fA on the above K + 1 directions using (9).

Algorithm 2 Learning Algorithm for Adversary’s Strategy
1: Get an estimate of the recommender parameters θR , optimizing

minθR fR (θR) using only real data X (this is before the attack).
2: Train a Generator G-Discriminator D GANs network using

samples of real users from X .
3: At GANs’ convergence, get k samples from the posterior of the

Generator G, to form the initial fake user sample Z 1 ∈ Rk×m .
By construction, these samples are hard to discriminate from
the real ones, thus satisfying unnoticeability goal(Eq. (3)).

4: for t = 1, . . . ,T do
5: Get the gradient approximation of ∇Zt fA (Algorithm 1).
6: Obtain the new fake user matrix Z t +1 by projected gradient

descent optimizing fA (thus satisfying adversarial intent
(G2)), following equations (5) and (6).

7: end for
8: Output the fnal fake user matrix ZT to achieve the intended

attack against the oblivious recommender.

6 EXPERIMENTS
We design our experiments to study the efectiveness of our pro-
posed Algorithm 2 in adversarial attacks that are (G1) unnoticeable
and (G2) optimize adversarial intents.

To demonstrate our results, we will consider the recommender
model to be a low-rank one, and the algorithm to optimize for square
loss between the predicted and true scores plus a regularization
term, with regularization parameter λ [17]. Briefy, let U ∈ Rn ′×d

be the latent factor capturing the latent preferences of users, V ∈
Rm×d the item latent factors, and the optimal parameters U ∗ ,V ∗

are learned by minimizing the loss using alternating minimization:
2 2(U ∗ ,V ∗) = arg min ∥[X ; Z] − UVT ∥2 + λ(∥U ∥2 + ∥V ∥2

2) . (10)
U ,V

6.1 Can We Learn Realistic User Profles?
First, we want to evaluate whether the choice of using GANs to
generate the initial fake user sample is suitable for achieving the
unnoticeability goal before starting to optimize for the adversarial
intent; this corresponds to Lines 2 and 3 of Algorithm 2.

Datasets. We used two popular movie recommendation datasets,
MovieLens 100K, MovieLens 1M [13] (Table 1). They contain the
ratings of users on diferent movies in the scale {0, 1, 2, 3, 4, 5} with
5 the highest, and 0 a lack of rating.

DCGAN Architecture and Parameters. For implementing
GANs, we used the popular DCGAN architecture, thanks to its

good empirical behavior [24]; in principle though, other GANs-
inspired architecture could have been used. Next, we specify the
details of the used architecture for reproducability.

The Discriminator D takes an image of size H × W (fake or real
user sample) and outputs either a 0 or a 1 (is it fake or real?). It
consists of four 2D convolutional CONV units, with leaky ReLUs
and batch normalization (BN), whose depths are respectively [64,
128, 256, 512], followed by a single-output fully connected (FC)
unit with sigmoid activation. The Generator G takes as input noise
z ∼ N(0, 100) and outputs an H × W image (the fake user sample).
It consists of a FC unit of dimension 2 × 4 (or 7) × 512 with ReLU and
BN, reshaped to a 2, 4 or 7, 512 image, followed by four transposed
CONV units of depths [256, 128, 64, 1] respectively, each with ReLU
and BN, except for the fnal with a tanh. We set for the (transposed)
CONV units the stride to 2, and the kernel size to 5 × 5.

We set batch size to 64, and run DCGAN for 100 epochs (each
epoch does a cyclic pass).

We transformed the datasets’ real ratings from [0, 5] to [−1, 1]
′using r = (r − 2.5)/2.5 so to have them in the same range as the

ones produced by the Generator network G. Each user profle is
an |I |-d sparse vector, which needs to be transformed to a H × W
2D array to go through the DCGAN 2D (de-)convolutional units.
We set as H the smallest factor of |I | and as W = |I |/H . This way,
each user is viewed as a 2D H × W image with pixel values the
ratings of the user on the diferent items.

Dataset # of Items 2D Shape # of Users
MovieLens 100K 1682 29 × 58 943
MovieLens 1M 3706 34 × 109 6040

Table 1: Dataset Statistics.
Note that the goal of this experiment is not to argue that this

specifc DCGAN architecture, or the certain transformation of user’s
sparse rating vectors to a 2D array, is better compared to other
architectures/ transformations; in fact, we expect that other GAN-
based architectures which are not based on convolutions might
be a better ft, given that transforming a user 1-d vector to a 2-d
array does not necessarily have the neighborhood structure that
convolutional layers thrive on. Our goal is rather to provide a proof-
of-concept experiment that using some version of GANs can at
convergence be useful for generating realistic user samples.

Results. We validate quantitatively that the fake user distribu-
tion at DCGAN’s convergence is close to the real one. We sample
700 fake users from the last epoch’s G so that the sizes of the real
and fake user distribution are comparable, and we report results
averaged over 5 DCGAN runs. We compute the correlation matrix
over items of the fake data ZT Z and of the real data XT X , and com-
pare their top-10 eigenvalues (Figure 1, left). We also compute
distance metrics between the real and fake user distributions: For
each item j , the real users form a distribution P j over the rating val-
ues [−1.0, 1.0], and the fake users G(z) form a Q j distribution over
[−1.0, 1.0]. To measure the distance among these two distributions,
we discretize the values to the 6 bins [−1.0,−0.6,−0.2, 0.2, 0.6, 1.0]
(corresponding to [0, 1, 2, 3, 4, 5]). For each bin we compute the frac-
tion of (real or fake) users who have rated j in this bin out of all (real
or fake) users. We report the average over the distance metrics of
all items, i.e., mean Jensen-Shannon Divergence (Eq. (3)) in Figure
1, right. These results for MovieLens 1M, and for MovieLens 100K

326

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Konstantina Christakopoulou and Arindam Banerjee

Ei
ge

nv
al
ue

s /
 In

de
x

JS
 D
iv
. /

 #
 T
ra
in
. E

po
ch

s

M
et
ri
cs

 /

Z-
SG

D
 It
er
s

R
an

k
Lo

ss
 /

Z-
SG

D
 It
er
s

Figure 1: Real-Fake Eigen-spectrum (lef) & JS Div (right).
The fake-real rating distributions are close.
(omitted), indicate:

GANs can produce fake user samples whose distribution
is close to the real user distribution.

This experiment supports the promise of GANs that the Genera-
tor network can learn to generate fake user samples that cannot
be discriminated from real ones at convergence; thus, making the
choice of GANs a good ft for learning the initial fake user matrix Z 1

which satisfes the unnoticeability goal (G1). Following, in all attack
experiments we report Jensen-Shannon divergence as a measure of
the unnoticeability goal while the adversarial intent is optimized.

6.2 Experimental Design
We now focus on illustrating the validity of the method for op-
timizing the adversarial objective fA while continuing to satisfy
the unnoticeability goal. Particularly, after training DCGAN, we
perform the Z gradient descent updates (later referred to as Z-SGD
updates), initialized by a sample from the converged G (ZGAN),
transformed from the [−1, 1] to the expected by the recommender
range of [0, 5]. We set the sample size of ZGAN to 64; these 64 fake
users, iteratively optimized during the Z-SGD updates, are only
0.063 fraction of all system users (real and fake) for MovieLens
100K, and 0.01 for MovieLens 1M. The reader can return to Lines
3-10 of Algorithm 2 for recalling the procedure of iterative updates
on the fake user matrix Z , initialized by ZGAN.

We use two types of experimental setups:

(E1) Adv targets unrated user-item entries (thus entries which
are candidates for recommendation).

(E2) Adv targets a small subset from the recommender’s true
(user, item, rating) tuples, held out from Rec’s training.

Parameters. The low-rank recommender Rec under attack is
trained on explicit ratings in the scale {0, 1, 2, 3, 4, 5}. Unless other-
wise specifed, we set the latent factor dimension d to 40, λ to 0.001,
and train Rec before the attack for 10 alternating minimization
(alt-min) iterations. For the adversary Adv, we set the SVD approx-
imation rank K to 30, and α to 0.0001. During a single Z-SGD
iteration for each of the K + 1 fA evaluations, 5 alt-min iterations
of Rec are performed. We use warm-start, i.e., for the t + 1 Z -SGD
iteration, Rec’s parameters are initialized from the ones obtained
at the end of the alt-min Rec iterations from the previous t Z -SGD
step. Every time fA is evaluated (e.g. during the gradient/ loss com-
putation), Z s are rounded to the closest integers, and get clipped to
[0, 5]. Also, the projection step of (5) is realized by a box-projection:
Zt +1 = clip(Z̃t +1, 0, 5).

Figure 2: Adv successfully targets top item-1062 for user-0.
Metrics. To evaluate the adversary’s success, we mainly use the

metric of Attack Diference denoted by ∆(Z):

∆(Z) = fbefore(X) − fA(X ; Z) (11)

where fbefore(X) is the adversary’s loss before the attack. ∆(Z)
measures the adversarial loss decrease, and larger values are better.

Each section below introduces a separate attack type, as specifed
by target user(s), item(s) and the attacker’s intent.

6.3 Targeting a User-Item Pair
We start with the adversarial intent: can Adv learn realistic users
that reduce the predicted score for an unrated user-item entry? We
adopt the (E1) setup. We set η to 100, α to 50, K to 5, and total of
T Z-SGD iterations to 21 or fewer if an early-stopping criterion is

(u,h)satisfed. The adversarial loss f is the predicted score ŷ(u, h)A
for a target user u and a target item h, for a (u, h) ! the train set.

We found that for (i) early-stopping criterion ∆(Z) ≥ 1, when
randomly sampling 70 target items from MovieLens 100K, and sam-
pling per item a user who has not rated it, only for 2 out of 70 pairs
the attack was not successful, i.e., ∆(Z) ≤ 0 (success rate 97.14%).
For (ii) early stopping criterion that the target item does not exist
in the top of the recommendation list anymore—a criterion
better aligned with the actual user experience in recommendation—,
we randomly sampled target users, and for each user u, we consid-
ered as target item h the unrated one with the highest predicted
score for u before the attack, i.e., the top item h of user u. If we
set top=10, out of the 55 sampled users, only for 2 the attack was
unsuccessful (item h remained in the top-10)—for the rest, notably,
the adversary managed to remove the target item from the target
user’s top-10 list, while looking realistic (success rate 96.36%).

As an example, Figure 2 shows how various metrics for the
movie “A Little Princess" which appeared before the attack in the
top-1 of user ID-0, vary as Z-SGD iterations progress. Beyond the
attack diference (11), and the distance metrics for measuring un-
noticeability (Jensen-Shannon Divergence (3) and Total Variation
Distance TVD), we report Rank Loss @ top(h) = [item h @ top],
for top={1, 5, 10}. As Z-SGD updates progress, Adv successfully
optimizes fA =ŷ(u, h) (yellow, left), thus increasing ∆(Z) (magenta,
left), and fA(X ; ZGAN) − fA(X ; Z) (red, left). The rank losses @
top-1/5/10 (black/blue/cyan lines, right) reach 0 after 17/18/19 Z -
SGD iterations. We also see that the real-fake distribution distance
metrics (‘JS Div’, ‘TVD’, green, left) remain close to 0. We fnd:

Adv successfully targets the top predicted item of a user.

6.4 Targeting Item’s Mean Predicted Score
Here, we examine: can Adv target (push down) the mean predicted
score of a target item h over all real users who have not rated h in the

327

Adversarial Atacks on an Oblivious Recommender RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

" training dataset (f h = u ∈U,!Ra(h) ŷ(u, h))?—again, we adopt the A
(E1) setup. The reason for choosing this target user set is that these
are the users for which h can be candidate for recommendation.
We keep the same setting as before, except for setting η to 1000
and choosing α in {500, 1000}, as we found that for this experiment
larger values led to larger ∆. The stopping criterion is ∆(Z) ≥ 1.
We found that for 6 out of 29 random target items from MovieLens
100K, the attack was unsuccessful; ∆ ≤ 0, i.e., the average score
after the attack remained the same or increased—also, out of the 23
successfully targeted items, only for 6 ∆(Z) ≥ 1. We conclude that:

Targeting the mean predicted score of an item is hard.
To understand why this is hard, we examine how the distribution

of ∆ over users u ! Ra(h) evolves over the Z-SGD iterations. From
Figure 3 we see for the target movie “Mille bolle blu (1993)" (similar
behavior is noticed in others too), that although the average dif-
ference reached 0.2 (magenta, left), every user’s ∆ follows its own
trend (right); with mainly the users with the largest or smallest
∆ afecting the average ∆. This shows that the fake users cannot
move all users’ scores on h simultaneously to the same direction.

Av
g.

 M
et
ri
cs

 /

Z-
SG

D
 It
er
s

U
se
rs
’ ∆

s /
 #

 Z
-S
G
D

 It
er
s

Figure 3: Targeting item ID-1348 avg. predicted score is a
hard task—each user’s ∆ follows its own trend (right).

6.5 Targeting the Top User of an Item
In reality, to attack a target item, the adversary does not need to
solve the more difcult problem of pushing down all unrated users’s
score. Instead, they only need to push the score of users who would
be good candidates for getting this item in their recommendations—
in other words, those with the higher predicted scores from Rec
before the attack; the other users would not get h in their recommen-
dations either way. Thus, here we explore the adversary’s intent
to target the top user of an item, i.e., the user from u ! Ra(h) with
the largest predicted score from Rec before the attack, under the
(E1) setup. In Figure 4 as an example we show the results for target
item “The Joy Luck Club". We see how the mean ∆(Z) (y-axis) when
considering only the top/bottom predicted users for item h (left
panel), or the top/ bottom predicted items for user u (right panel),
changes as we vary the size of top/bottom (x-axis). The results
explained in the caption show our main result:

When Adv targets the score of the top predicted user u
for item h, then all top-K predicted users for h, and all
top-K predicted items for u are targeted as well.

Same results hold for all other sampled target items.

6.6 Targeting a Group of Items
Next, we focus on attacks targeting an entire group of items, in
contrast to the so-far presented attacks targeting a single-item. We
examine two goals: (A1) minimize the mean predicted score over

all items in a group, and (A2) maximize the prediction error, as
measured by mean absolute error, over a group. We adopt the (E2)
setup of using a “target set"—Adv, besides making queries to access
Rec’s predictions, has the added power of targeting some held-out
tuples of (user, item, score) invisible to Rec during training. This
is in contrast to the (E1) setup where Adv targeted one or a set of
unrated user-item entries. We used the setup of 80-10-10 split of
ratings per user. For Rec, we set d to 100, and λ to 0.1, and we train
it for 100 alt-min iterations before the attack. For the adversary
Adv, we set η to 1000, K to 5, α to 50, and T = 30. We report for
the Z-SGD iteration with the best value of fA in the target set the
metric:

∆ ∗ 100% Target Improved = , (12)
f before
A

where ∆ is given by (11). For goal (A1), defning target item groups
based on deciles by predicted scores by Rec before the attack, we
see from Figure 5 (left) that: Adv is capable of larger % of decrease
in the predicted score for the groups with larger original predicted
scores (up to 10.9% for the [4.47, 6.53) bin). This is interesting, as
these are the entries which would be more likely to appear on users’
lists, if the attack did not happen. For goal (A2), we see from Figure
5 (right) that for groups based on deciles defned by the target
prediction error of Rec before the attack, Adv can do up to 59.3%
increase in target prediction error for the well-modeled buckets,
i.e., those with [0.02, 0.49) error before the attack.

6.7 Targeting Improved Modeling for a Group
Last, we explore: can Adv achieve targeted improvement in the
modeling of groups of users or items in a target set? We examine
three goals: (I1) improve the average recommendation quality of a
user group, measured by Hit Rate@10 (on average per user, is the
user’s held-out entry included in the top-10?) (I2) improve the mean
absolute predicted error over an item group, and (I3) ensure fair
treatment in the modeling of two user groups, i.e., the gap (absolute
diference) between their prediction errors is reduced. The setting
is the same as above, and the setup is again the (E2) 80-10-10 setup,
except that for (I1) a leave-one-out (E2) setup is used. We report the
% target improved metric for (I1), (I2), and the target gap for (I3).

Figure 6a focuses on goal (I1)—improving the Hit Rates (HRs)
for user groups based on deciles by user age, i.e., [7, 20), [20, 23)
up to [51, 73). We see that a targeted improvement (red bars) is
possible, with the largest % observed for the youngest group. But,
these targeted improvements do not transfer to an unseen test set
from the same age group (yellow bars). We argue that this happens
as the before-the-attack trends of HRs over the age groups in the
target and test set difer (Figure 6a, right). Figure 6b focuses on
goal (I2), and shows the % decrease in prediction error results
of item groups defned by # of training ratings per item. We fnd
that groups with the smallest target prediction errors before the
attack (annotated on top of the bars), are better targeted. We can
see from the yellow bars the % improvements in the test set—Adv
results in targeted improvements in an unseen test set, albeit of
typically smaller size compared to those in the target set. Although
not shown, the original metrics of the target and test set hold
similar trends across groups, which might be one reason why the
attack generalizes here (further future analysis is needed). Figure

328

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Konstantina Christakopoulou and Arindam Banerjee

Av
g.

 ∆
 /

To

p
or

 B
ot
to
m

 U
se
rs

Av
g.

 ∆
 /

To

p
or

 B
ot
to
m

 It
em

s

Left panel Right panel

Figure 4: The adversary Adv targets the top user u of item h ID-1417 “The Joy Luck Club" (1993). We say top/botom for what was
predicted with the highest/lowest score from Rec before the attack. Left: x-axis: varying # users considered for ∆(Z), from 5 to
320 top users, or from 320 to 5 bottom users, for item h. The mean ∆(Z) over all users ! Ra(h) is .48 (orange dotted line, y-axis).
For the top-5 users ∆(Z) = 8, for the bottom-5 users ∆(Z) = −6 (blue line). Right: x-axis: varying # items from ! RatedBy(u) for
top/bottom items for user u, y-axis: ∆ is computed over top/bottom items for u. Gist: Targeting the top user of an item attacks
also the top-K users of this item, and the top-K items of this user. Also, the bottom users/items are attacked, as their pred.
score is increased (∆(Z) < 0), which is the opposite from what they would want.

point where lines for 0 and 3 cross); similar omitted results hold
for groups based on gender, age. Also, we see how targeting 0-3
gap afects the prediction errors of the other groups as well as Z -
SGD updates progress—this observation holds for all group-based
attacks: targeting a group has an efect of improvement/decrease in
the other groups, too. Together the results of this and the previous
section serve as proof of concept that:

The fake users of Adv can afect how Rec models user
or item groups in a target 1 set. Figure 5: Item Group attack for (A1) (lef, predicted score-

based groups), (A2) (right, prediction error-based groups).

7 CONCLUSIONS
We proposed machine-learned adversarial attacks to oblivious rec-
ommender systems for various complex adversarial intents. Our
attacks target sets of users and/or items, aiming to manipulate the
recommendation performance for them. To ensure unnoticeability,
we proposed using as a frst step a sampled set of fake users gener-
ated from the GANs framework, so that the distributional properties
of the real users’ interactions are preserved, and then using pro-(a) Goal (I1), Age groups
jected gradient descent updates to preserve this. To overcome the
challenge of the adversary having no access to the recommender’s

Pr
ed

. E
rr
or

 /

Z-
SG

D
 It
er
s gradient with respect to the adversarial user profles, we proposed

a non-trivial zero-based optimization method for gradient approxi-
mation. Thanks to this approximation, we can optimize a variety of
adversarial intents which have not been considered before in the
shilling attacks literature. Our experiments highlight the vulnerabil-
ity of a low-rank recommender to these learned attacks, serving as
further motivation for building recommendation models robust to
such learned attacks. Future work includes relaxing the adversary’s
knowledge level, and studying adversary-aware recommenders.

(b) (I2), # ratings item groups (c) (I3), # ratings user groups

Figure 6: Adv can successfully target groups, and (a) improve
users’ Hit Rates, (b) decrease items’ prediction error, (c) re-
duce user groups 0 and 3 modeling gap. Acknowledgements. The research was supported by NSF grants IIS-1563950, IIS-

1447566, IIS-1447574, IIS-1422557, CCF-1451986, CNS-1314560, IIS-0953274, IIS-1029711, 6c focuses on goal (I3), targeting the gap between groups 0 and 3,
for 25-percentile groups 0, 1, 2, and 3 of users based on # of training
ratings per user. We see that the target gap becomes indeed 0 (the

NASA grant NNX12AQ39A, and gifts from Adobe, IBM, and Yahoo.

1Although omitted, for the last two experiments, the unnoticeability goal measured
by (3) is still satisfed.

329

Adversarial Atacks on an Oblivious Recommender RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

REFERENCES
[1] Alekh Agarwal, Ofer Dekel, and Lin Xiao. 2010. Optimal Algorithms for Online

Convex Optimization with Multi-Point Bandit Feedback. In COLT. Citeseer, 28–
40.

[2] Charu C Aggarwal. 2016. Attack-resistant recommender systems. In Recom-
mender Systems. Springer, 385–410.

[3] Shalabh Bhatnagar, HL Prasad, and LA Prashanth. 2012. Stochastic recursive
algorithms for optimization: simultaneous perturbation methods. Vol. 434. Springer.

[4] Robin Burke, Michael P Oï£¡Mahony, and Neil J Hurley. 2015. Robust collaborative
recommendation. In Recommender systems handbook. Springer, 961–995.

[5] Dong-Kyu Chae, Jin-Soo Kang, Sang-Wook Kim, and Jung-Tae Lee. 2018. CFGAN:
A Generic Collaborative Filtering Framework based on Generative Adversarial
Networks. In CIKM. ACM, 137–146.

[6] John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. 2015.
Optimal rates for zero-order convex optimization: The power of two function
evaluations. IEEE Transactions on Information Theory 61, 5 (2015), 2788–2806.

[7] Minghong Fang, Guolei Yang, Neil Zhenqiang Gong, and Jia Liu. 2018. Poisoning
Attacks to Graph-Based Recommender Systems. In ACSAC. ACM, 381–392.

[8] Ian Goodfellow, Patrick McDaniel, and Nicolas Papernot. 2018. Making machine
learning robust against adversarial inputs. Commun. ACM 61, 7 (2018), 56–66.

[9] Ian Goodfellow, Nicolas Papernot, Patrick McDaniel, R Feinman, F Faghri, A
Matyasko, K Hambardzumyan, YL Juang, A Kurakin, R Sheatsley, et al. 2016.
cleverhans v0. 1: an adversarial machine learning library. arXiv preprint (2016).

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In NIPS. 2672–2680.

[11] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[12] Nikolaus Hansen and Andreas Ostermeier. 2001. Completely derandomized
self-adaptation in evolution strategies. Evolutionary computation 9, 2 (2001),
159–195.

[13] F Maxwell Harper and Joseph A Konstan. 2016. The movielens datasets: History
and context. TIIS 5, 4 (2016), 19.

[14] Xiangnan He, Zhankui He, Xiaoyu Du, and Tat-Seng Chua. 2018. Adversarial
personalized ranking for recommendation. In SIGIR. ACM, 355–364.

[15] Wang-Cheng Kang, Chen Fang, Zhaowen Wang, and Julian McAuley. 2017.
Visually-aware fashion recommendation and design with generative image mod-
els. In ICDM. IEEE, 207–216.

[16] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. 2016. Data poisoning
attacks on factorization-based collaborative fltering. In NIPS. 1885–1893.

[17] Andriy Mnih and Ruslan R Salakhutdinov. 2008. Probabilistic matrix factorization.
In NIPS. 1257–1264.

[18] Bamshad Mobasher, Robin Burke, Runa Bhaumik, and Chad Williams. 2007.
Toward trustworthy recommender systems: An analysis of attack models and
algorithm robustness. TOIT 7, 4 (2007), 23.

[19] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pas-
cal Frossard. 2016. Universal adversarial perturbations. arXiv preprint
arXiv:1610.08401 (2016).

[20] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.
Deepfool: a simple and accurate method to fool deep neural networks. In CVPR.
2574–2582.

[21] Michael O’Mahony, Neil Hurley, Nicholas Kushmerick, and Guénolé Silvestre.
2004. Collaborative recommendation: A robustness analysis. TOIT 4, 4 (2004),
344–377.

[22] Michael P OâĂŹMahony, Neil J Hurley, and Guenole CM Silvestre. 2002. Promot-
ing recommendations: An attack on collaborative fltering. In DEXA. Springer,
494–503.

[23] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Wellman. 2016.
Towards the science of security and privacy in machine learning. arXiv preprint
arXiv:1611.03814 (2016).

[24] Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434 (2015).

[25] Jiawei Su, Danilo Vasconcellos Vargas, and Sakurai Kouichi. 2017. One pixel
attack for fooling deep neural networks. arXiv preprint arXiv:1710.08864 (2017).

[26] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng
Zhang, and Dell Zhang. 2017. Irgan: A minimax game for unifying generative
and discriminative information retrieval models. In SIGIR. ACM, 515–524.

[27] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2018. Adversarial
attacks on neural networks for graph data. In KDD. ACM, 2847–2856.

330

