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Abstract
The minimum degree algorithm is one of the most widely-
used heuristics for reducing the cost of solving large
sparse systems of linear equations. It has been studied
for nearly half a century and has a rich history of bridging
techniques from data structures, graph algorithms, and
scientific computing. In this paper, we present a simple
but novel combinatorial algorithm for computing an
exact minimum degree elimination ordering in O(nm)
time, which improves on the best known time complexity
of O(n3) and offers practical improvements for sparse
systems with small values of m. Our approach leverages
a careful amortized analysis, which also allows us to
derive output-sensitive bounds for the running time of
O(min(m

√
m+,∆m+) log n), where m+ is the number

of unique fill edges and original edges that the algorithm
encounters and ∆ is the maximum degree of the input
graph.

Furthermore, we show there cannot exist an exact
minimum degree algorithm that runs in O(nm1−ε) time,
for any ε > 0, assuming the strong exponential time
hypothesis. This fine-grained reduction goes through
the orthogonal vectors problem and uses a new low-
degree graph construction called U-fillers, which act
as pathological inputs and cause any minimum degree
algorithm to exhibit nearly worst-case performance.
With these two results, we nearly characterize the time
complexity of computing an exact minimum degree
ordering.

1 Introduction
The minimum degree algorithm is one of the most
widely-used heuristics for reducing the cost of solving
sparse systems of linear equations. This algorithm
was first proposed by Markowitz [26] in the context
of reordering equations that arise in asymmetric linear
programming problems, and it has since been the
impetus for using graph algorithms and data structures
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in scientific computing [30, 31, 17, 16, 19]. This line of
work culminated in the approximate minimum degree
algorithm (AMD) of Amestoy, Davis, and Duff [2],
which has long been a workhorse in the sparse linear
algebra libraries for Julia, MATLAB, Mathematica,
and SciPy. Formally, the minimum degree algorithm
is a preprocessing step that permutes the rows and
columns of a sparse symmetric positive-definite matrix
A ∈ Rn×n, before applying Cholesky decomposition, in
an attempt to minimize the number of nonzeros in the
Cholesky factor. Without a judicious reordering, the
decomposition typically becomes dense with fill-in (i.e.,
additional nonzeros). The goal of the minimum degree
algorithm is to efficiently compute a permutation matrix
P such that the Cholesky factor L in the reordered
matrix PAPᵀ = LLᵀ is close to being optimally
sparse. Finding an optimal permutation, however, is NP-
complete [35], so practical approaches such as minimum
degree orderings, the Cuthill–McKee algorithm [11],
and nested dissection [15] are used instead. We direct
the reader to “The Sparse Cholesky Challenge” in [21,
Chapter 11.1] to further motivate efficient reordering
algorithms and for a comprehensive survey.

The minimum degree algorithm takes advantage
of a separation between the symbolic and numerical
properties of a matrix. To see this, start by viewing
the nonzero structure of A as the adjacency matrix of
an undirected graph G with m = nnz(A − diag(A))/2
edges. Permuting the matrix by PAPᵀ does not change
the underlying graph. In each iteration, the algorithm
(1) selects the vertex u with minimum degree, (2) adds
edges between all pairs of neighbors of u to form a clique,
and (3) deletes u from the graph. Through the lens of
matrix decomposition, each greedy step corresponds to
performing row and column permutations that minimize
the number of off-diagonal nonzeros in the pivot row
and column. A clique is induced on the neighbors of u
in the subsequent graph because of the widely-used no
numerical cancellation assumption (i.e., nonzero entries
remain nonzero). Motivated by the success and ubiquity
of reordering algorithms in sparse linear algebra packages,
and also by recent developments in the hardness of
computing minimum degree orderings of Fahrbach et
al. [13], we investigate the fine-grained time complexity
of the minimum degree ordering problem.
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1.1 Results and Techniques Our main results com-
plement each other and nearly characterize the time
complexity to compute a minimum degree ordering. Our
first result is a new combinatorial algorithm that outputs
an exact minimum degree ordering in O(nm) time. This
improves upon the best known result of O(n3) achieved
by the naive algorithm. We maintain two different data
structures for the fill graph to efficiently detect and avoid
the redundant work encountered by the naive algorithm.
Using careful amortized analysis, we prove the following
theorems.

Theorem 1.1. The FastMinDegree algorithm out-
puts an exact minimum degree ordering in O(nm) time.

Our analysis also allows us to derive output-sensitive
bounds. The fill produced by the minimum degree heuris-
tic is typically small in practice, so the performance of
the algorithm is often faster than O(nm). The algorithm
also allows for further practical implementations, such
as using hash table-based adjacency lists.

Theorem 1.2. The FastMinDegree algorithm can
be implemented to run in O(min(m

√
m+,∆m+) log n)

time and use O(m+) space, where m+ is the number of
unique fill edges and original edges that the algorithm
encounters and ∆ is the maximum degree of the original
graph.

Our second main result improves upon a recent con-
ditional hardness theorem of O(m4/3−ε) for computing
exact minimum degree elimination orderings assuming
the strong exponential time hypothesis [13].

Theorem 1.3. Assuming the strong exponential time
hypothesis, there does not exist an O(m2−ε∆k) algorithm
for computing a minimum degree elimination ordering,
where ∆ is the maximum degree of the original graph,
for any ε > 0 and k ≥ 0.

This result is given in its full generality above, and
it implies an answer to O(nm1−ε)-hardness conjecture
posed in [13]. Specifically, we have the following
matching lower bound for our main algorithm.

Corollary 1.1. Assuming the strong exponential time
hypothesis, there does not exist an O(nm1−ε) time
algorithm for computing a minimum degree elimination
ordering, for any ε > 0.

The hardness in Theorem 1.3 also rules out the
existence of an O(

∑
v∈V deg(v)2) time algorithm. We

prove our hardness results by reducing the orthogonal
vectors problem [32] to computing a minimum degree
ordering of a special graph constructed using building

blocks called U-fillers. One of our main contributions
is a simple recursive algorithm for constructing U -filler
graphs that satisfy the challenging sparsity and degree
requirements necessary for the fine-grained reduction.
In particular, these U -fillers correspond to pathological
sparsity patterns, and hence adversarial linear systems,
that cause any minimum degree algorithm to exhibit
worst-case performance (i.e., to output Cholesky factors
with Ω̃(n2) nonzeros). These graphs are of independent
interest and could be useful in lower bounds for other
greedy algorithms.

1.2 Related Works Computing an elimination or-
dering that minimizes fill-in is an NP-complete prob-
lem closely related to chordal graph completion [35].
Agrawal, Klein, and Ravi [1] gave the first approxima-
tion algorithm for the minimum fill-in problem, building
on earlier heuristics by George [15] and by Lipton, Rose,
and Tarjan [24]. Natanzon, Shamir, and Sharan [28]
later developed the first algorithm to approximate the
minimum possible fill-in to within a polynomial factor.
There has since been a wealth of recent results on fixed-
parameter tractable algorithms [23, 14, 7, 6] and the
conditional hardness of minimizing fill-in [34, 5, 8, 4].

Due to this computational complexity, we rely on
the practicality and efficiency of greedy heuristics. In
particular, the multiple minimum degree algorithm
(MMD) of Liu [25] and the approximate minimum degree
algorithm (AMD) of Amestoy, Davis, and Duff [2] have
been the mainstays for solving sparse linear systems
of equations. These algorithms, however, have some
drawbacks. MMD eliminates a maximal independent set
of minimum degree vertices in each step, but it runs in
O(n2m) time and this is known to be tight [22]. On the
other hand, AMD is a single elimination algorithm that
runs in O(nm) time, but achieves its speedup by using
an easy-to-compute upper bound as a proxy to the true
vertex degrees. While many variants of the minimum
degree algorithm exist, an algorithm that computes an
exact minimum degree ordering with time complexity
better than O(n3) has never been proven. Therefore,
our contributions are a significant step forward in the
theory of minimum degree algorithms.

There have also been other major advancements
in the theory of minimum degree algorithms recently.
Fahrbach et al. [13] designed an algorithm that computes
a (1 + ε)-approximate greedy minimum degree elimina-
tion ordering in O(m log5(n)ε−2) time. Although this
result is a significant theoretical milestone, it is cur-
rently quite far from being practical. Ost, Schulz, and
Strash [29] recently gave a comprehensive set of vertex
elimination rules that are to be used before applying
a greedy reordering algorithm and never degrade the
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quality of the output. The minimum degree heuristic
has also appeared in algorithms for graph compression
and coarsening [3, 9, 12].

2 Preliminaries
2.1 Fill Graphs and Minimum Degree Order-
ings For an undirected, unweighted graph G = (V,E),
let N(u) = {v ∈ V : {u, v} ∈ E} denote the neighbor-
hood of vertex u and deg(u) = |N(u)| denote its degree.
We overload the notation N(U) =

⋃
u∈U N(u) to be

the neighborhood of a set of vertices. For two graphs
G1 = (V1, E1) and G2 = (V2, E2), define their union to
be G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). For a given set of
vertices U , let KU be the complete graph with vertex
set U .

Now we introduce the idea of fill graphs. Our
notation extends that of Gilbert, Ng and Peyton [20].
We use the shorthand [n] = {1, 2, . . . , n} throughout the
paper.

definition 2.1. For any undirected graph G = (V,E)
and subset U ⊆ V , the fill graph G+

U = (V +
U , E+

U ) is the
graph resulting from eliminating the vertices in U . Its
vertex set is V +

U = V \ U , and an edge {u, v} ∈ E+
U if

and only if there exists a path (u, x1, . . . , xt, v) in G such
that xi ∈ U for all i ∈ [t].

Characterizing fill-in by uv-paths through eliminated
vertices allows us to compute the fill degree of a vertex
in any partially eliminated state U without explicitly
computing the eliminated matrix. For a fill graph G+

U , we
avoid double subscripts and use the analogous notation
deg+

U (v) = degG+
U

(v) and N+
U (v) = NG+

U
(v) to denote

the degree and neighborhood of a vertex v ∈ V +
U .

Alternatively, we can use tools from linear algebra
and view G+

U as the nonzero structure of the Schur
complement of the adjacency matrix A(G)/U .

An elimination ordering p = (v1, v2, . . . , vn) natu-
rally induces a sequence of fill graphs (G+

0 , G
+
1 , . . . , G

+
n ),

where G+
0 = G and G+

n is the empty graph. Let deg+
i (v)

and N+
i (v) denote the degree and neighborhood of vertex

v ∈ V +
i in the i-th fill graph of this sequence. This allows

us to define a minimum degree elimination ordering.

definition 2.2. A minimum degree elimination order-
ing is a permutation of the vertices (v1, v2, . . . , vn) such
that vi ∈ arg minv∈V +

i−1
deg+

i−1(v) for all i ∈ [n].

2.2 SETH-Hardness for Computing Minimum
Degree Orderings Our lower bound for the time com-
plexity of computing a minimum degree elimination
ordering is based on the strong exponential time hypoth-
esis (SETH), which asserts that for every ε > 0, there

exists an integer k such that k-SAT cannot be solved in
O(2(1−ε)n) time. SETH has been tremendously useful in
establishing tight conditional lower bounds for a diverse
set of problems [33]. Many of these results rely on a
fine-grained reduction to the orthogonal vectors problem
and make use of the following theorem.

Theorem 2.1. ([32]) Assuming SETH, for any ε > 0,
there does not exist an O(n2−ε) time algorithm that takes
n binary vectors with Θ(log2 n) bits and decides if there
is an orthogonal pair.

3 A Fast Minimum Degree Algorithm
We present a new combinatorial algorithm called Fast-
MinDegree for computing minimum degree orderings.
Its key feature is that it maintains the fill graph using an
implicit representation of fill-in together with an explicit
graph representation. This combination allows us to
reduce the number of redundant edge insertions to the
fill graph. Using a specialized amortized analysis, we
prove the following theorems.

Theorem 3.1. The FastMinDegree algorithm out-
puts an exact minimum degree ordering in O(nm) time.

Theorem 3.2. The FastMinDegree algorithm can
be implemented to run in O(min(m

√
m+,∆m+) log n)

time and use O(m+) space, where m+ is the number of
unique fill edges and original edges that the algorithm
encounters and ∆ is the maximum degree of the original
graph.

3.1 The Algorithm We begin by describing an al-
ternative approach for representing the fill graphs G+

i

as vertices are eliminated. This hypergraph representa-
tion stores hyperedges U1, U2, . . . , Uk ⊆ V +

i such that
G+

i = KU1
∪KU2

∪· · ·∪KUk
at the end of each iteration.

Variants of this have frequently been used in previous
literature on the min-degree algorithm. Our presentation
closely follows that of George and Liu [19], albeit with
different terminology.

Given a graph G, we construct the initial hypergraph
representation consisting of all hyperedges {u, v}, for
every edge {u, v} ∈ E(G). Next, we consider how to
update the hypergraph representation as vertices are
eliminated. Suppose we wish to eliminate a vertex v. Let
U1, U2, . . . , Ut be precisely the hyperedges that contain v.
Construct W = (U1 ∪ U2 ∪ · · · ∪ Ut) \ {v}. Let G′

be the graph represented by the current hypergraph
representation. Then W is precisely the neighborhood
of v in G′. It follows that the fill graph obtained by
eliminating v is represented by removing the hyperedges
U1, U2, . . . , Ut and adding the hyperedge W .

Our algorithm to find a minimum degree ordering
can be summarized as maintaining both a hypergraph
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representation and an adjacency matrix of the fill graph.
The adjacency matrix is used to efficiently compute the
minimum degree vertex in each step, and the hypergraph
representation is used to reduce the number of redundant
updates to the adjacency matrix.

When eliminating the vertex v in the current fill
graph G+

i , we find the hyperedges U1, U2, . . . , Ut ⊆ V +
i

containing v, as described above. We also compute
W = (U1 ∪ U2 ∪ · · · ∪ Ut) \ {v} = N+

i (v). We must add
edges to the fill graph so that it contains the clique KW .
Therefore, it is enough for our algorithm to try adding
the edges in KW that are not in KU1 ∪KU2 ∪ · · · ∪KUt ,
since these are already guaranteed to be in G+

i .
Below we give high-level pseudocode to describe this

algorithm. Although the implementation details of the
algorithm are very important to its efficiency, we defer
these discussions to Section 3.2.

Algorithm 1 A fast minimum degree algorithm for
producing exact elimination orderings.

1: function FastMinDegree(adjacency list for undi-
rected graph G = (V,E) with |V | = n)

2: Initialize adjacency structure fill_graph to G
3: for each edge {u, v} ∈ E do
4: Add {u, v} to the list of hyperedges
5: Mark all vertices as active
6: Initialize array elimination_ordering of size n
7: for i = 1 to n do
8: Let a← active vertex with minimum degree

in fill_graph
9: Deactivate a

10: Set elimination_ordering[i]← a
11: Initialize W ← ∅
12: for each hyperedge U containing a do
13: Remove U from the list of hyperedges
14: Set U ← U \ {a}
15: Let X ←W \ U and Y ← U \W
16: for each pair (x, y) in X × Y do
17: Add edge {x, y} to fill_graph if not

present
18: for each vertex b ∈ Y do
19: Remove edge {a, b} from fill_graph
20: Update W ←W ∪ Y

21: Add W to the list of hyperedges
22: return elimination_ordering

We claim that the algorithm is correct and maintains
the desired state at the end of each iteration.

Lemma 3.1. FastMinDegree produces an exact mini-
mum degree ordering elimination_ordering. Further-
more, suppose (G+

0 , G
+
1 , . . . , G

+
n ) is the sequence of fill

graphs induced by elimination_ordering. Then, at the
end of each iteration i ∈ [n] of the FastMinDegree
algorithm:

1. The state of fill_graph corresponds to the fill
graph G+

i .

2. The list of hyperedges U1, U2, . . . , Uk satisfies KU1 ∪
KU2

∪ · · · ∪ KUk
= G+

i (i.e., the hypergraph
representation is maintained).

Proof. We proceed by induction and show that these
invariants hold at the end of each iteration. Before
any vertices are eliminated (line 6) both properties
are true since G+

0 = G. Assume the claim as the
induction hypothesis and suppose that the algorithm
begins iteration i ∈ [n]. Clearly FastMinDegree
selects a minimum degree vertex in G+

i−1 and updates
elimination_ordering correctly.

Now we consider what happens when vertex a
is eliminated. Let U1, U2, . . . , Ut ⊆ V be all the
hyperedges containing a at the start of iteration i.
When the algorithm reaches line 21, we have W =
(U1∪U2∪· · ·∪Ut)\{a}. All hyperedges U1, U2, . . . , Ut are
removed from the hypergraph representation by the end
of this iteration, and W is added in their place. Since
W = N+

i−1(a) by the induction hypothesis, it follows
that the new list of hyperedges at the end of iteration i
corresponds to G+

i and satisfies the second property.
Ensuring that the state of fill_graph is updated

correctly requires a little more work. By the induction
hypothesis, fill_graph is equal to G+

i−1 at the begin-
ning of iteration i. The hypergraph representation also
corresponds to G+

i−1 at the start of this iteration, so
it follows that for each hyperedge U that contains a,
the edges in KU are present in fill_graph. Lines 9–18
attempt to insert edges from KW into fill_graph that
may be missing. In particular, clique KW is constructed
one hyperedge at a time to reduce redundant work.
When processing the j-th hyperedge Uj , we have X =
(U1∪U2∪. . . Uj−1)\Uj and Y = Uj\(U1∪U2∪· · ·∪Uj−1)
on line 15. Only edges {x, y} ∈ X × Y spanning the
symmetric difference can be missing from fill_graph,
so at the end of iteration i, all edges in KW have been
considered. Finally, all edges adjacent to a in G+

i−1 are
removed in lines 18–19. Therefore, it follows that the
state of fill_graph corresponds to G+

i at the end of the
iteration. This proves the first property and completes
the proof by induction.

3.2 Complexity Analysis To thoroughly investi-
gate the time complexity of minimum degree algorithms,
we first relax any rigid space requirements [18, 22] (e.g.,
using O(m) memory). This allows us to more conve-
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niently present an algorithm whose running time matches
the SETH-based lower bound in Corollary 1.1.

Our goal is to bound the running time of Fast-
MinDegree not just by O(nm), but by more accurate
bounds in terms of the total fill produced by the returned
minimum degree ordering. Since the fill produced by the
minimum degree heuristic is typically small in practice,
our analysis shows that the performance of the algorithm
will often be better than O(nm). Below are the main
quantities used to describe the total fill.

definition 3.1. Let E+ =
⋃n

i=0 E
+
i be the set of all

edges in the fill graph at some iteration. Let m+ = |E+|.

We have that E+ is precisely the edge set of the
input graph, together with all edges inserted throughout
the course of the algorithm. Clearly (V,E+) is a
simple graph, and so m+ ≤ n2. These edges are
important because they correspond to nonzero entries
in the corresponding Cholesky factor L. Intuitively, m+

is the size of the “output” of the reordering procedure,
and is the quantity that the minimum degree heuristic
is designed to minimize.

First, we claim that any adjacency structure for the
evolving fill graph can easily be extended to handle fast
minimum degree queries. This technique uses a bucket
queue and is inspired by ideas of Matula and Beck in [27].

Lemma 3.2. The fill_graph adjacency structure can
be augmented to support the selection of the minimum
degree vertex, increasing the total running time by at
most O(m+).

Proof. Wemaintain the data structure of n doubly linked
lists that are “buckets” corresponding to degrees. Each
vertex in the graph has a node in exactly one bucket.
Every time we update the degree of a vertex, we delete
it from one bucket and add it to another. This operation
can be performed in O(1) time.

The total number of degree updates is also O(m+).
For each entry of the adjacency matrix, there are at
most two degree updates: one when the edge is added
(line 17), and one when it is deleted (line 19). These
operations are only applied to precisely the O(m+)
entries corresponding to the edges in E+.

Selecting the minimum degree vertex v is done by
checking the buckets in order of increasing degree, until
a nonempty bucket is found. The running time for the
i-th step is linear in deg+

i (v), which is at most the degree
of v in the graph (V,E+). So in total, the running time
is O(m+).

The next lemma bounds the running time of the
algorithm by the total fill-in, the number of edge insertion

attempts, and the cost of edge updates. The proof uses
a simple credit analysis to show that computing all of
the sets X, Y , and W over the course of the algorithm
is not too expensive.

Lemma 3.3. Let k be the total number of edge insertion
attempts, and let c be the cost of querying, inserting, or
deleting an edge. Then the algorithm can be implemented
to run in O(c(m+ + k)) time.

Proof. Let (v1, v2, . . . , vn) be the ordering found by the
algorithm. The number of edge removals performed in
iteration i is deg+

i−1(vi). Summed across all iterations,
the total number of edge removals is O(m+). The other
queries and insertions to the adjacency structure happen
at most k times. Therefore, the total running time of
adjacency structure operations is O(c(m+ + k)).

We claim that the rest of the algorithm can be
implemented to run in a total of O(m+ + k) time. The
first step of this is an amortized analysis that assigns
|U | credits to each hyperedge U when it is created, so
that when the hyperedge U is removed, the algorithm
can afford an extra running time of O(|U |). The initial
hypergraph requires a total of O(m) credits.

Consider iteration i of the algorithm, and let
U1, U2, . . . , Ut be the hyperedges containing vi. The
set W produced by the algorithm is, by the end of the
iteration, equal to (U1 ∪ U2 ∪ · · · ∪ Ut) \ {vi} = N+

i (vi).
So, the hyperedge added in iteration i has size deg+

i (vi),
which summed over all iterations, requires O(m+) credits.
This amortized analysis assigns

∑t
j=1|Uj | credits to the

iteration where U1, U2, . . . , Ut are the hyperedges being
manipulated and removed.

Therefore, it suffices to show that iteration i runs
in O(

∑t
j=1|Uj | + ki) time, where ki is the number of

edge insertion attempts in iteration i. First, consider
the loop over the hyperedges U1, U2, . . . , Ut. For j ∈ [t],
let Wj be the set W at the beginning of the iteration
that considers Uj . Most operations in the loop clearly
run in O(|Uj |) time.

The exception is the computation of Xj = Wj \ Uj

and Yj = Uj\Wj . In general, finding A\B when A and B
have values in [n] is done by having a global array of
size nmodified to represent the contents ofB. Then A\B
can be found in O(|A|) time. This also requires O(|B|)
time to modify and reset the relevant array entries. Our
implementation maintains such an array that represents
W as it changes over all t iterations, in a total of |N+

i (vi)|
time. This allows Yj to be computed in O(|Ui|) time.

If Yj is empty, our algorithm can end iteration j
of the inner loop early. Otherwise, the number of
edge insertion attempts in this iteration is at least
|Xj × Yj | ≥ |Xj |. In this case, the set Xj is found
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in O(|Wj |+ |Uj |) time. Note that

|Wj |+ |Uj | ≤ (|Wj \ Uj |+ |Uj |) + |Uj |
= O(|Xj |+ |Uj |).

So, the running time of these operations summed over
all iterations j ∈ [t] is O(

∑t
j=1|Uj |+ ki).

Finally, we consider the hypergraph data structure
used to efficiently determine the hyperedges that contain
a vertex a, and how this data structure is updated
throughout the algorithm. In the implementation, each
hyperedge ever created has a marker that determines
whether it is valid or invalid (i.e., whether the hyperedge
has since been removed). There is also a array of
lists that determines, for each vertex a, the list of all
hyperedges (valid or invalid) that contain it. This data
structure is efficient to use and maintain. When a
hyperedge U is inserted, we iterate through all b ∈ U
and add a pointer to U to the list of vertex b.

The bottleneck of the algorithm is the total number
of attempted edge insertions across all vertex pairs
(x, y) ∈ X × Y . A trivial bound on the total running
time of this step is O(n3). Improving on this requires
a careful amortized analysis. Note that the algorithm
may attempt to insert an edge between the same pair of
vertices multiple times. Our approach is to investigate
and bound precisely how many times an edge in E+ is
attempted to be inserted. The lemma below is the key
technical result in the analysis of the algorithm.

Lemma 3.4. The number of edge insertion attempts is
at most

∑
{u,v}∈E+ min(deg(u),deg(v)), where deg(v) is

the degree of v in the original graph.

Proof. Each {u, v} not in E+ is never inserted by
the algorithm. So, it suffices to show that for all
{u, v} ∈ E+, the insertion of {u, v} is attempted at
most min(deg(u),deg(v)) times. Suppose {u, v} ∈ E+,
and assume without loss of generality that deg(u) =
min(deg(u),deg(v)). Let f(u, v) be the number of
hyperedges that contain u but not v. The quantity
changes over time as the algorithm progresses.

First, we claim that until u or v is eliminated, f(u, v)
only decreases over time. This is because the only
operations done to hyperedges is to merge them and
to delete eliminated vertices. Merging hyperedges does
not increase the number that contain u but not v, so
until u or v is eliminated, f(u, v) cannot increase.

Next, we claim that for each time the algorithm
attempts to insert {u, v}, f(u, v) strictly decreases. This
is because an insertion attempt only happens when a
set containing u but not v is merged with a set that
contains v. So, after the merge operation, f(u, v) has
decreased by at least one.

Finally, note that when all of the hyperedges are
first initialized, f(u, v) is at most deg(u). All insertion
attempts for {u, v} must happen before u or v is
eliminated, and during this time, f(u, v) ≥ 0. Thus,
there are at most deg(u) = min(deg(u),deg(v)) insertion
attempts for the edge {u, v} ∈ E+.

Corollary 3.1. There are O(∆m+) edge insertion
attempts, where ∆ is the maximum degree of the input
graph.

We note that the approximate minimum degree
algorithm (AMD) of Amestoy, Davis, and Duff [2] also
emits a tighter time complexity of O(m+) on bounded-
degree graphs [22]. This is one of the key reasons why it
is exceptionally useful for reordering linear systems of
equations on grid graphs.

Now we present a useful folklore result that allows
us to make the sum over minimum degrees expression
in Lemma 3.4 more comprehensible. This inequality
leverages the existence of a structured edge orientation of
its input graph and holds for any nonnegative assignment
to the vertices, including the degree function.

Fact 3.1. Let G = (V,E) be a simple graph and m =
|E|. For any vertex function f : V → R≥0, we have∑

{u,v}∈E

min(f(u), f(v)) ≤
√

2m
∑
v∈V

f(v).

Proof. We first claim there is an orientation of E such
that each vertex has out-degree at most

√
2m. Orient

the edge {u, v} such that if u→ v, then deg(u) ≤ deg(v).
Let degout(u) denote the out-degree of u. Then

2m ≥
∑

v∈Nout(u)

deg(v) ≥
∑

v∈Nout(u)

deg(u) ≥ degout(u)2.

Therefore, every vertex has out-degree at most
√

2m.
The result then follows from the inequality∑
{u,v}∈E

min(f(u), f(v)) =
∑
u∈V

∑
v∈Nout(u)

min(f(u), f(v))

≤
∑
u∈V

∑
v∈Nout(u)

f(u)

≤
√

2m
∑
u∈V

f(u),

which completes the proof.

Corollary 3.2. The number of edge insertion at-
tempts is O(m

√
m+). In particular, it is at most O(nm).

Copyright c© 2021
Copyright for this paper is retained by the authors



Proof. First, we apply Fact 3.1 to the graph (V,E+)
using the degree function of the input graph G = (V,E).
The O(m

√
m+) bound then follows from Lemma 3.4 and

the fact that
∑

v∈V deg(v) = 2m. The O(nm) bound is
a consequence of the inequality m+ ≤ n2.

We are now prepared to prove our main theorems
about the FastMinDegree algorithm. Our first result
states that the algorithm runs in O(nm) time, matching
the conditional hardness result in Corollary 1.1. Our
second result is an output-sensitive bound on the running
time that demonstrates the nuances in the speed of the
algorithm across various inputs. The two proofs are
analogous to each other, but use different adjacency
structures for the fill graph in order to achieve a space-
time tradeoff that is beneficial in practice.

Proof of Theorem 1.1. We use an adjacency matrix to
represent fill_graph. Thus, initializing fill_graph
requires O(n2) time and space. Note that we may
assume G is connected, so m ≥ n− 1. Using Lemma 3.3,
the algorithm runs in O(m+ + k) time since adjacency
matrices support constant-time edge queries, insertions,
and deletions. Here k is the total number of edge
insertion attempts. By Corollary 3.2, we have k =
O(nm). Therefore, the overall running time is bounded
by O(n2 + m+ + k) = O(n2 + n2 + nm) = O(nm), as
desired.

Proof of Theorem 1.2. We represent fill_graph as an
adjacency list where the neighborhood of every node is
stored in a balanced binary search tree [10, Chapter 13].
Each edge query and update costs O(log n). Initializing
G requires O(m log n) time and O(m) space. The algo-
rithm then runs in O((m++k) log n) time by Lemma 3.3,
where k is the number of edge insertion attempts. The
output-sensitive bounds in Corollary 3.1 and Corol-
lary 3.2 imply that k = O(min(m

√
m+,∆m+)). Since

we have m+ =
√
m+
√
m+ ≤ n

√
m+ = O(m

√
m+), the

time complexity follows. Further, the total space used
is O(m+) because of the binary search trees.

4 Improved SETH-Based Hardness
Now we affirmatively answer a conjecture of Fahrbach
et al. in [13] about the conditional hardness of finding a
minimum degree ordering. In particular, we prove the
following stronger result.

Theorem 4.1. Assuming the strong exponential time
hypothesis, there does not exist an O(m2−ε∆k) algorithm
for computing a minimum degree elimination ordering,
where ∆ is the maximum degree of the original graph,
for any ε > 0 and k ≥ 0.

The previous best SETH-based lower bound in [13]

ruled out the existence of a nearly linear time algorithm
for computing an exact minimum degree ordering by
showing that a O(m4/3−ε) time algorithm could be
used to solve any instance of the orthogonal vectors
problem in subquadratic time, for any ε > 0. Our
approach has several similarities to that of Fahrbach et.
al, and a consequence of our main hardness result gives
a nearly matching lower bound for the running time of
the FastMinDegree algorithm.

Corollary 1.1. Assuming the strong exponential time
hypothesis, there does not exist an O(nm1−ε) time
algorithm for computing a minimum degree elimination
ordering, for any ε > 0.

The key to our reduction is a recursive algorithm for
constructing a graph with O(n log n) vertices and edges
such that after any minimum degree ordering eliminates
all but n vertices, the resulting graph is Kn. Although
this construction was originally motivated by connections
to SETH-based hardness, it has several interesting
standalone properties. In particular, it demonstrates a
case where the minimum degree heuristic has extremely
poor performance (i.e., it is an input of size O(n log n)
that always results in Ω(n2) fill edges).

4.1 Constructing Sparse Min-Degree U-Fillers
Our goal in this subsection is to construct sparse graphs
that contain the vertex set U and have the additional
property that by repeatedly eliminating a minimum
degree vertex, the resulting fill graph is eventually KU .
We begin by defining several specific properties that are
helpful for presenting our construction.

definition 4.1. A U -filler is a graph G with vertex set
U ∪W , where U ∩W = ∅, such that after eliminating all
of the vertices in W , the resulting fill graph is G+

W = KU .
We call W the set of extra vertices.

Many of the graphs we construct have a subset of extra
vertices similar to the one in this definition. When taking
the union of graphs with extra vertices, we always assume
the sets of extra vertices are disjoint.

A simple example of a U -filler is the star graph with
vertices U∪{w}, where w is the center vertex with degree
|U |. Although stars are sparse, their maximum degree
can be arbitrarily large. This is the main challenge
in designing adversarial inputs for minimum degree
algorithms. Note that KU is itself a U -filler.

definition 4.2. A U -filler is min-degree if after elimi-
nating any proper subset of extra vertices X ⊂W , all of
the minimum-degree vertices in G+

X are extra vertices.

It immediately follows from Definition 4.2 that every
minimum degree elimination ordering of a min-degree
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U -filler eliminates all of the extra vertices in W before
any of the vertices in U .

Another key property we use in our construction is
the following notion of degree bound.

definition 4.3. A U -filler is d-bounded if after elimi-
nating any subset of extra vertices X ⊆W , all remaining
extra vertices have degree at most d in G+

X .

The first graph construction we use is called a U-
comb. We define a U -comb to consist of a path of |U |
extra vertices together with |U | edges that form a
matching between the path vertices and those in U .

Lemma 4.1. A U -comb is a |U |-bounded U -filler.

Proof. The extra vertices of the U -comb form a con-
nected component, so eliminating them results in KU .
Now suppose some subset of extra vertices is eliminated,
and let v be one of the remaining extra vertices. Con-
sider the neighbors of v in the fill graph. Let w 6= v be
another extra vertex of the U -comb. If w has not been
eliminated, v cannot be adjacent to w’s neighbor in U .
So for any of the |U | − 1 other extra vertices, v has at
most one neighbor in the fill graph. Since v is adjacent
to a single other vertex in U , it follows that the U -comb
is |U |-bounded.

There is also a straightforward way to combine U -
combs to obtain d-bounded U -fillers for any d ≥ 2,
although the size of the solution depends on the ratio
|U |/d.

Lemma 4.2. Let d ≥ 2 and suppose |U |/d ≤ c. Then
we can construct a d-bounded U -filler with O(|U |c) edges
and maximum degree O(c).

Proof. We partition U into O(c) parts U1, U2, . . . , Uk

each of size at most d/2. We then let G be the union
of (Ui ∪Uj)-combs over all unordered pairs {i, j} ∈

(
[k]
2

)
.

The result of eliminating all extra vertices of G is
the union of KUi∪Uj

, which is exactly KU . Since
|Ui ∪ Uj | ≤ d/2 + d/2 = d, the combs are all d-bounded
by Lemma 4.1. Therefore, G is a d-bounded U -filler. We
constructed G from O(c2) combs each with O(d) edges,
so G has O(c2d) = O(|U |c) edges. The extra vertices of
the combs have maximum degree 3, but each vertex in
U has degree exactly k − 1, so the maximum degree of
G is O(c).

We now use Lemma 4.2 to construct min-degree
U -fillers. The main idea of our approach is to (1)
recursively construct min-degree fillers for two halves
of U , and (2) connect the halves using a new U -filler
with O(|U |) edges whose extra vertices are guaranteed to
be eliminated before any vertices in U . Combining this

idea with divide-and-conquer, we show that the solution
is of size O(|U | log|U |). Before proceeding to the proof,
we reiterate that all extra vertices introduced in this
construction are unique.

Theorem 4.2. We can construct a (|U | − 3)-bounded
min-degree U -filler with O(|U | log|U |) vertices and edges,
and maximum degree O(log|U |).

Proof. We prove this theorem by describing a recursive
divide-and-conquer algorithm. In the base case when
|U | ≤ 7, simply return KU . Since KU has no extra
vertices, it is a (|U | − 3)-bounded min-degree U -filler.

Now suppose |U | ≥ 8, and partition U into U1

and U2 with sizes b|U |/2c and d|U |/2e, respectively. We
then recursively apply the theorem to construct min-
degree fillers G1 and G2 for U1 and U2. Finally, we apply
Lemma 4.2 to construct a (b|U |/2c− 2)-bounded U -filler
G3. (We can do this because b|U |/2c− 2 ≥ 8/2− 2 = 2.)
Then we return the union G1 ∪G2 ∪G3.

Since d|U |/2e − 3 ≤ b|U |/2c − 2 we have that G1,
G2, and G3 are (b|U |/2c − 2)-bounded. Since G3 is a
U -filler, so is G1∪G2∪G3. Therefore, G1∪G2∪G3 is a
(b|U |/2c−2)-bounded U -filler. Since |U | ≥ 8, this implies
in particular that G1 ∪G2 ∪G3 is (|U | − 3)-bounded.

Suppose for contradiction that G1 ∪G2 ∪G3 is not
min-degree, i.e., after eliminating some proper subset
of extra vertices, there is a vertex u ∈ U of minimum
degree. Let Ui be the part of U that contains u. Note
that the degree of u in G1∪G2∪G3 after elimination is at
least that of u in Gi after eliminating the corresponding
extra vertices of Gi. So for u to have minimum degree,
the min-degree property of Gi implies all extra vertices
of Gi are eliminated. Then, since Gi is a Ui-filler, the
degree of u is at least |Ui| − 1 ≥ b|U |/2c − 1. But since
G1 ∪G2 ∪G3 is (b|U |/2c− 2)-bounded, this implies that
all extra vertices were eliminated, which is impossible.
Therefore, G1 ∪G2 ∪G3 is min-degree.

Finally, we claim that G1∪G2∪G3 has O(|U | log|U |)
edges and maximum degree O(log|U |). Since

|U |/(b|U |/2c − 2) ≤ |U |/(|U |/2− 3)

= 2/(1− 6/|U |)
≤ 8,

G3 has O(|U |) edges and maximum degree O(1) by
Lemma 4.2. Now consider the divide-and-conquer nature
of the construction. The number of edges when |U | = n
follows a recurrence of the form f(n) = 2f(n/2) + O(n),
which has the solution f(n) = O(n log n). So, the
resulting graph hasO(|U | log|U |) vertices and edges. The
degrees of all extra vertices are O(1), and any vertex
in U is adjacent to at most O(log|U |) fillers across all
recursive levels. Therefore, the overall maximum degree
is O(log|U |).
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4.2 Reduction from Orthogonal Vectors We now
use our min-degree U -filler construction to demonstrate
the hardness of finding an exact minimum degree
ordering, assuming SETH. The connection to SETH
is through the following problem via a reduction from
orthogonal vectors [32].

definition 4.4. The clique union problem takes as
input a set of vertices V with |V | = n and subsets of the
vertices U1, U2, . . . , Ud ⊆ V , where d = Θ(log2 n), and
asks whether KU1

∪KU2
∪ · · · ∪KUd

= KV .

Lemma 4.3. Assuming the strong exponential time hy-
pothesis, for any ε > 0, there is no O(n2−ε) time algo-
rithm for the clique union problem.

Proof. Let each set Ui correspond to the set of vectors
with a nonzero entry in the i-th dimension. There is
a pair of orthogonal vectors if and only if the union
KU1

∪KU2
∪ · · · ∪KUd

is not the complete graph KV .
Thus, the result follows from Theorem 2.1 ([32]).

Our approach to prove Theorem 1.3 using Lemma 4.3
is outlined in Algorithm 2 below. It is essentially a
reduction from the clique union problem to the problem
of finding an exact minimum degree ordering. The
graph G on which we call the minimum degree ordering
subroutine is built as a union over Ui-fillers produced
by Theorem 4.2. As we prove below, G has special
properties that, given any minimum degree ordering,
allow us to efficiently determine the answer to the clique
union instance.

Algorithm 2 Decides if KU1 ∪KU2 ∪ · · · ∪KUd
= KV .

1: function CliqueUnion(V and U1, . . . , Ud ⊆ V )
2: for i = 1 to d do
3: Let Gi be a min-degree Ui-filler constructed

using Theorem 4.2
4: Let G← G1 ∪G2 ∪ · · · ∪Gd

5: Let W be the set of extra vertices of G
6: Set elimination_ordering←MinDegree(G)
7: for i = 1 to |W | do
8: if elimination_ordering[i] /∈W then
9: return false

10: Set v ← elimination_ordering[|W |+ 1]
11: Determine which vertices in G are reachable from

v via paths whose internal vertices are in W
12: Let k be the number of vertices in V that are

reachable from v, including v
13: return k = |V |

Lemma 4.4. If MinDegree returns a minimum degree
ordering, then CliqueUnion correctly decides if KU1

∪
KU2

∪ · · · ∪KUd
= KV .

Proof. First, consider the case where CliqueUnion
terminates early by returning false on line 9. Then for
some proper subset X ⊂W , a minimum degree vertex v
of G+

X is not in W . Suppose i is an index such that
v ∈ Ui. By Theorem 4.2, Gi is a min-degree Ui-filler.
By considering the fill graph of Gi after eliminating all
vertices in X∩V (Gi), it follows that all the extra vertices
of Gi have been eliminated. Therefore, the degree of v
in G+

X equals that of v in KU1
∪KU2

∪ · · · ∪KUd
. But

Theorem 4.2 guarantees that for all i ∈ [d], Gi is (|Ui|−3)-
bounded, and thus (|V | − 2)-bounded. So since X 6= W ,
the degree of v in KU1 ∪ KU2 ∪ · · · ∪ KUd

is at most
|V | − 2. Therefore, the algorithm correctly decides that
KU1

∪KU2
∪ · · · ∪KUd

6= KV .
Now assume that the algorithm does not terminate

early. Then the vertex v that is chosen on line 10 is the
minimum degree vertex of G+

W . Since Gi is a Ui-filler for
all i ∈ [d], G+

W = KU1 ∪KU2 ∪ · · · ∪KUd
. Recall that an

edge {u, v} is in G+
W if and only if there is a path from u

to v in G with internal vertices in W . It follows that the
value of k found by the algorithm is one plus the degree
of v in G+

W . Thus, k = |V | if and only if G+ = KV , so
the algorithm returns the correct decision.

Lemma 4.5. If MinDegree runs in O(m2−ε∆k) time
(for some ε > 0 and k ≥ 0) on input G with m edges and
max degree ∆, then CliqueUnion runs in O(n2−ε′dk+2)
time for some ε′ > 0, where n = |V |.

Proof. For all i ∈ [d], the graph Gi is constructed
in O(n log n) time, has O(n log n) vertices and edges,
and has maximum degree O(log n) by Theorem 4.2.
Therefore, G has O(nd log n) vertices and edges and
maximum degree O(d log n). We can compute the union
of two graphs of size O(m) in O(m logm) time, so we can
construct G in O(nd log2 n) time. The next step of the
algorithm is to run MinDegree(G), and the running
time of this step is

O
(
m2−ε∆k

)
= O

(
(nd log n)2−ε(d log n)k

)
= O

(
n2−εdk+2 logk+2 n

)
= O

(
n2−ε′dk+2

)
,

for some ε′ > 0. To determine reachability at line 11 of
the algorithm, it suffices to use a breadth-first search
that runs in O(|E(G)|) = O(nd log n) time. Therefore,
the algorithm runs in O(n2−ε′dk+2) time.

We conclude with the proof of our improved con-
ditional hardness result for computing exact minimum
degree elimination orderings. The complementary lower
bound in Corollary 1.1 immediately follows.
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Proof of Theorem 1.3. Assume for contradiction that an
O(m2−ε∆k) time algorithm exists for computing a mini-
mum degree ordering. By Lemma 4.4 and Lemma 4.5, we
can obtain an O(n2−ε′dk+2) time algorithm for deciding
if KU1 ∪KU2 ∪ · · · ∪KUd

= KV , for some ε′ > 0. For
instances where d = Θ(log2 n), this algorithm runs in
time O(n2−ε′ log2(k+2) n) = O(n2−ε′′), for some ε′′ > 0.
However, this contradicts SETH by Lemma 4.3, so the
result follows.

5 Conclusion
We have presented a new combinatorial algorithm for
computing an exact minimum degree ordering with
an O(nm) worst-case running time. This is the first
algorithm that improves on the naive O(n3) algorithm.
We achieve this result using a careful amortized analysis,
which also leads to strong output-sensitive bounds for
the algorithm.

We also show a matching conditional hardness of
O(m2−ε∆k), for any ε > 0 and k ≥ 0, which affirma-
tively answers a conjecture in [13] and implies there
are no minimum degree algorithms with running time
O(nm1−ε) or O(

∑
v∈V deg(v)2), assuming SETH. To-

gether with the O(nm) algorithm, this nearly character-
izes the time complexity for computing an exact min-
imum degree ordering. Extending our U -filler graph
construction to achieve fine-grained hardness results for
other elimination-based greedy algorithms is of indepen-
dent interest and an exciting future direction of this
work.
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