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ABSTRACT 
Can machine learning models be easily fooled? Despite the recent 
surge of interest in learned adversarial attacks in other domains, in 
the context of recommendation systems this question has mainly 
been answered using hand-engineered fake user profles. This paper 
attempts to reduce this gap. We provide a formulation for learning 
to attack a recommender as a repeated general-sum game between 
two players, i.e., an adversary and a recommender oblivious to the 
adversary’s existence. We consider the challenging case of poison-
ing attacks, which focus on the training phase of the recommender 
model. We generate adversarial user profles targeting subsets of 
users or items, or generally the top-K recommendation quality. 
Moreover, we ensure that the adversarial user profles remain unno-
ticeable by preserving proximity of the real user rating/interaction 
distribution to the adversarial fake user distribution. To cope with 
the challenge of the adversary not having access to the gradient 
of the recommender’s objective with respect to the fake user pro-
fles, we provide a non-trivial algorithm building upon zero-order 
optimization techniques. We ofer a wide range of experiments, in-
stantiating the proposed method for the case of the classic popular 
approach of a low-rank recommender, and illustrating the extent of 
the recommender’s vulnerability to a variety of adversarial intents. 
These results can serve as a motivating point for more research into 
recommender defense strategies against machine learned attacks. 
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• Information systems → Recommender systems. 
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1 INTRODUCTION 
Machine learning models for recommendation, which help us make 
our daily decisions (e.g. from which news articles to read, to which 
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products to purchase), are exposed to threats from adversarial par-
ties. Recently, we have seen a plethora of real-life examples where 
adversaries desire to infuence users’ beliefs and decisions for their 
own malicious purposes: fake social media accounts being created 
to promote news articles about a political ideology; false online 
product reviews being posted to bias users’ opinions favorably or 
against certain products; and so on. Thus, studying the degree to 
which machine learning models for recommendation can be manip-
ulated is important. This is a problem well-aligned with the goals 
of studying machine learned models’ robustness to adversarial ex-
amples, to ultimately build safer artifcial intelligence [23]. 

To be concrete, an adversarial attack against a recommendation 
system has the form of injecting a small set of adversarial user 
profles, i.e., users who rate/interact with items with some intent, 
such as promote an item, or reduce the recommendation quality 
for some users. A signifcant amount of research has happened 
studying the problem of robustness of recommender models against 
adversarial user profles. However, they have only focused on hand-
engineering such adversarial examples — e.g. users rating the target 
item with a small/large score, and the rest of the items with e.g. 
normal distributed scores to mimic the true rating distribution [22]. 

Instead, inspired by pioneering works on adversarial attacks 
for other domains such as classifcation [11], our goal is to revisit 
the question of adversarial attacks on a recommendation system 
from a machine learned, optimization perspective. In attacks for 
classifcation settings, the goal is to fnd the minimal perturbation 
vector to add to the feature vector of an example so that an oblivious 
classifer misclassifes the perturbed example. In our setting, we 
need to fnd a matrix of fake users×items, so that the distance 
between the rating/interaction distributions of real and fake users 
is small, and the adversary’s intent is accomplished. 

Despite the similarities of the considered setting with adversarial 
examples in classifcation, there are important diferences/challenges 
to consider. (1) Recommender models typically rely on the collabo-
rative fltering principle, i.e., similar users tend to rate/interact with 
items in a similar fashion. On the one hand, this interdependency 
among users and items might improve robustness, as predictions 
are not based on individual instances but on various instances 
jointly. On the other hand, the information propagation among 
these instances might lead to cascading efects, where attacks on a 
single instance can infuence many others. This coupling of users 
and items makes attacks on recommendation systems very diferent 
from attacks in the classifcation setting: the latter focus on ma-
nipulating an individual instance to enforce its wrong prediction, 
while in the recommendation setting the adversary has the power 
to manipulate other users/items at the same time. (2) In the image 
classifcation domain, for the adversarial perturbations to be unno-
ticeable, one enforces a maximum deviation per pixel value. How 
can we capture the notion of undetectable attack in a recommender 
system? (3) The recommendation model parameters are learned 
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in an iterative fashion over users and items; the model has to be 
retrained on the manipulated data. Thus, attacks on recommenders 
are inherently related to the challenging poisoning attacks, where 
the assumption that the parameters are static as in the classifcation 
model is not realistic. (4) How can we overcome that the adversary 
lacks access to the recommender’s gradient with respect to the ma-
nipulated data, aka. the fake user profles? This difers from most 
attacks on classifers using the model’s gradient for the attack. 

Given these challenges, we propose a principled approach for 
adversarial attacks on recommendation systems. Our method is 
applicable for any recommendation model — but we only showcase 
the method’s potential for the popular low-rank recommendation 
models. We assume that the recommender is oblivious, i.e., is un-
aware of the adversary’s existence. Moreover, we assume that the 
adversary has knowledge of the recommender’s model and algo-
rithm (so that it can ft similar substitute models on new/fake data), 
and can only inject a few fake users in the actual recommender. 

Overall, our contributions are: (1) General approach: We propose 
a framework for adversarial attacks on oblivious recommenders. 
Our attacks can inject fake users during the recommender’s training, 
and thus manipulate certain parts of the recommender structure, 
while ensuring unnoticeable changes by preserving important data 
characteristics. We introduce new types of attacks where we ex-
plicitly target the top-K recommendations; our machine learning 
approach allows us to optimize general intents, beyond those tar-
geted by the hand-engineered user profles in the so far considered 
shilling attacks. (2) Algorithm: We devise an algorithm for comput-
ing these attacks based on zero-order optimization techniques, to 
overcome the challenge that the adversary does not have access to 
the recommender’s gradient. This is non-trivial as there is an itera-
tive procedure involved; in order for the adversary to know whether 
their generated fake users help optimize further their adversarial 
intent, the adversary needs to evaluate and optimize the recom-
mender’s optimization objective with respect to the just generated 
fake users. (3) Experiments: As a striking example of a malicious 
attack, we illustrate that in order to ruin the predicted scores of a 
specifc item for users who would have loved or hated that item, it 
sufces to minimize the predicted score of the user with the highest 
predicted score before the attack, i.e., to target just this single (user, 
item) entry. Overall, this and other considered attacks highlight the 
need to handle machine learned attacks on recommenders. 

2 RELATED WORK 
Adversarial Attacks on Recommender Systems. Attacking a 
recommender system by injecting fake users (i.e., “shilling attacks") 
has a long history — e.g., [2, 4, 18, 21, 22]. However, they have 
focused on hand-engineering user profles, while we ofer an ap-
proach to learn end-to-end such attacks for a large range of intents. 

The closest line of work to ours is the one of poisoning attacks, 
such as [16], [7] optimized for factorized-based collaborative fl-
tering or graph-based recommenders respectively. [27] considers 
attacks on graphs for node classifcation, and considers similar chal-
lenges as in poisoning attacks, interdependencies among nodes, 
and the need for unnoticeability. [16] has a close setting to ours, but 
provides an attack method only specifc to the low-rank or nuclear-
norm collaborative fltering recommender, using frst-order KKT 

Konstantina Christakopoulou and Arindam Banerjee 

conditions for the gradient computation and a bayesian formulation 
for detecting fake users, and focuses on a subset of our attacks. 

Generating Adversarial Perturbations. While most works 
have focused on generating adversarial perturbations for evasion 
attacks, poisoning attacks are far less studied, as they require a 
bi-level optimization problem that considers learning the model. 
Almost all works exploit the gradient or other moments of a given 
diferentiable surrogate loss function to guide the search over unno-
ticeable perturbations [9, 11, 19, 20, 25]. For the recommendation 
setting, such methods are not applicable, as the adversary does 
not have access to the gradient. Also, the interdependency among 
users and items leads to attacks of considerably bigger size than 
e.g. one-pixel attacks [25], or small-norm perturbation attacks. 

The work of [14] is perhaps the most related, as it considers 
learned adversarial perturbations for recommendation ranking 
models, but has a distinct diference: it considers perturbations 
in the learned embeddings (of the popular bayesian personalized 
ranking model), demonstrates its vulnerability to such perturba-
tions, and ofers adversarial learning techniques similar to the 
classifcation-based ones to improve robustness. In sharp contrast, 
we operate on the level of learning entire fake user profles, which 
is closer to the real-life setting of adversaries attacking a recom-
mender, and we consider the challenging poisonous attack case, 
where the model needs to be retrained on both real and fake data. 

Generative Adversarial Networks (GANs) in recommenda-
tion. Although other works have considered GANs [10] in the con-
text of recommender systems [5, 15, 26], they only use them to 
augment the data so that the recommendation quality is improved. 
Our setting is fundamentally diferent: we simply rely on GANs 
for the frst round of the “game” between the adversary and the 
recommender, so that the real and fake user distributions are close. 

Providing defense strategies against attacks ([8, 14, 23]) and 
developing robust recommender systems [4, 18] is out of the scope 
of this paper, so we do not discuss these approaches here. 

3 PROBLEM FORMULATION 
Preliminaries. We start by introducing the notation, and by de-
scribing the setting under consideration. Let Adv denote the model 
performing the attack on the recommender, and Rec the oblivi-
ous recommender under attack. The goal of the recommendation 
system Rec is to build a model with parameters θR to minimize a 
suitable loss function between true and predicted ratings over all 
users and items. Let I be the set of items, and U the set of real 
users, present in the recommendation system. We will denote with 
m = |I | the number of items and with n = |U| the number of real 
users, where | · |  is the cardinality of a set. Let X ∈ Rn×m denote 
the matrix of ratings/interactions of real users on the items. Let the 
adversary Adv have a certain budget of k fake user profles, where 
k ≪ n. Each fake user profle is represented as a m-dimensional 
vector, i.e., how the user has rated/interacted with the diferent 
items in I, with zero values denoting missing ratings/absence of 
interaction. Adv outputs a matrix Z ∈ Rk×m , where each row zi′ 
for {i ′ }1 

k is a fake user profle. The total of real and fake users is 
′denoted by n ′, where n = n + k . 

The goal of the adversary Adv is to generate fake users such that 
two goals are achieved: (G1) the fake users are indistinguishable 
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from      the  real    users    based    on    reasonable    metrics,    (e.g.,    fake    rating/  
interaction    distributions      are  similar    to    real    users,    eigen-spectrum    
of      the  fake    user    ratings    is    similar    to    that    of    real    user    ratings,    or    an  
anomaly      detection  method    cannot    tell    real    from    fake    users  apart,  
etc.),      and  (G2)    an      attack  with    a    suitable    adversarial    intent,    (e.g.,  
Rec’s      predicted  scores    for    a    target    subset    of    real    users    and/or  items  
are      pushed  down,    a    target    item    is    removed    from    the    target    user’s  
top-K    recommendation      list,  etc.),    is    successful    when    the    fake    users  
Z    generated      from  Adv    are      added  to    the    dataset.    We    will    refer    to    (G1)  
as      the  unnoticeability      goal,  and    (G2)    as    the    adversarial    intent.    

Attack      Model  Formulation      as  a    Min-Max    Game.    The    attack  
model      can  be    formulated    as    a    general-sum    game    between    two    play-
ers:      the  row    player,      i.e.,  the    recommender      Rec,  and    the    column  
player,      i.e.,  the    adversary    Adv.    Both    players    consider    a    loss    function  
(the      negative  of    a    payof    function)    they    wish    to    minimize.  Let  fR    
denote      the  loss    function    of    Rec,    and    fA    be      the  loss    function    of    Adv.  
The    recommender      Rec,  parameterized      by  θR    ,      maps  tuples    of    user,  
item,      rating  (u,      j,y)  to      the  predicted    rating    of    user    u    on      item  j.    The  
actions      of  Rec    include      all  θR    (e.g.,      for  low-rank    recommenders,    each  
θR    corresponds      to  a    pair    of    U      ,V  latent      factor  matrices).    The    actions  
of      Adv  include    all    fake    user    profles    Z .    

The      way  the    parameters    θR    ,      Z  are      updated  is    the    following.  In  a  
repeated      game  setting,        let    ( t t θ ,    Z   )   be      the  current    parameterizations    R  
of      the  two    players.    In      the  next    step,      the  goal    of    each    player    is    to  
fnd      optimal  parameters   t      1   θ + and   t      +1   Z respectively      such  that    their  R
corresponding      expected  loss    is    minimized:    

    t      +1           1    θ =  argmin (     t  t  t, , fR      θR  Z )    Z +  f θ ,R   =   argmin A( R         Z   (1)
θR    Z    

)

Next,      we  instantiante    the    learning    procedures      for  the    two    players.  

4    OBLIVIOUS    RECOMMENDER    
We     Rec  oblivious    
of      the  adversary;    hence,    it    optimizes    its    loss    over      the  parameters    θR    
using      all  given    data.    Before    the    attack,    the    recommender    model  is  
learned      over  only    the    Creal    original      training  user-item-rating    tuples  
{ C realuc    ,    j     c      ,yc  } .    During/after      the  attack,      the  recommender’s    c   = 1    model  
is      trained  on    both    the    real    user-item-score      data  uc    ,   C  realjc      ,y     c     c   1   (rep-
resented     as a   sparse   matrix        ∈ Rn×m    

{ } =
     X  )      and  the    Cfake    non-zero    

ratings      of  the    k    fake      user  profles    (succinctly    represented    as    a    sparse  
matrix    Z      ∈  Rk×m    produced      by  Adv).    This    results    in    an    augmented  
training C         set  of    {uc    ,    alljc      ,yc  } , c=1        with  Call    =    Creal    +    Cfake,      and  cor-
responding      augmented  ratings    matrix    [X    ;    Z ]    where      [;  ]    denotes    
concatenation      of  two    matrices    over    the    rows.    Rec    learns      a  func-
tion    parameterized      by  mapping      input  tuples    {     }Call 

θR    uc    , jc      ,yc  c=    1    to
estimated      scores C    { ˆ allyc    }c=1   ,      so  that    the    loss    fR    is      minimized  over  Call:

1 !Call    
min    fR      (θR  ,      Z )  =    min    ℓ(yc      , ŷc  (uc    ,    jc    ;    θR    ,      Z  ,    (2)
θR    θR all    C c=1    

))

where    ℓ(·)    is      a  suitable    loss    between    the    real    and    predicted    scores.    

assume that the recommender is to the existence

5    GENERATING    ADVERSARIAL    USERS  
Given                        θR          
function    fR    ,      our  goal    is    to    learn    a    set    of    k      ≪  n    fake      users,  aka.  the  
matrix      Z ,  so    that    if    these    users    are    injected    to    the    recommender,    
the    recommender’s    performance,      measured  in    some    way,    drops.  

an oblivious recommender with parameters and objective

Let the index h specify the target user/item/set:uh ∈ U be the tar-
get user, ih the target item, or Uh /Ih the target set of users/items re-
spectively. While in the image/graph node classifcation setting the 
goal is to change the target example’s predictions, in the recommen-
dation setting, the goal is to hurt the recommendation performance 
or remove a certain item from the top-K list of recommendations. 

Importantly, given the interdependence among users and items 
(e.g., coupled via the latent factors U , V ), the attacker can target a 
single item/user h, but can infuence a whole subset of users-items. 

To ensure that the attacker can not modify the learned user-item 
structure completely, we limit the number of allowed fake users by 
a budget k , where k ≪ n. 

For the augmented data with fake user profles, the optimal 
∗parameters θR are learned, matching the poisonous attack setting; 

thus, we have a bi-level optimization problem. 

5.1    Unnoticeable    Users    
In an adversarial attack scenario, the attackers try to modify the 
input      data  such    that    the    changes    are    unnoticeable.      Unlike  to    image    
data,      where  this    can    be    easily    verifed    visually    and    by    using    simple    
constraints,      in  the    recommendation      setting  this    is    much    harder    for    
the      following  reason:    sufciently    large    user-item    rating/interaction    
matrices      are  not    suitable    for    visual    inspection,    and    the    structure    of    
users-items      is  discrete    preventing    from    the    use    of    infnitely    small    
changes.      Also,  instead    of    minimally    perturbing    (e.g.,    by    one-pixel),    
in      the  recommendation      setting  multiple    user    accounts/profles      are  
typically      injected  into    the    data    to    achieve    the    adversarial    intent.    

How      can  we    ensure    unnoticeable      attacks  in    our    setting?    Only  
limiting      the  budget    of    fake    users    to    k      ≪  n    might      not  be    enough.    
We      want  a    realistically    looking    user-item    rating/interaction      matrix  
after      the  injection    of    these    profles.    Thus,    we    generate    fake    users    
preserving      specifc  inherent    properties    of    the    real    user    distribution.    

Distribution-preserving    adversarial      users.  Concretely,      for  
every      item  j      ∈  I,      we  need    the    rating/interaction      distribution  over  
all     fake users      ′   fake∈ U     denoted     as j       u    Q to      be  close    to    the    rat-
ing/interaction      distribution  over    all    real    users    u      ∈  U,     denoted as      j       P .    
Particularly,      we  want    the    average    distribution    distance    among    these    
two    distributions      for  all    items    j      ∈  I    to      be  minimized,    as    measured    
by      the  Jensen-Shannon      divergence:  

1 !|I |      1 1     ( (    j    | |    (    j             1         D P  P + j )        j j j 
2 2 Q + D(Q | |     P    +    2 Q ,    (3)  |I |                

=1    
( ))

j

where      D  denotes    the    Kullback-Leibler      divergence.  
To      fnd  a    matrix          ∈  Rk×m    Z whose      resulting      j Q distributions    

are      close  to    the        j    P distributions      resulting  from    the    X      ∈  Rn×m    real    
rating/interaction      matrix,  the    framework    of    generative    adversarial    
networks      (GANs)  [10]    is    a    great    ft.    The    GANs    framework    consists  
of      jointly  training    a    pair    of    networks    —    a    Discriminator      network  D    
learning      to  discriminate      fake  from    real    samples,    and    a    Generator    
network    G    learning      to  generate    samples    with    the    goal    of    fooling    
the    discriminator    D    to      not  being    able    to    distinguish    them    from    real.    
In      our  case,    samples    are    m-dimensional      sparse  rating/interaction    
vectors      (user  profles).    

In      fact,  the    global    minimum    of    the    training    criterion    of    the    Gener-
ator      network  of    GANs    is    achieved    if    and    only    if    the    Jensen-Shannon    
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divergence between the real and the fake data distributions is mini-
mized; this is exactly Equation (3) which captures our unnoticeabil-
ity constraint. At convergence, the conditional distribution of the 
generator G should be able to give fake user samples which a fake 
user detection module D cannot discriminate from real ones. 

This forms the frst stage of the attacker strategy — train GANs 
on the real rating/interaction data until convergence; and obtain 
an initial sample of fake users Z1 = ZGAN ∈ Rk×m , by sampling 
from the conditional posterior of the generator. This initial sample 
Z 1 is then used as input to the second stage, i.e., that of optimizing 
the adversarial intent, described in what follows. 

We will see in experiments, (Figure 1), that augmenting the data 
X with ZGAN results in preserving the eigen-spectrum properties. 
Also, based on visualizations (omitted) we observed that the sparsity 
structure is preserved (e.g. a fake user cannot rate all items), and 
the samples comprising ZGAN do not result in a single user being 
replicated multiple times (which would be detectable). 

These observations together suggest that we can produce fake 
users which will not be detectable by fraud detection modules typically 
relying on distribution properties shifts [4]. 

5.2    Optimizing      the  Adversarial    Intent  
The attacker wants to use the fake user profles (matrix Z ) as a way 
to achieve its adversarial intent as encoded by fA. Concretely, the 
problem of interest to the adversary is: 

min fA(Z ) s.t. QZ ∼ P real , (4)
Z 
twhere the argument θ is dropped from the list of fA’s arguments R 

for brevity, QZ denotes the distribution constructed by the fake 
users and P real the distribution constructed by the real users. 

fA is general: It can vary from minimizing the predicted score 
ŷ(u,h) on a target user-item pair (Section 6.3), or the mean pre-" dicted score of a target item u ∈U,!Ra(h) ŷ(u,h) (6.4), to target-
ing the user with the maximum predicted score for an item — 
maxu ∈U,!Ra(h) ŷ(u,h) (6.5). It can also encode targeting the model-
ing of an item group (6.6), or a user group’s experience (6.7). 

To approximate solving (4), we use an iterative procedure. First, 
we initialize Z by setting them to the sample of fake users Z1 = 
ZGAN ∈ Rk×m we obtained by sampling from the conditional pos-
terior of the converged GAN’s generator network G. Then, for 
iterations {t}T1 we update Zt +1 so to optimize fA: 

Z̃t +1 = Zt − η∇Zt fA(Z ), (5) 
where η is the learning rate, and ∇Zt fA is the gradient of the ad-
versarial loss w.r.t the fake users at iteration t Zt . 

However, if we just do that, the gradient descent updates bear 
the danger of the Q Z̃ fake user samples distribution to move t +1 

further away from the real one P real. To prevent this, we instead 
employ a projected gradient descent variant, where ∀t , we also do: 

Zt +1 = Πallowed range(Z̃t +1), (6) 
where the projection Π is to ensure that the marginals of real and 
fake users remain close after the descent (e.g., for a star-based 
recommender, allowed range = [min. # stars, max. # stars]. 

Challenges in Gradient Computation. Now the question is, 
how can we compute the gradient ∇Zt fA in (5)? One main challenge 

which makes the learning of Z for the adversary non-trivial is that 
there is a two-step process going on: (1) Given some fake ratings, 
learn θR (say, a low-rank model) based on the recommendation 
system objective fR , typically using non-convex optimization. (2) 
Use the learned model parameters of the recommender to evaluate 
the adversarial objective fA. As a result, the adversary typically 
cannot compute the gradient w.r.t. Z . 

For illustration purposes, let us consider as adversarial intent: 
minimize the predicted score of item h over all real users who have 
not rated/interacted with the item. For the case of a low-rank recom-" mender, this can be encoded as: minZt 

1 T
u vh ,| {u!Ra(h)} |  u!Ra(h) u 

where uu denotes the u-th row of latent factor U , vh denotes the 
h-th row of latent factor V , and u ! Ra(h) denotes the set of users 
who have not rated item h. At frst glance, we can see that the loss 
is a function of the recommender’s parameters, and not Z . But, the 
parameters of the recommender are in fact a function of Z—more 

tgenerally, fA is a function of (Z ,θ ). After playing fake matrix Z ,R
the adversary player gets to observe the loss only for this single Z 
played, and not the loss it would have incurred had it played other 
actions/matrices. Thus, the adversary gets limited information, or 
else bandit feedback. Put diferently, the gradient of the loss is not 
directly given for the optimization of fA over Z . 

Approximate Solution. To obtain an approximation of the gra-
dient, we build upon zero-order optimization works in bandit opti-
mization [1, 6] and related methods in stochastic and evolutionary 
optimization [3, 12]. The idea is that if we can only perform query 
evaluations, to obtain the gradient of fA(Z ), we need to query fA(Z )
at two nearby points: Zt and Zt + αZ0, for a small α and a suit-
able fxed matrix Z0. Then we can compute the gradient as the 
directional derivative along the direction Z0: 

∇fA(Zt ) = (fA(Zt + αZ0) − fA(Zt ))Z0/α . (7) 

Instead of a two-point evaluation, aka. on Zt and Z0, we can use 
K directions and compute the gradient using all K directions. For 
this, we use a refnement of [1]. For the K directions, we use the K 
top left and right singular vectors of the fake user matrix at round 
t Zt , obtained from a Singular Value Decomposition (SVD) on Zt : 

KZt = B̃ΣC̃T . Assuming each direction is indexed by h, where {h}1 , 
let Z (h) be the rank-1 matrices built from each left singular vector 
b̃h and right singular vector c̃h of Zt : 

Z (h) T = b̃h c̃h , h = 1, 2, . . .K , (8) 

where K is the rank of Zt . Then, using these rank-1 matrices Z (h) 

as K possible directions, we can compute the matrix gradient: 

!1 K 
∇fA(Zt ) = (fA(Zt + αZ (h)) − fA(Zt ))Z (h) (9)

α 
h=1 

Notice that the computation of the approximate gradient, as defned 
in (9), involves K + 1 evaluations of the function fA(Z ), with K the 
total number of directions used, or else the rank of Zt . To make 
things faster, we use warm-start: we frst evaluate fA(Zt ), then, for 
any fA(Zt + αZ (h)), we use the fnal parameters learned for fA(Zt )
to warm start the iterates. 

Algorithm 2 gives an overview of our overall proposed learning 
approach for learning to attack an oblivious recommender. 
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Algorithm 1 Constructing the gradient for ∇Zt fA 

Require: Zt , Objective fA, rank K of Zt 
1: Construct the K directions Z (h) by doing singular value de-

composition on Zt (Eq. (8)), and get the top-K rank-1 singular 
matrices. 

2: for each of the K directions Z (h), and the Zt do 
3: Evaluate fA on the direction Z (h) or Zt . This entails injecting 

the fake users Z (h) or Zt during the recommender’s training, 
and getting a new estimate of the recommender’s parameters. 

4: end for 
5: Output the gradient approximation ∇Zt fA based on the evalu-

ation of fA on the above K + 1 directions using (9). 

Algorithm 2 Learning Algorithm for Adversary’s Strategy 
1: Get an estimate of the recommender parameters θR , optimizing 

minθR fR (θR ) using only real data X (this is before the attack). 
2: Train a Generator G-Discriminator D GANs network using 

samples of real users from X . 
3: At GANs’ convergence, get k samples from the posterior of the 

Generator G, to form the initial fake user sample Z 1 ∈ Rk×m . 
By construction, these samples are hard to discriminate from 
the real ones, thus satisfying unnoticeability goal(Eq. (3)). 

4: for t = 1, . . . ,T do 
5: Get the gradient approximation of ∇Zt fA (Algorithm 1). 
6: Obtain the new fake user matrix Z t +1 by projected gradient 

descent optimizing fA (thus satisfying adversarial intent 
(G2)), following equations (5) and (6). 

7: end for 
8: Output the fnal fake user matrix ZT to achieve the intended 

attack against the oblivious recommender. 

6       EXPERIMENTS    
We design our experiments to study the efectiveness of our pro-
posed Algorithm 2 in adversarial attacks that are (G1) unnoticeable 
and (G2) optimize adversarial intents. 

To demonstrate our results, we will consider the recommender 
model to be a low-rank one, and the algorithm to optimize for square 
loss between the predicted and true scores plus a regularization 
term, with regularization parameter λ [17]. Briefy, let U ∈ Rn ′×d 

be the latent factor capturing the latent preferences of users, V ∈ 
Rm×d the item latent factors, and the optimal parameters U ∗ ,V ∗ 

are learned by minimizing the loss using alternating minimization: 
2 2(U ∗ ,V ∗) = arg min ∥[X ; Z ] − UVT ∥2 + λ(∥U ∥2 + ∥V ∥2

2) . (10)
U ,V 

6.1      Can  We    Learn    Realistic    User    Profles?  
First, we want to evaluate whether the choice of using GANs to 
generate the initial fake user sample is suitable for achieving the 
unnoticeability goal before starting to optimize for the adversarial 
intent; this corresponds to Lines 2 and 3 of Algorithm 2. 

Datasets. We used two popular movie recommendation datasets, 
MovieLens 100K, MovieLens 1M [13] (Table 1). They contain the 
ratings of users on diferent movies in the scale {0, 1, 2, 3, 4, 5} with 
5 the highest, and 0 a lack of rating. 

DCGAN Architecture and Parameters. For implementing 
GANs, we used the popular DCGAN architecture, thanks to its 

good empirical behavior [24]; in principle though, other GANs-
inspired architecture could have been used. Next, we specify the 
details of the used architecture for reproducability. 

The Discriminator D takes an image of size H × W (fake or real 
user sample) and outputs either a 0 or a 1 (is it fake or real?). It 
consists of four 2D convolutional CONV units, with leaky ReLUs 
and batch normalization (BN), whose depths are respectively [64, 
128, 256, 512], followed by a single-output fully connected (FC) 
unit with sigmoid activation. The Generator G takes as input noise 
z ∼ N(0, 100) and outputs an H × W image (the fake user sample). 
It consists of a FC unit of dimension 2 × 4 (or 7) × 512 with ReLU and 
BN, reshaped to a 2, 4 or 7, 512 image, followed by four transposed 
CONV units of depths [256, 128, 64, 1] respectively, each with ReLU 
and BN, except for the fnal with a tanh. We set for the (transposed) 
CONV units the stride to 2, and the kernel size to 5 × 5. 

We set batch size to 64, and run DCGAN for 100 epochs (each 
epoch does a cyclic pass). 

We transformed the datasets’ real ratings from [0, 5] to [−1, 1]
′using r = (r − 2.5)/2.5 so to have them in the same range as the 

ones produced by the Generator network G. Each user profle is 
an |I |-d sparse vector, which needs to be transformed to a H × W 
2D array to go through the DCGAN 2D (de-)convolutional units. 
We set as H the smallest factor of |I | and as W = |I |/H . This way, 
each user is viewed as a 2D H × W image with pixel values the 
ratings of the user on the diferent items. 

Dataset # of Items 2D Shape # of Users 
MovieLens 100K 1682 29 × 58 943 
MovieLens 1M 3706 34 × 109 6040 

Table 1: Dataset Statistics. 
Note that the goal of this experiment is not to argue that this 

specifc DCGAN architecture, or the certain transformation of user’s 
sparse rating vectors to a 2D array, is better compared to other 
architectures/ transformations; in fact, we expect that other GAN-
based architectures which are not based on convolutions might 
be a better ft, given that transforming a user 1-d vector to a 2-d 
array does not necessarily have the neighborhood structure that 
convolutional layers thrive on. Our goal is rather to provide a proof-
of-concept experiment that using some version of GANs can at 
convergence be useful for generating realistic user samples. 

Results. We validate quantitatively that the fake user distribu-
tion at DCGAN’s convergence is close to the real one. We sample 
700 fake users from the last epoch’s G so that the sizes of the real 
and fake user distribution are comparable, and we report results 
averaged over 5 DCGAN runs. We compute the correlation matrix 
over items of the fake data ZT Z and of the real data XT X , and com-
pare their top-10 eigenvalues (Figure 1, left). We also compute 
distance metrics between the real and fake user distributions: For 
each item j , the real users form a distribution P j over the rating val-
ues [−1.0, 1.0], and the fake users G(z) form a Q j distribution over 
[−1.0, 1.0]. To measure the distance among these two distributions, 
we discretize the values to the 6 bins [−1.0,−0.6,−0.2, 0.2, 0.6, 1.0]
(corresponding to [0, 1, 2, 3, 4, 5]). For each bin we compute the frac-
tion of (real or fake) users who have rated j in this bin out of all (real 
or fake) users. We report the average over the distance metrics of 
all items, i.e., mean Jensen-Shannon Divergence (Eq. (3)) in Figure 
1, right. These results for MovieLens 1M, and for MovieLens 100K 
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Figure 1: Real-Fake Eigen-spectrum (lef) & JS Div (right). 
The fake-real rating distributions are close. 
(omitted), indicate: 

GANs can produce fake user samples whose distribution 
is close to the real user distribution. 

This experiment supports the promise of GANs that the Genera-
tor network can learn to generate fake user samples that cannot 
be discriminated from real ones at convergence; thus, making the 
choice of GANs a good ft for learning the initial fake user matrix Z 1 

which satisfes the unnoticeability goal (G1). Following, in all attack 
experiments we report Jensen-Shannon divergence as a measure of 
the unnoticeability goal while the adversarial intent is optimized. 

6.2    Experimental      Design  
We now focus on illustrating the validity of the method for op-
timizing the adversarial objective fA while continuing to satisfy 
the unnoticeability goal. Particularly, after training DCGAN, we 
perform the Z gradient descent updates (later referred to as Z-SGD 
updates), initialized by a sample from the converged G (ZGAN), 
transformed from the [−1, 1] to the expected by the recommender 
range of [0, 5]. We set the sample size of ZGAN to 64; these 64 fake 
users, iteratively optimized during the Z-SGD updates, are only 
0.063 fraction of all system users (real and fake) for MovieLens 
100K, and 0.01 for MovieLens 1M. The reader can return to Lines 
3-10 of Algorithm 2 for recalling the procedure of iterative updates 
on the fake user matrix Z , initialized by ZGAN. 

We use two types of experimental setups: 

(E1) Adv targets unrated user-item entries (thus entries which 
are candidates for recommendation). 

(E2) Adv targets a small subset from the recommender’s true 
(user, item, rating) tuples, held out from Rec’s training. 

Parameters. The low-rank recommender Rec under attack is 
trained on explicit ratings in the scale {0, 1, 2, 3, 4, 5}. Unless other-
wise specifed, we set the latent factor dimension d to 40, λ to 0.001, 
and train Rec before the attack for 10 alternating minimization 
(alt-min) iterations. For the adversary Adv, we set the SVD approx-
imation rank K to 30, and α to 0.0001. During a single Z-SGD 
iteration for each of the K + 1 fA evaluations, 5 alt-min iterations 
of Rec are performed. We use warm-start, i.e., for the t + 1 Z -SGD 
iteration, Rec’s parameters are initialized from the ones obtained 
at the end of the alt-min Rec iterations from the previous t Z -SGD 
step. Every time fA is evaluated (e.g. during the gradient/ loss com-
putation), Z s are rounded to the closest integers, and get clipped to 
[0, 5]. Also, the projection step of (5) is realized by a box-projection: 
Zt +1 = clip(Z̃t +1, 0, 5). 

Figure 2: Adv successfully targets top item-1062 for user-0. 
Metrics. To evaluate the adversary’s success, we mainly use the 

metric of Attack Diference denoted by ∆(Z ): 

∆(Z ) = fbefore(X ) − fA(X ; Z ) (11) 

where fbefore(X ) is the adversary’s loss before the attack. ∆(Z )
measures the adversarial loss decrease, and larger values are better. 

Each section below introduces a separate attack type, as specifed 
by target user(s), item(s) and the attacker’s intent. 

6.3    Targeting      a  User-Item    Pair    
We start with the adversarial intent: can Adv learn realistic users 
that reduce the predicted score for an unrated user-item entry? We  
adopt the (E1) setup. We set η to 100, α to 50, K to 5, and total of 
T Z-SGD iterations to 21 or fewer if an early-stopping criterion is 

(u,h)satisfed. The adversarial loss f is the predicted score ŷ(u, h)A
for a target user u and a target item h, for a (u, h) ! the train set. 

We found that for (i) early-stopping criterion ∆(Z ) ≥ 1, when 
randomly sampling 70 target items from MovieLens 100K, and sam-
pling per item a user who has not rated it, only for 2 out of 70 pairs 
the attack was not successful, i.e., ∆(Z ) ≤ 0 (success rate 97.14%). 
For (ii) early stopping criterion that the target item does not exist 
in the top of the recommendation list anymore—a criterion 
better aligned with the actual user experience in recommendation—, 
we randomly sampled target users, and for each user u, we consid-
ered as target item h the unrated one with the highest predicted 
score for u before the attack, i.e., the top item h of user u. If we 
set top=10, out of the 55 sampled users, only for 2 the attack was 
unsuccessful (item h remained in the top-10)—for the rest, notably, 
the adversary managed to remove the target item from the target 
user’s top-10 list, while looking realistic (success rate 96.36%). 

As an example, Figure 2 shows how various metrics for the 
movie “A Little Princess" which appeared before the attack in the 
top-1 of user ID-0, vary as Z-SGD iterations progress. Beyond the 
attack diference (11), and the distance metrics for measuring un-
noticeability (Jensen-Shannon Divergence (3) and Total Variation 
Distance TVD), we report Rank Loss @ top(h) = [item h @ top], 
for top={1, 5, 10}. As Z-SGD updates progress, Adv successfully 
optimizes fA =ŷ(u, h) (yellow, left), thus increasing ∆(Z ) (magenta, 
left), and fA(X ; ZGAN) − fA(X ; Z ) (red, left). The rank losses @ 
top-1/5/10 (black/blue/cyan lines, right) reach 0 after 17/18/19 Z -
SGD iterations. We also see that the real-fake distribution distance 
metrics (‘JS Div’, ‘TVD’, green, left) remain close to 0. We fnd: 

Adv successfully targets the top predicted item of a user. 

6.4    Targeting      Item’s  Mean    Predicted    Score  
Here, we examine: can Adv target (push down) the mean predicted 
score of a target item h over all real users who have not rated h in the 
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" training dataset (f h = u ∈U,!Ra(h) ŷ(u, h))?—again, we adopt the A
(E1) setup. The reason for choosing this target user set is that these 
are the users for which h can be candidate for recommendation. 
We keep the same setting as before, except for setting η to 1000 
and choosing α in {500, 1000}, as we found that for this experiment 
larger values led to larger ∆. The stopping criterion is ∆(Z ) ≥ 1. 
We found that for 6 out of 29 random target items from MovieLens 
100K, the attack was unsuccessful; ∆ ≤ 0, i.e., the average score 
after the attack remained the same or increased—also, out of the 23 
successfully targeted items, only for 6 ∆(Z ) ≥ 1. We conclude that: 

Targeting the mean predicted score of an item is hard. 
To understand why this is hard, we examine how the distribution 

of ∆ over users u ! Ra(h) evolves over the Z-SGD iterations. From 
Figure 3 we see for the target movie “Mille bolle blu (1993)" (similar 
behavior is noticed in others too), that although the average dif-
ference reached 0.2 (magenta, left), every user’s ∆ follows its own 
trend (right); with mainly the users with the largest or smallest 
∆ afecting the average ∆. This shows that the fake users cannot 
move all users’ scores on h simultaneously to the same direction. 
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Figure 3: Targeting item ID-1348 avg. predicted score is a 
hard task—each user’s ∆ follows its own trend (right). 

6.5    Targeting      the  Top    User    of    an    Item    
In reality, to attack a target item, the adversary does not need to 
solve the more difcult problem of pushing down all unrated users’s 
score. Instead, they only need to push the score of users who would 
be good candidates for getting this item in their recommendations— 
in other words, those with the higher predicted scores from Rec 
before the attack; the other users would not get h in their recommen-
dations either way. Thus, here we explore the adversary’s intent 
to target the top user of an item, i.e., the user from u ! Ra(h) with 
the largest predicted score from Rec before the attack, under the 
(E1) setup. In Figure 4 as an example we show the results for target 
item “The Joy Luck Club". We see how the mean ∆(Z ) (y-axis) when 
considering only the top/bottom predicted users for item h (left 
panel), or the top/ bottom predicted items for user u (right panel), 
changes as we vary the size of top/bottom (x-axis). The results 
explained in the caption show our main result: 

When Adv targets the score of the top predicted user u 
for item h, then all top-K predicted users for h, and all 
top-K predicted items for u are targeted as well. 

Same results hold for all other sampled target items. 

6.6    Targeting      a  Group    of    Items    
Next, we focus on attacks targeting an entire group of items, in 
contrast to the so-far presented attacks targeting a single-item. We 
examine two goals: (A1) minimize the mean predicted score over 

all items in a group, and (A2) maximize the prediction error, as 
measured by mean absolute error, over a group. We adopt the (E2) 
setup of using a “target set"—Adv, besides making queries to access 
Rec’s predictions, has the added power of targeting some held-out 
tuples of (user, item, score) invisible to Rec during training. This 
is in contrast to the (E1) setup where Adv targeted one or a set of 
unrated user-item entries. We used the setup of 80-10-10 split of 
ratings per user. For Rec, we set d to 100, and λ to 0.1, and we train 
it for 100 alt-min iterations before the attack. For the adversary 
Adv, we set η to 1000, K to 5, α to 50, and T = 30. We report for 
the Z-SGD iteration with the best value of fA in the target set the 
metric: 

∆ ∗ 100% Target Improved = , (12)
f before 
A 

where ∆ is given by (11). For goal (A1), defning target item groups 
based on deciles by predicted scores by Rec before the attack, we 
see from Figure 5 (left) that: Adv is capable of larger % of decrease 
in the predicted score for the groups with larger original predicted 
scores (up to 10.9% for the [4.47, 6.53) bin). This is interesting, as 
these are the entries which would be more likely to appear on users’ 
lists, if the attack did not happen. For goal (A2), we see from Figure 
5 (right) that for groups based on deciles defned by the target 
prediction error of Rec before the attack, Adv can do up to 59.3% 
increase in target prediction error for the well-modeled buckets, 
i.e., those with [0.02, 0.49) error before the attack. 

6.7    Targeting      Improved  Modeling    for    a    Group  
Last, we explore: can Adv achieve targeted improvement in the 
modeling of groups of users or items in a target set? We examine 
three goals: (I1) improve the average recommendation quality of a 
user group, measured by Hit Rate@10 (on average per user, is the 
user’s held-out entry included in the top-10?) (I2) improve the mean 
absolute predicted error over an item group, and (I3) ensure fair 
treatment in the modeling of two user groups, i.e., the gap (absolute 
diference) between their prediction errors is reduced. The setting 
is the same as above, and the setup is again the (E2) 80-10-10 setup, 
except that for (I1) a leave-one-out (E2) setup is used. We report the 
% target improved metric for (I1), (I2), and the target gap for (I3). 

Figure 6a focuses on goal (I1)—improving the Hit Rates (HRs) 
for user groups based on deciles by user age, i.e., [7, 20), [20, 23) 
up to [51, 73). We see that a targeted improvement (red bars) is 
possible, with the largest % observed for the youngest group. But, 
these targeted improvements do not transfer to an unseen test set 
from the same age group (yellow bars). We argue that this happens 
as the before-the-attack trends of HRs over the age groups in the 
target and test set difer (Figure 6a, right). Figure 6b focuses on 
goal (I2), and shows the % decrease in prediction error results 
of item groups defned by # of training ratings per item. We fnd 
that groups with the smallest target prediction errors before the 
attack (annotated on top of the bars), are better targeted. We can 
see from the yellow bars the % improvements in the test set—Adv 
results in targeted improvements in an unseen test set, albeit of 
typically smaller size compared to those in the target set. Although 
not shown, the original metrics of the target and test set hold 
similar trends across groups, which might be one reason why the 
attack generalizes here (further future analysis is needed). Figure 
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Figure      4:  The    adversary    Adv    targets    the    top    user    u    of    item    h    ID-1417    “The    Joy    Luck    Club"    (1993).    We    say    top/botom    for    what    was    
predicted      with  the    highest/lowest      score  from    Rec    before    the    attack.    Left:    x-axis:    varying    #    users    considered    for    ∆(Z  ),    from    5    to    
320      top  users,    or    from    320    to    5    bottom    users,    for    item    h.    The    mean    ∆(Z )    over    all    users    !    Ra(h)    is    .48    (orange    dotted    line,    y-axis).    
For      the  top-5    users    ∆(Z  )    =    8,      for  the    bottom-5    users    ∆(Z )    =    −6    (blue      line).  Right:    x-axis:    varying    #    items    from    !    RatedBy(u)      for  
top/bottom      items  for    user    u,    y-axis:    ∆    is    computed    over    top/bottom      items  for    u.    Gist:    Targeting    the    top    user    of    an    item    attacks    
also      the  top-K    users    of    this    item,    and      the  top-K    items    of    this    user.    Also,    the    bottom    users/items      are  attacked,    as    their    pred.    
score      is  increased    (∆(Z    )    <    0),    which      is  the    opposite    from    what    they    would    want.    

point      where  lines    for    0    and    3    cross);    similar    omitted    results    hold  
for      groups  based    on    gender,    age.    Also,    we    see    how    targeting    0-3  
gap      afects  the    prediction    errors    of    the    other    groups    as    well    as    Z    -
SGD      updates  progress—this      observation  holds    for    all    group-based    
attacks:      targeting  a    group    has    an    efect    of    improvement/decrease      in  
the      other  groups,    too.    Together    the    results    of    this    and    the    previous  
section      serve  as    proof    of    concept    that:    

The      fake  users    of    Adv    can      afect  how    Rec    models      user 
or      item  groups    in    a    target   1    set.  Figure 5: Item Group attack for (A1) (lef, predicted score-

based groups), (A2) (right, prediction error-based groups). 

7    CONCLUSIONS    
We proposed machine-learned adversarial attacks to oblivious rec-
ommender systems for various complex adversarial intents. Our 
attacks target sets of users and/or items, aiming to manipulate the 
recommendation performance for them. To ensure unnoticeability, 
we proposed using as a frst step a sampled set of fake users gener-
ated from the GANs framework, so that the distributional properties 
of the real users’ interactions are preserved, and then using pro-(a) Goal (I1), Age groups 
jected gradient descent updates to preserve this. To overcome the 
challenge of the adversary having no access to the recommender’s 
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a non-trivial zero-based optimization method for gradient approxi-
mation. Thanks to this approximation, we can optimize a variety of 
adversarial intents which have not been considered before in the 
shilling attacks literature. Our experiments highlight the vulnerabil-
ity of a low-rank recommender to these learned attacks, serving as 
further motivation for building recommendation models robust to 
such learned attacks. Future work includes relaxing the adversary’s 
knowledge level, and studying adversary-aware recommenders. 

(b) (I2), # ratings item groups (c) (I3), # ratings user groups 

Figure 6: Adv can successfully target groups, and (a) improve 
users’ Hit Rates, (b) decrease items’ prediction error, (c) re-
duce user groups 0 and 3 modeling gap. Acknowledgements. The research was supported by NSF grants IIS-1563950, IIS-

1447566, IIS-1447574, IIS-1422557, CCF-1451986, CNS-1314560, IIS-0953274, IIS-1029711, 6c      focuses  on    goal    (I3),      targeting  the    gap    between    groups    0    and  3,  
for    25-percentile      groups  0,    1,    2,    and    3    of    users    based    on    #    of    training  
ratings      per  user.    We    see    that    the    target    gap    becomes    indeed    0    (the       

NASA grant NNX12AQ39A, and gifts from Adobe, IBM, and Yahoo. 

1Although omitted, for the last two experiments, the unnoticeability goal measured 
by (3) is still satisfed. 
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