
Multi-path Neural Networks for On-device Multi-domain Visual Classification

Qifei Wang ∗1, Junjie Ke ∗1, Joshua Greaves2, Grace Chu1, Gabriel Bender2, Luciano Sbaiz1, Alec Go1,

Andrew Howard1, Ming-Hsuan Yang1, Jeff Gilbert1, Peyman Milanfar1, and Feng Yang1

1Google Research
2Google Brain

{qfwang, junjiek, joshgreaves, cxy, gbender, sbaiz, ago, howarda, minghsuan, jegilbert, milanfar,

fengyang}@google.com

Abstract

Learning multiple domains/tasks with a single model is

important for improving data efficiency and lowering infer-

ence cost for numerous vision tasks, especially on resource-

constrained mobile devices. However, hand-crafting a

multi-domain/task model can be both tedious and challeng-

ing. This paper proposes a novel approach to automatically

learn a multi-path network for multi-domain visual classi-

fication on mobile devices. The proposed multi-path net-

work is learned from neural architecture search by apply-

ing one reinforcement learning controller for each domain

to select the best path in the super-network created from a

MobileNetV3-like search space. An adaptive balanced do-

main prioritization algorithm is proposed to balance op-

timizing the joint model on multiple domains simultane-

ously. The determined multi-path model selectively shares

parameters across domains in shared nodes while keeping

domain-specific parameters within non-shared nodes in in-

dividual domain paths. This approach effectively reduces

the total number of parameters and FLOPS, encouraging

positive knowledge transfer while mitigating negative in-

terference across domains. Extensive evaluations on the

Visual Decathlon dataset demonstrate that the proposed

multi-path model achieves state-of-the-art performance in

terms of accuracy, model size, and FLOPS against other

approaches using MobileNetV3-like architectures. Further-

more, the proposed method improves average accuracy over

learning single-domain models individually, and reduces

the total number of parameters and FLOPS by 78% and

32% respectively, compared to the approach that simply

bundles single-domain models for multi-domain learning.

∗equal contribution

1. Introduction

Numerous methods based on deep learning have made

significant advances in a wide range of vision tasks, includ-

ing image classification [13], object detection [6], and seg-

mentation [10], to name a few. However, most deep neu-

ral networks (DNNs) are developed for a single task with

data coming from the same domain. There is growing inter-

est in training a joint model to tackle multiple domains and

tasks, i.e., multi-domain learning (MDL) as well as multi-

task learning (MTL).

MDL and MTL are two overlapping but distinct prob-

lems. MTL [32] focuses on performing multiple related

tasks, e.g., segmentation and depth estimation on a given

data sample. On the other hand, MDL aims to build a joint

model to perform the same task, e.g., classification, across

multiple visual domains, such as Internet images, charac-

ters, glyph, animal, sketches, etc. Building a joint MDL

model is especially important on resource-constrained mo-

bile devices, where deploying a separate model for each

domain can introduce high latency, large memory foot-

print and power consumption. Although numerous mobile

friendly models (e.g., MobileNetV3 [11], ShuffleNet [35],

MNAS [30], and ENAS [21]) have been proposed for sin-

gle domain learning, much less attention has been paid to

develop efficient MDL systems for mobile devices.

One straightforward MDL approach is to train a uni-

versal feature extractor for all domains. However, its per-

formance may degrade significantly due to the negative

transfer between different domains. Existing MDL ap-

proaches [23, 24] start from a pre-trained model and fine-

tune with added domain specific modules. Each domain can

therefore selectively use the features from the fixed main

backbone network. Although this approach naturally re-

duces the negative transfer effect between domains, it does

not encourage positive transfer between domains due to

3019

Layer 1 Layer 2 Layer 3 Layer K

Prediction 1

Prediction 2

Prediction N

Domain 1

Domain 2

Domain N

Multi-path neural architecture search

RL controller 1 RL controller 2 RL controller N

Figure 1: Multi-path network for multi-domain visual classification. Different color paths show model architectures for

different domains. For example, the red path represents the model architecture formed for domain 1. Paths that run through

the same node end up sharing the weights of the shared node (dark grey).

the frozen backbone network. Manually designing domain-

adaptive modules can also be challenging and tedious since

it is difficult to transfer the manual modules onto different

architectures to achieve both high classification accuracy

across domains and low costs in terms of computation and

memory consumption.

Another challenging factor for learning a joint MDL

model is domain prioritization during training. Different

domains usually have diverse degrees of difficulty which

may not be constant during the training process. Although

various optimization-based approaches [12, 5, 16, 8, 27]

have been proposed to deal with this issue, jointly balancing

domain difficulties to achieve optimal performance across

multiple domains remains a difficult problem.

In this paper, we show that a good MDL model for mo-

bile devices should: 1) achieve high accuracy while keep-

ing number of parameters and FLOPS low; 2) learn to en-

hance positive knowledge sharing while mitigating nega-

tive transfer among domains; and 3) effectively optimize

the joint model across domains and be adaptive to domain

difficulties. As such, we propose a neural architecture

search (NAS) method for designing effective MDL mod-

els, and train it with adaptive balanced domain prioritiza-

tion. A multi-path NAS approach is developed to auto-

matically design an MDL model with a learned parame-

ter sharing strategy among domains. Based on the single-

domain efficient NAS framework [1], the proposed multi-

path NAS for MDL uses multiple reinforcement learning

(RL) controllers, where each selects an optimal path from

the super-network for each domain. To ensure mobile ef-

ficiency, the multi-path NAS network is learned based on

the MobileNetV3-like search space and each RL controller

optimizes its domain path based on the trade-off between

accuracy and inference cost. Fig. 1 shows the multi-path ar-

chitecture search framework. The model for one domain is

represented by the nodes wired by a single color path.

An adaptive balanced domain prioritization algorithm is

further proposed to balance the learning progress dynami-

cally for domains of diverse difficulties in both the architec-

ture search and model training phases. The selected multi-

path model demonstrates consistent advantages when eval-

uated on the Visual Decathlon dataset [23], reducing the

model size and FLOPS by 78% and 32% without sacrificing

the average accuracy compared to the approach that simply

constructs single-domain models.

The main contributions of this work are:

• We propose a generic multi-path neural architecture

search (MPNAS) approach as the first work to ap-

ply ENAS to solve the challenges of on-device MDL,

including data imbalance, domain diversity, negative

transfer, domain scalability, and large search space

of possible parameter sharing strategies. The MP-

NAS approach learns a cross-domain parameter shar-

ing strategy to encourage positive knowledge trans-

fer and also mitigate negative knowledge transfer via

domain-wise path selection. The MPNAS approach

achieves state-of-the-art accuracy, model size, and

FLOPS on MobileNetV3-like architectures.

• We improve MDL model optimization on domains of

diverse difficulties by using the generic adaptive bal-

anced domain prioritization in the objective function.

• We present comprehensive studies for detailed in-

sights into the network architecture of the learned

MobileNetV3-like MDL model and the effect of dif-

ferent domain weighting approaches for MDL.

2. Related Work

Multi-Domain Learning. MDL focuses on learning a joint

deep neural network that performs well across multiple in-

23020

Model update

RL Controller 1

RL Controller 2

RL Controller N

Domain 1

Domain 2

Domain N

Loss 1

Loss 2

Loss N

Reward 1
Reward 2

Reward N

Optimizer

Policy 1

Policy 2

Policy N

Figure 2: Multi-path neural architecture search framework. Each circle represents a candidate node in the super-network.

Dark nodes are shared among domains. Light nodes are used by a single domain (non-shared). Dashed nodes are not selected

by any domain and will be removed from the final model.

put domains. Most recent methods adapt pre-trained mod-

els to new tasks by adding few task-specific parameters.

Bilen and Vedaldi [3] proposed a single network to learn

the universal features for all domains by sharing all the pa-

rameters in the feature extraction layers except batch and

instance normalization layers. Rebuffi et al. [23] extended

the universal feature extraction network by introducing an

adapter residual module to the standard residual network

which makes the network adaptive to different visual do-

mains. Further extensive studies [24] have been made on

series and parallel residual adapters, joint adapter compres-

sion, and parameter allocations, which results in an empiri-

cally optimized network for MDL. Berriel et al. presented a

budget-aware adapter module [2] to select the most relevant

feature channels for each domain. On the other hand, incre-

mental learning [26] is adopted for learning new domains

sequentially without forgetting the knowledge learned on

the previous domains. Existing MDL approaches showed

that positive knowledge transfer can improve the perfor-

mance over single domain learning with limited increase

of model size. However, the hand-crafted sharing schemes

and empirical optimization approaches which are designed

for certain types of networks such as residual networks may

not be generally applicable to other network architectures,

e.g., mobile friendly architectures such as MobileNet [11].

Multi-Task Learning. MTL aims to simultaneously learn

a diverse set of tasks, e.g., object detection, segmentation,

depth estimation, by sharing knowledge among them. Dif-

ferent MTL models differ in strategies of sharing filters

[19, 29, 28, 18] or sharing operations [17, 31, 9] among

tasks, aiming to improve generalization by mining task re-

lations and to suppress negative transfer. In contrast to our

work, this line of research focuses on learning a diverse set

of tasks in the same visual domain, usually all operating on

the same image.

Other than hand-crafted MTL networks, routing net-

works [25] use an RL agent to learn the best route layer-

by-layer. However, this method scales poorly with the size

of the search space. A multi-task architecture search (MAS)

[20] is proposed to search for a universal feature extraction

architecture, but suffers from negative transfer among tasks.

Domain/Task Balanced Optimization. Since different do-

mains/tasks have different levels of difficulties, one of the

main challenges in training an MDL/MTL model is to strike

a balance between domains/tasks when training simultane-

ously. Task balancing has been studied extensively in the

MTL literature. Kendall et al. [12] used homoscedastic un-

certainty as the weight which favors the task with less noisy

annotations. Dynamic weight averaging (DWA) [16] is pro-

posed to balance the learning pace across tasks to optimize

all the tasks at a similar pace. Neither approach takes into

consideration the task difficulties which may vary greatly in

applications. To address this issue, the Dynamic task pri-

oritization (DTP) [8] method is developed to prioritize dif-

ficult tasks by adjusting the weight of each single-domain

loss dynamically. However, the DTP method needs a sur-

rogate measurement for task difficulty, which may be im-

practical for certain problems. To be agnostic to the task

difficulties, the balanced multi-task learning loss (BMTL)

function [14] is proposed and shown to achieve promising

results on MTL. Similar to the BMTL scheme, we develop

a domain/task balancing method for MDL. In MDL, loss

functions for different domains often share the same type

and are of the same magnitude, which means loss function

can be a good surrogate for task difficulties. However, this

can be unrealistic in MTL (e.g., classification and segmen-

tation tasks) where loss types differ. More comprehensive

overview on MTL optimization can be found in [32].

Neural Architecture Search. NAS is a powerful paradigm

for automatically designing neural architectures. Recent

NAS work shift the focus from the expensive evolution-

ary NAS to efficient NAS [21, 15, 34, 4] by constructing

33021

a super-network graph based on the search space and learn-

ing the architecture via end-to-end path sampling. While

the existing efficient NAS frameworks achieve significant

success on searching architectures for a single domain, find-

ing effective MDL models still remains an active area. We

propose a multi-path NAS method for MDL based on the

latest single-domain NAS work TuNAS [1] which provides

the advantages of handling substantially large and difficult

search spaces to build mobile-friendly models without do-

main specific prior knowledge.

3. Multi-path NAS for MDL

The main modules of the proposed multi-path NAS al-

gorithm for MDL are shown in Fig. 2. At the search

stage, a super-network with multiple candidate paths (both

solid and dot paths in Fig. 2) is constructed. Assuming

that there are N domains D = {D1, D2, . . . , DN}, the

proposed multi-path network uses N RL controllers C =
{C1, C2, . . . , CN}, to manage the path selection for each

domain. The circles represent candidate nodes in the super-

network which are defined by the search space and the RL

controllers learn to select nodes to build paths for each do-

main. The final model is formed by merging all the selected

paths into a single network.

At each search iteration, Ci samples a single path for do-

main Di. Each sampled path forms a sampled model for

domain Di. We first update the model weights using a sin-

gle batch of images from each domain on the training set,

then update the weights of RL controllers using the vali-

dation set for the corresponding domain. Specifically, the

RL controller Ci receives a reward Ri (see section 3.1 for a

function of validation accuracy and latency) from the model

prediction. This Ri is then used to perform policy gradient

update (REINFORCE [33]) on Ci. The process is repeated

until it reaches the maximum epochs. The main search steps

for the multi-path network are summarized in Algorithm 1.

At the end of the search phase, we take the most likely

paths from each RL controller and form a single joint model

with all the paths. As shown in Fig. 2, the model for one

domain is constructed with the nodes connected by a path

in one color. If more than one domain is connected to the

same node in the super-network, the weights in that shared

node will be used by all those domains (dark nodes with

solid circles). If only one domain is routed to a node, the

node will be exclusively used by that domain (light nodes

with solid circles). Inside a conv node, each domain can

selectively use a subset of filters. The filter number is also

selected by the RL controller. The nodes not used by any

domain will be removed from the final model (nodes with

dashed circles).

The joint model is then trained from scratch with train-

ing data from all domains. We obtain domain predictions

by running the corresponding domain data through its own

Algorithm 1: Multi-path neural architecture search

Result: Multi-path network

Initialize RLControllers;

Initialize super-network from the search space;

for Epochs = 1 : MaxEpochs do

for i = 1 : DomainCount do
Sample one path for Domain[i] to form

model;

Run model on validation set to get

Reward[i];

Run model on training set to get

TrainLoss[i];

end

Backprop the joint TrainLoss to update model

coefficients in super-network;

for i = 1 : DomainCount do
Update RLControllers[i] with Reward[i]

using REINFORCE;

end

end

path in the joint model. The final training process is simi-

lar to Algorithm 1 but with a fixed model and no RL con-

troller. In each batch we compute each domain’s training

loss TrainLoss[i] by running the fixed model on domain

training set. The joint TrainLoss, which is the sum of each

individual domain’s TrainLoss[i], will be back-propagated

to update the model weights . The gradients for parameters

in those shared nodes will be updated jointly.

Fig. 3 shows a partial multi-path model architecture for

the two domains on the Visual Decathlon dataset. Given

that each RL controller independently selects the path based

on the domain accuracy reward, the path similarity can also

manifest the correlations among domains (see Section 5.2

for domain correlation analysis).

3.1. Reward Function

In order to determine architectures with good accuracy

and latency trade-offs, we use the parameterized RL reward

function proposed in the MnasNet [30] (also adopted by the

ProxylessNAS [4]):

r(α) = Q(α)× (T (α)/T0)
β , (1)

where Q(α) represents the quality (validation accuracy) of

a candidate architecture α, T (α) is the estimated inference

time and T0 is the target inference time. The cost exponent

β < 0 is a tunable hyper-parameter. The reward function is

maximized when model quality Q(α) is high and inference

time T (α) is small.

43022

960

1280

80

112

24

16

160

40

conv
3x3

swish6
sepconv
3x3

dwb
3x3

96 96

dwb
3x3

120 120

dwb
7x7

72 72

dwb
3x3

144 144

dwb
5x5

144 120

dwb
5x5

240

zero

dwb
7x7

160 160

dwb
3x3

160 120

dwb
7x7

240 200

zero
dwb
5x5

400

dwb
3x3

480 dwb
7x7

400 320

dwb
3x3

400 400

dwb
3x3

336

dwb
7x7

112

dwb
7x7

448

dwb
3x3

336 672

dwb
3x3

672 672

zero

zero dwb
5x5

640

zero

dwb
3x3

960 960

conv
1x1

swish6
global
pool

conv
1x1

swish6

DTD ImNet

Figure 3: Multi-path model for ImageNet72 (green path) and Describable Textures (red path). Darker nodes are shared

between domains while lighter nodes are independent. The numbers under the nodes denote the number of filters used by

each domain in that conv node.

4. Domain Prioritization in Multi-path NAS

Handling domains with diverse difficulties is one of the

main challenges in MDL. Given each domain has a different

number of classes and difficulties, a method that directly

optimizes the sum of losses is unlikely to perform well as

shown in the ablation studies (Section 5.3). We propose an

adaptive balanced domain prioritization (ABDP) method to

achieve balanced training performance for all the domains

by introducing a transformed loss objective function:

min
θ

N
∑

i=1

h(L(Di; θ)) + r(θ), (2)

where θ denotes the model parameters, L(Di; θ) represents

the loss on domain Di with the current model parameters,

and r(θ) is the regularization term.

Since all domains share the same loss function in MDL,

the loss L(Di; θ) can be a good surrogate to indicate the dif-

ficult of domain Di. The boosting function h(·) in equation

(2) is introduced to transform the loss subspace to a new

subspace to boost the priorities of more difficult domains.

Its derivative h′(L(Di; θ)) can be viewed as the weight of

the current domain Di during gradient update. When h(·)
is monotonically increasing, the domains with larger losses

are favored. The loss function in Eq. (2) is adaptive in na-

ture since it can dynamically adjust domain weights during

the entire training phase.

If h(·) is a linear function, the objective function re-

gresses to a linear weight of the single-domain losses which

cannot achieve desired domain prioritization since h′(·) is

constant. In the ablation studies (see Section 5.3), we eval-

uate multiple options for the boosting function h(·), includ-

ing linear, polynomial, and exponential functions. Both the

polynomial and exponential functions can amplify the loss

which means the optimizer favours more difficult domains

over easier ones. Our ablation studies show that a nonlin-

ear boosting function can improve the model performance

in MDL. Empirically, the exponential boosting function can

most effectively boost performance on hard domains.

We further make the joint loss function adjustable during

the search and training process by introducing a domain pri-

oritization coefficient w in the boosting function. Assuming

that we use the exponential function as the boosting func-

tion, the adaptive boosting function can be defined as:

h = exp
(L(Di; θ)

w

)

. (3)

In Eq. (3), the adaptive parameter w can be put on a decay

schedule throughout the training phase (e.g. linear decay

from wmax to wmin). As w decreases, the domains with

larger loss will become increasingly more important, which

means the model favors difficult domains more at the later

search/training stage. From our ablation studies, decreasing

schedule of w outperforms constant schedule on the Visual

Decathlon dataset. The results verify that adaptive prioriti-

zation can further optimize the MDL performance.

5. Experiments

We evaluate the proposed mobile-friendly MDL mod-

els in three aspects. First, we evaluate the number of

parameters, FLOPS, and Top-1 accuracy of the MDL

model constructed by the proposed multi-path NAS (MP-

NAS) model vs. other state-of-the-art approaches based on

MobileNetV3-like architectures, including single domain

NAS model bunlding, single path MobileNet pre-searched

model, multi-domain single path NAS model, multiple ran-

dom path model, and task routing layer (TRL) model pro-

posed in [28]. Second, we analyze the selected MPNAS

model and evaluate domain similarity by calculating the

Jaccard similarity score [7] between domain path pairs.

Third, we carry out ablation studies of the adaptive balanced

domain prioritization.

Datasets. We carry out experiments on the Visual De-

cathlon dataset [23], which is composed of ten widely-used

image classification problems representing sufficiently di-

verse visual domains. Each domain of this dataset has di-

verse image/class sizes and difficulties, which is crucial to

verify the performance of MDL. The image resolution of

the ten domains are normalized to 72 × 72 pixels which

makes the classification task more challenging.

Evaluated methods. We evaluate the proposed method

against the state-of-the-art approaches including:

53023

Table 1: Number of parameters, FLOPS(G), and Top-1 accuracy (%) of MDL models on the Visual Decathlon dataset. All

the methods are built based on the MobileNetV3-like search space. Blue number indicates the best result.

Models
FLOPS

ImageNet72 Airc. C100 DPed DTD GTSR Flwr OGlt SVHN UCF Mean
par. (G)

SD-NAS 5.7x 1.08 61.9 22.6 69.6 98.4 34.2 99.5 66.7 78.7 93.3 74.4 69.9

SP-MN 1.0x 0.09 30.2 6.2 59.5 59.9 31.0 52.5 60.2 1.3 23.1 28.8 35.2

MDSP-NAS 0.7x 0.04 34.6 18.8 56.4 75.1 30.8 88.6 65.6 9.3 25.5 47.5 45.2

MRP 1.3x 0.43 50.7 21.5 67.3 96.1 31.5 99.8 61.8 75.8 91.9 69.5 66.6

TRL [28] 1.0x 0.71 27.1 16.1 60.0 66.2 33.9 95.8 63.3 54.3 85.7 46.2 54.9

MPNAS 1.3x 0.73 57.0 29.7 81.2 96.0 36.6 99.8 79.2 74.2 92.3 71.8 71.8

• Single domain NAS model (SD-NAS): A domain in-

dependent model selected on the MobileNetV3-like

search space and trained from scratch on a single do-

main dataset.

• Single path MobileNet pre-searched model (SP-MN):

A model whose backbone is searched using Ima-

geNet72 based on the MobileNetV3-like search space.

Domain specific output heads are attached to the final

FC layer. All the domains share the main feature ex-

traction network body.

• Multi-domain single path NAS model (MDSP-NAS):

A single-path model selected by a single RL controller

based on the MobileNetV3-like search space. The

joint RL controller learns to select the path with the

average accuracy as reward. Like SP-MN, all domains

use a shared network body with each output head at-

tached to the final FC layer.

• Multiple random path model (MRP): A joint model

with a random path assigned to each domain. The

paths are randomly selected from the super-network

generated by the MobileNetV3-like search space. Re-

sults are averaged across ten trials to reduce noise.

• Task routing layer model (TRL): The model with task

routing layer for MDL proposed in [28]. For fair com-

parisons, we add the task routing layer on top of the

MobileNetV3-Large baseline model. Since the capac-

ity of MobileNetV3-like models is very small, we set

the ratio of active filters for each task to 0.9 which

achieves the best performance in our experiments.

• Multi-path NAS model (MPNAS): The proposed

multi-path model obtained by using multiple RL con-

trollers to select paths for each domain based on the

MobileNetV3-like search space. The shared and do-

main specific nodes are learned automatically by the

architecture search.

Architecture search space. The proposed MPNAS is de-

veloped based on the MobileNetV3-like search space within

the TuNAS [1] framework. The MobileNetV3-like [11]

search space represents the state-of-the-art mobile-friendly

classification model. It consists of a stack of blocks with

convolution layers, inverted bottleneck layers, hard-swish

activation layers, a compact head, and optional Squeeze-

and-Excite layers. The searchable parameters includes

the number of layers per block, the positions of Squeeze-

and-Excite layers, kernel size, bottleneck expansion factors

within {1, 2, · · · , 6} and different filter sizes. For fair com-

parisons, we apply the TRL method on the MobileNetV3-

like baseline model.

Implementation details. All the model search and training

jobs are conducted on Cloud TPU V3 with 32 TPU chips.

Each search takes 90 epochs on ImageNet72. The batch size

in search is 1024 for each task. The super-network model

and the searched model weights are trained using RMSProp

with a cosine decay learning rate schedule. For search, the

learning rate schedule starts at 8e-3. After it converges, the

selected multi-path networks are trained from scratch with

the learning rate schedule starting at 0.0325. During search,

our RL controllers start training after 1/8 total steps using

Adam with a constant learning rate of 0.165. For the RL

reward function (1), we set T0 = 84ms following [1]. We

tuned β ∈ [−0.09,−0.03] and selected β = −0.07 based

on the average accuracy. The training stage runs until reach-

ing 360 epochs on ImageNet72. The training stage batch

size is set to 416 for each domain.

5.1. Model Accuracy

Table 1 summarizes the top-1 accuracy for all the eval-

uated methods on the Visual Decathlon dataset. Compared

to the SD-NAS approach, the performance of SP-MN de-

grades significantly due to the negative interference among

domains. The MDSP-NAS model slightly improves over

the SP-MN model due to joint architecture search over all

domains instead of searching on ImageNet72 only. The

multi-path models, including MRP and MPNAS signifi-

cantly improves the accuracy over the MDSP-NAS model

by 25% to 30% due to the domain specific feature learning

supported by the diverse path for each domain. MPNAS

also significantly outperforms TRL on the MobileNetV3-

63024

Table 2: Top 1 accuracy (%) of the highly correlated do-

mains. Blue number indicates the best in each column.

Models C100 ImageNet72 Flwr Avg

SD-NAS 69.63 61.87 66.73 66.07

MPNAS 79.74 59.62 71.76 70.37

Large architecture by 16.9% since the MPNAS method sup-

ports selecting different operations between different paths

if the two domains learn not to share. In addition, the

proposed MPNAS model achieves a slight improvement

of 1.9% over the SD-NAS scheme because of the pos-

itive knowledge transfer among domains. The MPNAS

method therefore achieves the best performance over all the

MobileNetV3-like architectures.

To demonstrate the positive transfer effect among cor-

related domains, we evaluate the proposed MPNAS method

on three domains which are visually similar and empirically

correlated: ImageNet72, Cifar-100, and VGG Flowers. Ta-

ble 2 shows that the MPNAS model can improve the ac-

curacy by 10% on Cifar-100 and 5% on VGG Flower with

very small (2%) sacrifices on ImageNet72.

5.2. Architecture Analysis

Intuitively, more correlated domains should share more

nodes in order to maximize positive knowledge transfer. To

measure architecture similarity between domains, we com-

pute the pairwise Jaccard similarity score [22] between the

set of selected nodes in two domains, as shown in Fig. 4.

A higher Jaccard similarity score means the paths are more

similar and thus the domains correlation is higher. The re-

sults show the paths generated by MPNAS are aligned with

the empirical experience. For example, the paths for similar

domains, e.g., ImageNet, Cifar-100 and VGG Flower, have

high Jaccard similarity scores while the paths for dissimilar

domains, e.g., GTSR and UCF, DPed and UCF, have low

Jaccard similarity scores. These results again demonstrate

that the proposed MPNAS can learn an effective parameter

sharing strategy to increase positive transfer.

5.3. Ablation Studies

5.3.1 Adaptive Balanced Domain Prioritization

We carry out experiments on the MDSP-NAS, SP-MN,

MRP, and MPNAS models with or without the proposed

ABDP method for ablation studies. Table 3 summarizes

the pairwise experimental results. Overall, applying the

ABDP can always improve average training accuracy on

Visual Decathlon dataset regardless of model architecture.

For the single-path models (MDSP-NAS and SP-MN), the

ABDP method greatly improves the performance since the

Figure 4: Confusion matrix for the Jaccard similarity score

between the paths for the ten domains. The score value

ranges from 0 to 1. A greater value indicates two paths

share more nodes.

model optimization on the nodes affects all the domains.

For the multi-path models (MRP and MPNAS), the perfor-

mance gain is smaller since the joint loss gradient on a cer-

tain node does not affect domains that do not use this node.

The results also show that the ADBP method is effective

in prioritizing more difficult domains and achieving larger

performance gains.

5.3.2 Evaluation of Joint Optimizer

In this ablation study, we evaluate model accuracies with

various MTL loss functions, including uncertainty weighted

loss (UWL) [12], empirical weighted loss (Empirical), iden-

tity (no boosting, x), ABDP with quadratic polynomial

boosting (x2) and ABDP with the exponential boosting

(exp(x/w)) functions.

The exponential boosting loss function can be further

enhanced by decreasing or increasing the domain priori-

tization coefficient w during the training stage. For the

linear decreasing schedule exp(x/w ↓), w is decreased

from wmax to wmin throughout the training process which

means harder domains are weighted more in the later

search/training stage (we use wmax = 2 and wmin = 1).

For a linear increasing schedule exp(x/w ↑), w is increased

which means favoring harder domains in earlier stages. For

the empirical weighted loss, we double the loss weight for

ImageNet72 since it is one of the most challenging domains.

The results in Table 4 show that all the boosting func-

tions outperform the uncertainty weighted loss (UWL) [12]

method. The exponential boosting function with decay co-

efficient schedule improves the average accuracy over UWL

by 3.5%. That improvement also validates the previous as-

73025

Table 3: Top 1 accuracy (%) between the approaches using and not using adaptive balanced task prioritization. Blue numbers

denote better results in pairwise comparisons.

Domains

MDSP MDSP SP SP MRP MRP MPNAS MPNAS

-NAS -NAS -MN -MN

+ABDP +ABDP +ABDP +ABDP

ImageNet72 27.50 34.57 21.84 30.15 44.46 50.70 48.46 57.02

Airc 7.10 18.78 5.29 6.19 21.48 21.53 26.12 29.65

C100 52.90 56.43 50.26 59.45 67.70 67.35 74.86 81.16

DPed 73.60 75.07 51.00 59.87 96.10 96.10 97.27 96.02

DTD 32.40 30.80 25.92 31.03 30.71 31.49 36.43 36.61

GTSR 51.90 88.64 40.77 52.50 99.89 99.77 99.92 99.80

Flwr 59.90 65.59 54.00 60.19 60.96 61.75 72.70 79.18

Oglt 1.80 9.33 1.59 1.27 76.06 75.76 76.34 74.19

SVHN 27.60 25.52 20.66 23.06 92.29 91.89 92.35 92.34

UCF 27.00 47.53 19.52 28.75 71.11 69.48 75.17 71.79

Avg 36.17 45.23 29.08 35.25 66.08 66.58 69.96 71.78

Table 4: Top 1 accuracy (%) achieved by various loss functions. Blue numbers are the best in the column.

Funcs. ImageNet72 Airc. C100 DPed DTD GTSR Flwr OGlt SVHN UCF Mean

UWL [12] 41.78 24.65 72.09 95.40 34.46 99.93 71.72 74.91 92.16 75.46 68.26

Empirical 53.78 26.57 76.22 96.48 36.86 99.90 76.24 75.80 92.06 69.88 70.38

x 48.46 26.12 74.86 97.27 36.43 99.92 72.70 76.34 92.35 75.17 69.96

x2 54.86 27.88 80.13 97.18 38.55 99.88 74.32 74.55 92.35 72.10 71.18

exp(x/w) 55.29 30.04 76.78 96.73 37.54 99.59 71.54 76.07 91.49 69.98 70.51

exp(x/w ↑) 49.16 31.17 78.65 97.38 38.89 99.87 78.19 77.87 92.49 73.40 71.71

exp(x/w ↓) 57.02 29.65 81.16 96.02 36.61 99.80 79.18 74.19 92.34 71.79 71.78

sumption that transforming the loss subspace can help to

optimize the model within the given training strategy over

the weighted sum approaches. Moreover, both the expo-

nential and square functions outperform the identity func-

tion which has no loss boosting. These results show that the

proposed ABDP method improves MDL optimization when

training jointly with multiple diverse domains. The linear

decay schedule slightly improves the accuracy over the lin-

ear increasing schedule on the Visual Decathlon dataset as it

reduces the interference between domains when the training

process is converging.

Compared with setting domain weights empirically, the

ABDP approach does not require prior knowledge of rela-

tive domain difficulties, which makes it easier to generalize

and adapt to different settings.

6. Conclusions

In this paper, we propose a multi-path NAS approach as

the first work of applying efficient NAS to solve the chal-

lenges of on-device multi-domain learning (MDL), includ-

ing data imbalance, domain diversity, negative transfer, do-

main scalability, and large search space of possible parame-

ter sharing strategies. By learning to selectively share pa-

rameters among domains, the multi-path network is able

to reduce the total number of parameters and FLOPS, en-

courage positive knowledge transfer, and mitigate negative

interference. The adaptive balanced domain prioritization

algorithm achieves balanced performance among domains

by dynamically adjusting the weighting of each domain

during the search and training phases. Extensive exper-

iments demonstrate that the proposed multi-path network

achieves state-of-the-art accuracy on the 10-domain Visual

Decathlon dataset with the mobile-friendly MobileNetV3-

like network architecture. The selected model searched in

the MobileNetV3-like search space reduces the number of

parameters and FLOPS by 78% and 32%, respectively com-

pared to the approach by simply constructing the single-

domain models without sacrificing model accuracy.

83026

References

[1] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang

Cheng, Pieter-Jan Kindermans, and Quoc V Le. Can weight

sharing outperform random architecture search? an investi-

gation with tunas. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 14323–14332, 2020.

[2] Rodrigo Berriel, Stephane Lathuillere, Moin Nabi, Tassilo

Klein, Thiago Oliveira-Santos, Nicu Sebe, and Elisa Ricci.

Budget-aware adapters for multi-domain learning. In IEEE

International Conference on Computer Vision, pages 382–

391, 2019.

[3] Hakan Bilen and Andrea Vedaldi. Universal representations:

The missing link between faces, text, planktons, and cat

breeds. arXiv preprint arXiv:1701.07275, 2017.

[4] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. arXiv

preprint arXiv:1812.00332, 2018.

[5] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and An-

drew Rabinovich. Gradnorm: Gradient normalization for

adaptive loss balancing in deep multitask networks. In Inter-

national Conference on Machine Learning, pages 794–803,

2018.

[6] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 580–587, 2014.

[7] John C Gower and Matthijs J Warrens. Similarity, dissimi-

larity, and distance, measures of. Wiley StatsRef: Statistics

Reference Online, pages 1–11, 2014.

[8] Michelle Guo, Albert Haque, De-An Huang, Serena Ye-

ung, and Li Fei-Fei. Dynamic task prioritization for multi-

task learning. In European Conference on Computer Vision,

pages 270–287, 2018.

[9] Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht. Learn-

ing to branch for multi-task learning. arXiv preprint

arXiv:2006.01895, 2020.

[10] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In IEEE International Conference on

Computer Vision, pages 2961–2969, 2017.

[11] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-

bilenetv3. In IEEE International Conference on Computer

Vision, pages 1314–1324, 2019.

[12] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task

learning using uncertainty to weigh losses for scene geome-

try and semantics. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 7482–7491, 2018.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 1097–1105, 2012.

[14] Sicong Liang and Yu Zhang. A simple general approach to

balance task difficulty in multi-task learning. arXiv preprint

arXiv:2002.04792, 2020.

[15] Hanxiao Liu, Karen Simonyan, and Yiming Yang.

Darts: Differentiable architecture search. arXiv preprint

arXiv:1806.09055, 2018.

[16] Shikun Liu, Edward Johns, and Andrew J Davison. End-to-

end multi-task learning with attention. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 1871–

1880, 2019.

[17] Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng,

Tara Javidi, and Rogerio Feris. Fully-adaptive feature shar-

ing in multi-task networks with applications in person at-

tribute classification. In IEEE Conference on Computer Vi-

sion and Pattern Recognition, pages 5334–5343, 2017.

[18] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggy-

back: Adapting a single network to multiple tasks by learn-

ing to mask weights. In European Conference on Computer

Vision, pages 67–82, 2018.

[19] Alejandro Newell, Lu Jiang, Chong Wang, Li-Jia Li, and Jia

Deng. Feature partitioning for efficient multi-task architec-

tures. arXiv preprint arXiv:1908.04339, 2019.

[20] Ramakanth Pasunuru and Mohit Bansal. Continual and

multi-task architecture search. In ACL, 2019.

[21] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. arXiv preprint arXiv:1802.03268, 2018.

[22] Anand Rajaraman and Jeffrey David Ullman. Mining of mas-

sive datasets. Cambridge University Press, 2011.

[23] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.

Learning multiple visual domains with residual adapters. In

Advances in Neural Information Processing Systems, pages

506–516, 2017.

[24] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.

Efficient parametrization of multi-domain deep neural net-

works. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 8119–8127, 2018.

[25] Clemens Rosenbaum, Tim Klinger, and Matthew

Riemer. Routing networks: Adaptive selection of non-

linear functions for multi-task learning. arXiv preprint

arXiv:1711.01239, 2017.

[26] Amir Rosenfeld and John K Tsotsos. Incremental learn-

ing through deep adaptation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2018.

[27] Ozan Sener and Vladlen Koltun. Multi-task learning as

multi-objective optimization. In Advances in Neural Infor-

mation Processing Systems, pages 527–538, 2018.

[28] Gjorgji Strezoski, Nanne van Noord, and Marcel Worring.

Many task learning with task routing. In IEEE International

Conference on Computer Vision, pages 1375–1384, 2019.

[29] Ximeng Sun, Rameswar Panda, and Rogerio Feris.

Adashare: Learning what to share for efficient deep multi-

task learning. arXiv preprint arXiv:1911.12423, 2019.

[30] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-

net: Platform-aware neural architecture search for mobile.

In IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 2820–2828, 2019.

[31] Simon Vandenhende, Stamatios Georgoulis, Bert De Bra-

bandere, and Luc Van Gool. Branched multi-task net-

93027

works: deciding what layers to share. arXiv preprint

arXiv:1904.02920, 2019.

[32] Simon Vandenhende, Stamatios Georgoulis, Marc Proes-

mans, Dengxin Dai, and Luc Van Gool. Revisiting multi-

task learning in the deep learning era. arXiv preprint

arXiv:2004.13379, 2020.

[33] Ronald J Williams. Simple statistical gradient-following al-

gorithms for connectionist reinforcement learning. Machine

Learning, 8(3-4):229–256, 1992.

[34] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.

Snas: stochastic neural architecture search. arXiv preprint

arXiv:1812.09926, 2018.

[35] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 6848–6856, 2018.

103028

