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Abstract

Social learning is a key component of human and an-
imal intelligence. By taking cues from the behavior
of experts in their environment, social learners can ac-
quire sophisticated behavior and rapidly adapt to new
circumstances. This paper investigates whether indepen-
dent reinforcement learning (RL) agents in a multi-agent
environment can use social learning to improve their
performance using cues from other agents. We find that
in most circumstances, vanilla model-free RL agents do
not use social learning, even in environments in which
individual exploration is expensive. We analyze the
reasons for this deficiency, and show that by introducing
a model-based auxiliary loss we are able to train agents
to leverage cues from experts to solve hard exploration
tasks. The generalized social learning policy learned
by these agents allows them to not only outperform the
experts with which they trained, but also achieve better
zero-shot transfer performance than solo learners when
deployed to novel environments with experts. In contrast,
agents that have not learned to rely on social learning
generalize poorly and do not succeed in the transfer task.
Further, we find that by mixing multi-agent and solo
training, we can obtain agents that use social learning to
out-perform agents trained alone, even when experts are
not available. This demonstrates that social learning has
helped improve agents’ representation of the task itself.
Our results indicate that social learning can enable RL
agents to not only improve performance on the task at
hand, but improve generalization to novel environments.

Introduction
Social learning—learning by observing the behavior of other
agents in the same environment—enables both humans and
animals to discover useful behaviors that would be difficult
to obtain through individual exploration, and adapt rapidly
to new circumstances (Henrich and McElreath 2003; Laland
2004). For example, fish are able to locate safe sources of
food in new environments by observing where other members
of their species congregate (Laland 2004). Beyond simple
imitation, social learning allows individual humans to “stand
on the shoulders of giants” and more easily develop sophis-
ticated behaviors or innovations that would be impossible
to discover from scratch within one lifetime. In fact, social
learning may be a central feature of humans’ unprecedented

cognitive and technological development (Boyd, Richerson,
and Henrich 2011; Humphrey 1976).

What if Reinforcement Learning (RL) agents could bene-
fit from social learning? In many real-world environments
where we would like to deploy RL agents (such as autonomous
driving or robotics), individual exploration can be costly, inef-
ficient, error-prone, or unsafe. However, these environments
are filled with human experts who know how to perform
tasks that we would like RL agents to learn, such as driving a
car, or loading a dishwasher. Instead of requiring humans to
explicitly train them, or to collect demonstration trajectories
for imitation learning, RL agents could passively observe
the behavior of people that happen to be present in the envi-
ronment going about their daily tasks. Agents could follow
social cues to adapt quickly to novel tasks and circumstances
without resorting to clumsy or costly exploration. This ability
would be particularly beneficial, given that current deep RL
approaches often fail to generalize to new environments; per-
formance deteriorates rapidly with even slight modifications
to the training environment (Cobbe et al. 2019; Farebrother,
Machado, and Bowling 2018; Packer et al. 2018).

We investigate whether model-free RL agents can benefit
from cues in the behavior of experts present in the same
multi-agent, partially observable environment (as illustrated
in Figure 1a). In contrast to imitation learning, the novices
have no direct access to expert trajectories, and the experts
selfishly pursue their own goals with no incentive to teach
the novices. We find that even in these simple environments,
standard model-free RL agents often fail to benefit from the
presence of experts (Figure 1b). To increase the potential for
social learning, we develop a novel environment in which
individual exploration is costly, and prestige cues help agents
identify experts. However, even under these circumstances
we find that model-free RL agents do not engage in social
learning.

To understand this effect, we show that in sparse reward
environments, model-free RL struggles to benefit from demon-
strations that do not directly increase reward. To ameliorate
this issue, we propose a new Social Learning with Auxiliary
Prediction Loss (SociAPL) technique. Our empirical results
show that SociAPL agents are able to benefit from the cues of
experts and learn a generalized social learning policy, which
allows them to achieve higher performance than agents trained
alone, agents trained in the presence of experts without the
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(a) The novice agent (red) is trying to navigate to the green goal, which
is outside its partially observed view of the environment (outlined
in red, shown in top right). When the expert (blue) turns toward the
goal, this can act as a cue to help guide the novice.

(b) Vanilla model-free RL shows no performance benefit when agents
are trained in the presence of experts, and cannot reach expert
performance, indicating agents are not effective at social learning.

Figure 1: Although cues in expert behavior could help agents more rapidly complete an exploration task (a), we find that vanilla
model-free RL agents do not appear to benefit from the presence of experts in their environment.

auxiliary loss, and even the experts themselves.
Crucially, we show that social learning improves general-

ization. When evaluated in novel environments with different
experts, SociAPL agents use cues from the new experts to
achieve high zero-shot transfer performance. They signifi-
cantly out-perform agents trained alone and agents that do
not use social learning, both of which struggle in the transfer
task. To the best of our knowledge, this paper is the first to
investigate the effect of social learning on the ability of RL
agents to generalize to new environments.

To prevent social learners from becoming reliant on the
presence of experts, we interleave training with experts and
training alone. Social learners trained in this manner make
use of what they learned from experts to improve their perfor-
mance in the solo environment, even out-performing agents
that were only ever trained solo. This shows that agents
can acquire skills through social learning that they could not
discover alone, and which are beneficial even when experts
are no longer present.

The contributions of this work are: i) a new environment
that promotes social learning through prestige cues and penal-
izing individual exploration; ii) an analysis of why model-free
RL struggles to benefit from cues in expert behavior in sparse
reward environments; iii) the SociAPL algorithm which we
empirically demonstrate enables social learning and improved
performance over solo training; and iv) zero-shot transfer
results showing that agents which engage in social learning
generalize effectively to new environments when other agents
cannot.

Related Work
There is a rich body of work on imitation learning, which
focuses on training an agent to closely approximate the be-
havior of a curated set of expert trajectories (Pomerleau 1989;
Schaal 1999; Billard et al. 2008; Argall et al. 2009). For
example, Behavioral Cloning (e.g. Bain and Sammut (1995);
Torabi, Warnell, and Stone (2018)) uses supervised learning
to imitate how the expert maps observations to actions. Be-
cause imitation learning can be brittle if the agent encounters

a state that was not contained in the expert dataset, it can
also be combined with RL (e.g. Guo et al. (2019); Lerer and
Peysakhovich (2019)), or make use of multiple experts (e.g.
Cheng, Kolobov, and Agarwal (2020)). Third-person imita-
tion learning (e.g. Shon et al. (2006); Calinon, Guenter, and
Billard (2007); Stadie, Abbeel, and Sutskever (2017)) enables
agents to learn to copy an expert’s policy when observing the
expert from a third-person perspective.

Our work shares some similarities with third-person imi-
tation learning, in that our agents are never given access to
expert’s observations and therefore only have a third-person
view. However, our work is distinct from imitation learning.
We do not assume access to a curated set of expert trajectories.
Rather, our agents co-exist in a multi-agent environment with
other agents with varying degrees of expertise, who are not
always within their partially observed field of view. To gain
access to other agents’ expertise, novices may need to learn
to actively follow them. The experts can selfishly pursue their
own reward, and we do not assume experts are incentivized
to teach other agents (as in e.g. Omidshafiei et al. (2019);
Christiano et al. (2017)). Thus, we make fewer assumptions,
and seek to design agents that can be applied to a broader
range of naturalistic settings in which other agents (such as
humans) are already present, but may not be willing to explic-
itly train our learning agent. In these settings, it is up to the
novice agent to learn to associate cues in the expert’s behavior
with their own ability to obtain reward from the environment.
However, we do not require novices to explicitly model other
agents (as in e.g. Albrecht and Stone (2018); Jaques et al.
(2018)). Finally, unlike in imitation learning, we do not force
our agents to copy the experts’ policy; in fact, we show that
our agents eventually learn to out-perform the experts with
which they learned.

Our work is distinct from Inverse RL (IRL) (e.g. Ng,
Russell et al. (2000); Ramachandran and Amir (2007); Ziebart
et al. (2008); Hadfield-Menell et al. (2016)), because our
agents share a single environment with the experts which has
a consistent reward function, and thus do not need to infer
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the reward function from expert trajectories.1 However, we
do consider learning from sub-optimal experts, which was
studied by Jacq et al. (2019) in the context of IRL.

Why should we expect social learning from (potentially
sub-optimal) agents in the environment to be beneficial?
Rendell et al. (2010) explored this question through a non-
stationary multi-armed bandit tournament, in which agents
had the option to copy the arm pulled by another agent. They
found a strong correlation between the number of copy actions
taken and success in the tournament, with the winning agent
playing ‘copy’ on more than 90% of turns. Copying was
so effective because each agent is attempting to play its best
known strategy, so learning from others can be much more
effective than random individual exploration.

The insight that copying can be a highly effective strategy
was applied to the context of autonomous driving, where
Landolfi and Dragan (2018) trained cars which copied the
policy of human drivers on the road when the agent had a
high degree of uncertainty. However, they assume access to
privileged information about other cars’ states and policies.
Sun et al. (2019) make similar assumptions, but use cues from
other cars to update agents’ beliefs; e.g. their belief about the
presence of pedestrians in occluded regions.

Most closely related to our work is that of (Borsa et al.
2019), who train model-free RL agents in the presence of a
hand-coded (scripted) expert policy. In the partially observed
exploration tasks they consider, they find that that novice
agents learning from experts outperform solitary novices only
when experts visibly make use of information that is hidden
from the novices. In our work, experts do not have access
to privileged information about the environment; rather they
are distinguished by their task skill. We analyze why it is
difficult for RL agents to benefit from expert demonstrations
in sparse reward environments, and propose a method to solve
it. Unlike Borsa et al. (2019), we show for the first time
that social learning allows agents to transfer effectively to
unseen environments with new experts, resulting in better
generalization than solo learners.

Finally, our approach uses a model-based auxiliary loss,
which predicts the next state given the current state, to better
enable agents to learn transition dynamics from trajectories
in which they received no reward. The idea of using auxiliary
losses in deep RL has been explored in a variety of works
(e.g. Ke et al. (2019); Weber et al. (2017); Shelhamer et al.
(2016); Jaderberg et al. (2016)). Model-based RL (MBRL)
has also been applied to the multi-agent context (e.g. Krupnik,
Mordatch, and Tamar (2020)).

Background
We focus on Multi-Agent Partially Observable Markov De-
cision Process (MA-POMDP) environments defined by the
tuple 〈S,A,T ,R,I, 𝑁〉, where 𝑁 is the number of agents.
The shared environment state is 𝑠 ∈ S. I is an inspection
function that maps 𝑠 to each agent’s partially observed view
of the world, 𝑠𝑘 . At each timestep 𝑡, each agent 𝑘 chooses a
discrete action 𝑎𝑘𝑡 ∈ A. Agents act simultaneously and there

1Note that novices and experts do not share rewards; if an expert
receives a reward for completing the task the novice does not benefit.

(a) Door Key environment (b) Novel demonstration state 𝑠

Figure 2: An example environment in which the blue expert
provides a demonstration of a difficult-to-reach state 𝑠.

is no notion of turn-taking. Let A𝑁 be the joint action space,
and ®𝑎𝑡 be the vector containing the actions of all agents for
timestep 𝑡. The transition function depends on the joint action
space: T : S × A𝑁 × S → [0, 1]. The reward function
R : S × A → R is the same across agents, but each agent
receives its own individual reward 𝑟𝑘𝑡 = R(𝑠𝑡 , 𝑎𝑘𝑡 ).

In this setting, each agent 𝑘 is attempting to selfishly max-
imize its own, individual reward by learning a policy 𝜋𝑘

that optimizes the total expected discounted future reward:
𝐽 (𝜋𝑘 ) = E𝜋

[ ∑∞
𝑡=0 𝛾

𝑡 𝑟𝑘
𝑡+1 | 𝑠0

]
, given a starting state 𝑠0 and a

discount factor 𝛾 ∈ [0, 1]. Note that agents are trained inde-
pendently, cannot directly observe other agents’ observations,
actions, or rewards, and do not share parameters. To simplify
notation, when we discuss the learning objectives for a single
novice we forego the superscript notation.

Model-Free, Sparse-Reward Social Learning
To understand how experts present in the same environment
could provide cues that enhance learning—and how model-
free RL could fail to benefit from those cues—consider the
example environment pictured in Figure 2. In this sparse-
reward, hard exploration environment, the agents only receive
a reward for reaching the green goal; the rest of the time,
their reward is 0. To reach the goal, they must first pick up a
key, and use it to pass through the door. Assume there is an
infinite supply of keys, and after an agent passes through the
door it closes. An expert agent can provide a demonstration
of a novel state 𝑠 that is difficult to produce through random
exploration: that it is possible to open the door. Ideally, we
would like novice agents to learn from this demonstration by
updating their internal representation to model 𝑠.

However, if the novice does not receive any reward as a
result of observing 𝑠, model-free RL receives little benefit
from the expert’s behavior. Assume that the novice agent
is learning policy 𝜋𝜃 with a policy-gradient objective on a
trajectory including the demonstrated state 𝑠𝑘 , 𝑘 ∈ (0, 𝑇 − 1):

∇𝜃 𝐽 (𝜃) =
𝑇 −1∑︁
𝑡=0

∇𝜃 log 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )𝑅𝑡 (1)

where 𝑅𝑡 =
∑𝑇

𝑡′=𝑡+1 𝛾
𝑡′−𝑡−1𝑟𝑡′ is the total reward received over

the course of the trajectory. If the agent receives 0 reward
during the episode in which the demonstration occurred
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(e.g. it does not reach the goal), we can see that ∀𝑡 ∈
(0, 𝑇), 𝑅𝑡 =

∑𝑇
𝑡′=𝑡+1 𝛾

𝑡′−𝑡−1𝑟𝑡′ (0) = 0. Therefore ∇𝜃 𝐽 (𝜃) =∑𝑇 −1
𝑡=0 ∇𝜃 log 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) (0) = 0, and the novice receives no

gradients from the expert’s demonstration which allow it to
update its policy.

Temporal Difference (TD) Learning could temporarily
mitigate this issue, but as we show in detail in the appendix,
this ability quickly deteriorates. Consider Q-learning, in
which 𝑄(𝑎, 𝑠) = E𝜋

[ ∑∞
𝑡=0 𝛾

𝑡 𝑟𝑡+1 | 𝑎, 𝑠
]

models the total
expected reward from taking action 𝑎 in state 𝑠. As the agent
continues to receive 0 rewards during training, all 𝑄 values
will be driven toward zero. Even if the agent observes a useful
novel state such as 𝑠, as 𝑄(𝑎, 𝑠) → 0,∀𝑎 ∈ A, 𝑠 ∈ S, the
Q-learning objective becomes:

𝑄(𝑠, 𝑎) = 𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′) = 0 + 𝛾0 = 0 (2)

Thus, the objective forces the value of 𝑄(𝑠, 𝑎) to be zero. In
this case, modeling transitions into or out of state 𝑠 is not
required in order to produce an output of zero, since all other
Q-values are already zero.

In both cases, we can see that before a model-free RL
agent receives a reward from the environment, it will have
difficulty modeling novel states or transition dynamics. This
makes learning from the cues of experts particularly difficult.
Learning to model the expert’s policy 𝜋𝐸 (𝑎𝐸 |𝑠𝐸 ) would likely
help the novice improve performance on the task. However,
the novice does not have explicit access to the expert’s states
or actions. From its perspective, the other agent’s policy
is simply a part of the environment transition dynamics.
While the true state transition function 𝑠𝑡+1 = T (𝑠𝑡 , 𝑎𝑁

𝑡 , 𝑎𝐸𝑡 )
depends on both the novice’s own action 𝑎𝑁

𝑡 , and the expert’s
policy (since 𝑎𝐸𝑡 = 𝜋𝐸 (𝑠𝐸𝑡 )), the novice is only able to
observe 𝑝(𝑠𝑁

𝑡+1 |𝑠
𝑁
𝑡 , 𝑎𝑁

𝑡 ). Therefore, the novice can only
obtain knowledge of the expert’s policy through correctly
modeling the state transitions it observes. Since, as we
have argued above, the novice will struggle to model state
transitions in the absence of external reward, it will also have
difficulty modeling another agent’s policy.

SociAPL
To mitigate this issue, we propose augmenting the novice agent
with a model-based prediction loss. Specifically, we append
additional layers 𝜃𝐴 to the policy network’s encoding of the
current state, 𝑓𝜃 (𝑠𝑡 ), as shown in Figure 3. We then introduce
an unsupervised mean absolute error (MAE) auxiliary loss
to train the network to predict the next state 𝑠𝑡+1 given the
current state 𝑠𝑡 and the agent’s current action 𝑎𝑡 :

𝑠𝑡+1 = 𝑓𝜃𝐴 (𝑎𝑡 , 𝑠𝑡 ) (3)

𝐽 =
1
𝑇

𝑇∑︁
𝑡=0

|𝑠𝑡+1 − 𝑠𝑡+1 | (4)

This architecture allows gradients from the auxiliary loss to
contribute to improving 𝑓𝜃 (𝑠𝑡 ). Figure 4 shows example state
predictions generated by the auxiliary layers for a SociAPL
agent, demonstrating that this architecture enables effectively
learning of the transition dynamics.

We can now see that if the novel demonstration state is in
a trajectory, 𝑠𝑘 ∈ (0, 𝑇), the term |𝑠𝑘 − 𝑠𝑘 | will be part of the
objective. It will not be 0 unless the agent learns to perfectly
predict the novel demonstration state. Therefore, cues from
the expert will provide gradients that allow the novice to
improve its representation of the world, even if it does not
receive any reward from the demonstration. This architecture
also implicitly improves the agent’s ability to model other
agents’ policies, since it must correctly predict other agents’
actions in order to accurately predict the next state. It is able
to do this without ever being given explicit access to the other
agent’s states or actions. We call our approach Social learning
with Auxiliary Predictive Loss (SociaAPL), and hypothesize
that it will improve agents’ ability to learn from the cues of
experts.

Optimization and architecture

To optimize our agents, we test both TD-learning (deep Q-
learning) and policy-gradient methods, and find that Proximal
Policy Optimization (PPO) (Schulman et al. 2017) provides
better performance and stability, and is most able to benefit
from social learning. We use Generalized Advantage Esti-
mation (GAE) (Schulman et al. 2016) to train the PPO value
function.

As shown in Figure 3, our agents use convolution layers
to learn directly from a pixel representation of the state 𝑠𝑡 .
Because the environments under investigation are partially
observed and non-Markov, we use a recurrent policy param-
eterized by a Long Short-Term Memory (LSTM) network
(Hochreiter and Schmidhuber 1997) to model the history of
observations in each episode. LSTM hidden states are stored
in the experience replay buffer. Following the recommenda-
tions of Andrychowicz et al. (2020), we recalculate the stored
state advantage values used to compute the value function
loss between mini-batch gradient updates. In addition, we
recalculate and update the stored hidden states as suggested
by Kapturowski et al. (2018) for off-policy RL. A detailed
description of the network architecture and hyperparameters
used in our experiments are given in an appendix.

Baselines and ablations

Our experiments compare training SociAPL agents (which
learn in the presence of experts in the same environment) to
agents which use the same architecture and prediction loss as
in Figure 3, but train alone. We call these agents Solo APL. We
also compare to two ablations of the model. The first uses the
same architecture with no auxiliary loss, and can be considered
a vanilla PPO implementation. The second replaces the
next-state-prediction objective of Equation 4 with a simple
autoencoder reconstruction objective that predicts the current
state, 𝑠𝑡 = 𝑓𝜃𝐴 (𝑎𝑡 , 𝑠𝑡 ). The loss is thus 𝐽 = 1

𝑇

∑𝑇
𝑡=0 |𝑠𝑡 − 𝑠𝑡 |.

In this case the network must represent the current state, but
does not need to learn about the transition dynamics. We
refer to this Social Auxiliary Reconstruction Loss agent as
SociARL.
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Figure 3: SociAPL deep neural network architecture. Convolution (conv) layers extract information about the state from pixels,
which is fed into a Fully Connected (FC) layer, and a recurrent LSTM. The yellow shaded box shows the components of the
model which learn the RL policy 𝜋 and value function 𝑉 (𝑠). The green shaded box shows the components of the model dedicated
to computing the auxiliary loss, which predicts the next state given the current state.

Figure 4: Examples of future states 𝑠𝑡+1 predicted by the network given state 𝑠𝑡 (“observed state”), and each of the possible
movement actions 𝑎𝑡 . Most predictions are highly accurate, indicating the network has learned to effectively model transition
dynamics. The transition for the ‘do nothing’ action is less accurate because it is infrequently chosen by the agent.

Social Learning Environments
Humans and animals are most likely to rely on social learning
when individual learning is too difficult or unsafe (Henrich
and McElreath 2003; Laland 2004). Further, individuals
prefer to learn from others that they perceive to be highly
successful or competent, which is known as prestige bias
(Jiménez and Mesoudi 2019). Cues or signals associated
with prestige have shown to be important to both human
and animal social learning (Barkow et al. 1975; Horner et al.
2010).

Motivated by these two ideas, we introduce a novel envi-
ronment specifically designed to encourage social learning
by making individual exploration difficult and expensive,
and introducing prestige cues. In Goal Cycle (Figure 5a),
agents must navigate between several goal tiles, and are re-
warded for navigating between the goals in a certain order
and penalized for deviating from that order. The goal tiles
are placed randomly and are visually indistinguishable, so it
is not possible for an agent to identify the correct traversal
order without potentially incurring an exploration penalty.
When the penalty is large, this becomes a hard exploration

task. Each agent changes color as it collects rewards over the
course of each episode, making color a cue to agents’ success
or prestige.

Agent observations consist of egocentric images of nearby
tiles, and they can see themselves in their partial views. As
an agent accrues rewards over a single episode, it changes
from red to blue. The agent’s color resets to red if it incurs a
penalty. Thus, upon reaching a goal, an agent can determine
whether its traversal order was correct by observing its own
color. The colour of other agents acts as a signal of their
competence (or prestige cue), helping identify other agents
with the most expertise. The prestige 𝑐𝑡+1 depends on the
previous prestige 𝑐𝑡 and reward 𝑟𝑡 :

𝑐𝑡+1 =

{
𝛼𝑐𝑐𝑡 + 𝑟𝑡 , 𝑟𝑡 ≥ 0
0, otherwise,

(5)

where the decay constant 𝛼𝑐 determines how quickly prestige
decays absent new rewards. For our experiments we used
𝛼 = 0.99. Agent colors in goal cycle are determined using
the squashed prestige value to interpolate between the red
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(a) Goal Cycle (3 goals) (b) Four Rooms

Figure 5: Goal Cycle (a) is a 13x13 environment in which
the positions of goal tiles (yellow) and obstacles (brown)
are randomized at the start of each episode. Agents receive
rewards for traversing the goal tiles in a certain order (0
→ 1 → 2 → 0 → ...) and penalties for deviations from
the correct order. However, the correct order is not visible.
Agents always receive a reward from the first goal tile they
encounter in an episode. We test whether agents trained in
Goal Cycle can generalize to Four Rooms (b), a larger, 17x17
environment with walls hiding the location of a single goal.

and blue RGB color vectors.
color𝑡 = blue · 𝑐𝑡 + red · (1 − 𝑐𝑡 ), (6)

where 𝑐𝑡 = sigmoid(𝑐𝑡 ).
Agents persist in the environment for a fixed duration.

During each episode skilled agents discover the goal loca-
tions and correct traversal order while incurring minimal
penalties, then achieve high rewards by cycling between the
goals for the remainder of the episode. It is not possible to
identify the correct cycle by observing the goal tiles directly;
however, this information can be inferred by observing other
agents. In practice, since the behavior of other agents can
be unpredictable and potentially non-stationary, agents more
easily learn to solve the task directly through trial and error.
But by adjusting the penalty for navigating to goals in the
wrong order, we can disincentivize individual exploration
and thereby encourage social learning. Thus, we can directly
control how strongly agents are incentivized to attend to
one another. In all the Goal Cycle variants discussed here,
agents receive a reward of +1 for navigating to the first goal
they encounter in an episode, and +1 for any navigating to
any subsequent goals if in the correct order. They receive
a penalty of −1.5 for navigating to the incorrect goal. The
Goal Cycle environments are available in the open-source
Marlgrid project (Ndousse 2020).

Training Expert Agents
The Goal Cycle environments are challenging to master
because there are many more incorrect than correct goal
traversal sequences. When the penalty is large, the returns for
most traversal orders are negative, so mistake-prone agents
learn to avoid goal tiles altogether (after the first goal in an
episode, which always gives a reward of +1). However, we can
obtain agents that perform well in high penalty environments
using a curriculum: we train them initially in low-penalty
environments and gradually increase the penalty magnitude.

Figure 6: For social learning in the presence of experts, only
agents with an auxiliary loss that enables them to model
expert’s cues (SociAPL, SociARL) succeed in using social
learning to improve performance. Faded dotted lines show
the performance of individual random seeds and bolded lines
show the mean of 5 seeds. The final performance is bimodal,
with some novice seeds achieving expert-level performance
and others failing to learn entirely. Since the normality
assumption is violated, we refrain from using confidence
intervals. None of the seeds for solo agents or social vanilla
PPO are able to solve the task. In contrast, 4 of 5 SociAPL
seeds are able to exceed the performance of the experts present
in their environment.

Transfer Environments
We test the zero-shot transfer performance of agents pre-
trained in 3-Goal Cycle in two new environments. The first
is a Goal Cycle environment with 4 goals. This variant
is significantly harder, because while there are two possible
cycles between three goals, there are six ways to cycle between
four goals. Thus, even optimal agents must incur higher
penalties to identify the correct traversal order in each episode.

We also test transfer to the classic Four Rooms environment
(shown in Figure 5b). Here agents must locate a single goal
tile within a time limit. The reward for navigating to the
goal is +1 at the beginning of each episode and decreases
linearly until reaching 0 when the episode ends. The goal is
placed randomly in one of the sixteen corner tiles. This 17x17
environment is significantly larger, and agents are unlikely to
have encountered walls while training in Goal Cycle.

Results
Figure 6 compares Goal Cycle performance of agents trained
alone (solo) to agents trained in the presence of experts
(social). Solo APL agents are unable to discover the strategy
of reaching the goals in the correct order; instead, all random
seeds converged to a strategy of stopping after reaching a
single goal (with a maximum return of 1). Social vanilla
PPO agents failed in the same way, with all seeds receiving
a maximum reward of 1. This supports our hypothesis that

6



Figure 7: The effect of expert skill on social learning. With the
proposed APL, novice agents benefit from social learning in
the presence of near-optimal experts (SociAPL) or imperfect
experts (SociAPL-IE), surpassing the performance of solo
agents in both cases. However, SociAPL-IE agents achieve
lower performance, and only 1/5 random seeds exceed the
performance of the imperfect experts.

model-free RL has difficulty benefiting from the cues of
experts in sparse reward environments.

In contrast, social agents trained with an auxiliary loss to
predict the next state (SociAPL) or reconstruct the current
state (SociARL) were both able to achieve higher performance.
While the reconstruction loss helps SociARL agents learn
from experts, still higher performance is obtained with the
SociAPL model-based prediction loss. This is likely because
in contrast with the reconstruction loss, the model-based loss
helps agents learn about both the transition dynamics and the
other agent’s policy. The majority of SociAPL random seeds
are actually able to exceed the performance of the expert with
which they are trained. Note that the solo agents use the same
auxiliary prediction loss as the SociAPL agents, showing
that good performance depends on learning effectively from
expert cues.

Learning from Sub-Optimal Experts
In real-world environments, not all of the agents that it is
possible to observe will have optimal performance. Therefore,
we test whether it is still possible to learn from imperfect
experts (SociAPL-IE), and present the results in Figure 7.
While the performance of the expert does affect the novices’
final performance, even when learning from imperfect experts
novices can use social learning to exceed the performance of
agents trained alone. However, we find that novices trained
with optimal experts more frequently learn to exceed the
performance of the experts with which they are trained.

Transfer to New Environments
A central thesis of this work is that social learning can help
agents adapt more rapidly to novel environments. This could
be particularly useful because deep RL often fails to generalize

(a) Goal Cycle (4 goals, with experts)

(b) Four Rooms (with expert)

Figure 8: Zero-shot transfer performance in novel environ-
ments with expert demonstrators. Each bar shows the mean
of the best three out of five seeds, and each seed was evalu-
ated at five consecutive model checkpoints (128 episodes per
checkpoint) starting after 1.5 million training episodes. The
experts and 3-goal solo learners were also trained with APL.
Error bars show 95% confidence intervals for the estimated
means. Agents which have learned to rely on social learning
benefit from the cues of novel experts in the new environ-
ment. They easily out-perform agents trained alone as well
as the experts from which they originally learned. Videos:
tinyurl.com/SociAPL

to even slight modifications of the training environment.
Therefore, we investigate how well agents pre-trained in 3-
Goal Cycle can generalize to two new environments: 4-Goal
Cycle and Four Rooms.

Figure 8a shows the zero-shot transfer performance of
agents trained in 3-Goal Cycle to 4-Goal Cycle and a new set
of experts. Agents trained alone (which have not learned to
rely on social learning) perform poorly. In contrast, SociAPL
agents show evidence of having learned a generalized social
learning policy, in that they are able to learn from the cues
of a new set of experts and maintain high performance in the
new environment. Note that agents trained as experts in the
3-goal environment receive large negative scores, repeatedly
incurring a penalty for navigating to the goals in the incorrect
order. This illustrates the brittleness of an RL policy which
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is overfit to the training environment.
Figure 8b shows the zero-shot transfer performance of

the same agents in the Four Rooms environment, which is
significantly larger and has sparser rewards. Despite these
differences, expert agents from the 3-Goal Cycle environment
perform moderately well. However, the SociAPL agents
not only significantly out-perform agents trained alone, but
are actually able to outperform the 3-Goal Cycle experts
with which they were trained. This is because they can
benefit from the cues of Four Rooms experts to more closely
approximate the optimal policy. Once again, we see that a
generalized social learning policy is better able to transfer
to a new environment than an expert overfit to the training
environment. Taken together, these results suggest social
learning can enable RL agents to benefit from the cues of
experts present in their environments, enhancing their ability
to adapt to changes between the training and test environments.

Removing the Experts
A potential downside to learning to rely on the cues of experts
is that agents could fail to perform well when experts are
removed from the environment. For novice agents always
trained with experts, there appears to be a trade-off between
social learning and individual learning. As shown in Figure
9, novice SociAPL agents initially learn to solve the Goal
Cycle task with individual exploration, but eventually they
overfit to the presence of experts and become reliant on expert
cues to the detriment of solo performance. Observing the
agent’s behavior reveals that it has learned to follow the
cues of experts when they are present in the environment,
but refrain from individual exploration when experts are not
present. Given the high cost of individual exploration in this
environment, this a safe but conservative strategy.

We find that we can improve the solo performance of
SociAPL by changing the distribution of training tasks to
include episodes in which the experts are not present. The
dashed lines in Figure 9 show the transfer performance of a
checkpoint transferred from entirely social environments to
a mix of solo and social environments as training proceeds.
The agent is able to retain good performance in solo 3-goal
environments as well as 4-goal environments with experts,
indicating that it is learning to opportunistically take advan-
tage of expert cues while building individual expertise in the
3-goal environment. In fact, the performance of SociAPL
in the solo environment is higher than agents exclusively
trained in the solo environment (as shown in Figure 6). This
demonstrates that not only does social learning enable agents
to discover skills that they could not learn by themselves, but
that they are able to retain this knowledge to improve their
individual performance even when experts are not present.

Conclusions
In this work we have investigated whether model-free deep
RL is able to benefit from the presence of expert agents in
the environment. We find that in sparse reward environments,
model-free agents fail to use expert cues to obtain optimal
performance. However, by adding a model-based auxiliary
loss which requires modeling transition dynamics in the

Figure 9: Solid lines Transfer performance throughout
training for one of the SociAPL seeds from Figure 6. The
green line shows performance in environments sampled from
the training distribution, and the solid purple and orange
lines show the zero-shot transfer performance in solo 3-Goal
Cycle, and 4-Goal Cycle with experts, respectively. The agent
initially relies mostly on individual exploration as indicated by
good zero-shot transfer performance in the solo environment.
Zero-shot performance in the 4-Goal Cycle environment
with experts is initially poor, since the individual 3-Goal
policy is ineffective in the 4-Goal variant. After about 500k
episodes the agent becomes reliant on cues from the 3-Goal
experts. This allows it to perform well in 4-Goal, but its
performance suffers in 3-Goal. Dashed lines Transfer
performance of the same agent if the distribution of training
environments is changed from 100% social to 75% solo and
25% social after about 500k episodes. As training proceeds
the agent retains the capacity to solve the solo three-goal
environment while learning to use cues from expert behavior
when they are available. The performance of this agent in
the solo environment actually exceeds that of agents trained
exclusively in the solo environment.

absence of any rewards, we are able to train SociAPL agents
to use social learning. When deployed to novel environments,
these agents retain their ability to benefit from the cues of
experts, and perform well in zero-shot transfer tasks with
experts when agents trained alone cannot. Further, by mixing
social and solo training, we obtain social learning agents that
actually have higher performance in the solo environment
than agents trained exclusively in the solo environment. Our
results demonstrate that social learning not only enables
agents to learn complex behavior that they do not discover
when trained alone, but that it can allow agents to achieve
good performance when transferred to novel environments.

Limitations and Future Work
Our social learning experiments focus on exploratory navi-
gation tasks, so agents learn to follow experts as an effective
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social learning strategy. Compelling directions for future
work include extending this work to other domains such as
manipulation, to scenarios in which expert agents pursue dif-
ferent goals than the novices, and to scenarios with multiple
experts that employ a variety of strategies. We demonstrate
that training in a mixture of social and solitary environments
can permit novice SociAPL agents to develop effective strate-
gies for both social and individual task variants, and notably
that the resulting individual skill far exceeds that of a solitary
novice. However, in this work we do not thoroughly explore
different strategies for augmenting solitary with social expe-
rience. Further research could clarify the circumstances in
which adding social experiences could aid solitary task per-
formance, and see the development of algorithms to facilitate
this for arbitrary tasks.
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Appendix
Additional results
Figure 10 shows the training curve for the next-state auxiliary
prediction loss of Equation 4, for the five SociAPL agent
seeds plotted in Figure 6. The curve shows that the agent
is effectively learning to predict the next state with low
mean absolute error. However, because the agent’s policy
is changing at the same time, the prediction problem is
non-stationary, which means that the loss does not always
decrease. If the agent discovers a new behavior, the model
will be required to predict new state transitions not previously
experienced.

Figure 10: Next-state auxiliary prediction loss (in Mean
Absolute Error (MAE) over the course of training the SociAPL
agents shown in Figure 6.

Q-learning learning in sparse reward environments
Before a Temporal Difference (TD) learning agent has
received any reward, it will be difficult for it to learn
to model transition dynamics. Consider as an example
deep Q-learning, in which the Q-function is parameter-
ized by a neural network which encodes the state using
a function 𝑓𝜃 (𝑠). Assume the network is randomly initial-
ized such that all Q-values are small, random values; i.e.
∀𝑎 ∈ A, 𝑠 ∈ S, 𝑄(𝑎, 𝑠) = 𝜖 ∼ N(0, 0.1). Assume that
the agent has not yet learned to navigate to the goal, and
has received zero rewards so far during training. Therefore,
when the agent observes the experience (𝑠, 𝑎, 𝑟 = 0, 𝑠′), the
Q-learning objective is:

𝐽 (𝜃) = (𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′) −𝑄(𝑠, 𝑎))2 (7)

= (0 + 𝛾𝜖1 − 𝜖2)2 (8)

In effect, this induces a correlation between 𝑄(𝑠′, 𝑎′) and
𝑄(𝑠, 𝑎), and consequently 𝑓𝜃 (𝑠′) and 𝑓𝜃 (𝑠), as a result of
observing the state transition 𝑠 → 𝑠′. However, as the agent
continues to receive zero reward, all Q-values will be driven
toward zero. Once this occurs, even if the agent observes a
useful novel state such as 𝑠, our equation becomes:

(𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′) −𝑄(𝑠, 𝑎))2 = (0 −𝑄(𝑠, 𝑎))2 (9)

Figure 11: We use a penalty curriculum to obtain experts in
environments where exploration is expensive. In the scenario
visualized here, an agent trained for 81920 episodes in Goal
Cycle environments with penalty of 0.5, then continued with
a penalty of 1.0

such that the objective forces the value of 𝑄(𝑠, 𝑎) to be zero.
In this case, modeling transitions into or out of state 𝑠 is not
required in order to produce an output of zero, since all other
Q-values are already zero.

Environment details
The environments used in this paper were originally based
on Minigrid (Chevalier-Boisvert, Willems, and Pal 2018).
The partial states constituting agent observations are 27×27
RGB images corresponding to 7×7 grid tiles. There are
7 possible actions, though only three actions (rotate left,
rotate right, move forward) are relevant in the experiments
discussed in this paper. Agents are unable to see or move
through the obstructive tiles that clutter their environments,
and obstructed regions of their partial views appear as purple.
However, agents can both see and move through goal tiles as
well as other agents.

When the penalty for individual exploration in Goal Cycle
environments is large, agents are unable to learn effective
strategies. We used a penalty curriculum to obtain experts
for such tasks as shown in Figure 11.

Network architecture details
The value, policy, and auxiliary task networks share three
convolution layers, a fully connected layer, and an LSTM layer.
Values and policies are computed with two fully connected
layers, and the prediction-based auxiliary branch has a fully
connected layer followed by transposed convolution layers
that mirror the input convolution layers. The convolution and
transposed convolution use leaky ReLU activation functions;
all other layers use tanh activation functions.
• Shared input layers:

– Conv (3, 32) 3x3 filters, stride 3, padding 0,
– Conv (32, 64) 3x3 filters, stride 1, padding 0,
– Conv (64, 64) 3x3 filters, stride 1, padding 0,
– FC (576, 192),
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– LSTM (192, 192)
• Value MLP:

– FC (192, 64),
– FC (64, 64),
– FC (64, 1)

• Policy MLP:
– FC (192, 64),
– FC (64, 64),
– FC (64, 7)

• Auxiliary state prediction layers:
– FC (192 + 7, 576),
– DeConv (64, 64) 3x3 filters, stride 1, padding 0,
– DeConv (64, 32) 3x3 filters, stride 1, padding 0,
– DeConv (32, 3) 3x3 filters, stride 3, padding 0

Altogether there are 668555 parameters. We experimented
with smaller (357291-parameter) networks but did not observe
a significant performance difference. The networks were sized
to roughly saturate the available (desktop) compute resources.

Hyperparameters
Each agent uses a single Adam optimizer (Kingma and Ba
2014) to update its parameters. Each of the novice agents
was trained with a learning rate of 1e − 4. For SociAPL,
the expert agents were trained with a learning rate of 1e − 5.
Weights for all agents in the generalization experiments as
well as the imperfect experts in SociAPL-IE were kept frozen
and not updated.

Each parameter update consists of 20 sequential mini-batch
updates with the same batch of rollouts (128 episodes). Each
mini-batch consists of a uniform random sample of trajectories
from that batch. Hidden states are stored alongside the
trajectories, and the initial hidden state for each mini-batch
trajectory is retrieved from these stored values. Hidden states
and advantage values for the entire batch are re-calculated
every 2 mini-batches. The mini-batch iteration ceases if
KL(𝜋, 𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡 ) exceeds a target of 0.01. If for any mini-batch
the estimated divergence exceeds a hard limit of 0.03, the
update terminates and all changes to the network parameters
and optimizer state are reverted.

batch size 128 episodes
mini-batches per batch 20
mini-batch num trajectories 512
mini-batch trajectory length 16
hidden state/advantage update interval 2 minibatches
return discount 𝛾 0.993
GAE-𝜆 0.97
PPO clip ratio 0.2
KL target 0.01
KL hard limit 0.03

For each mini-batch iteration, the loss used to update agent
parameters is

𝐿total = 𝐿 𝜋 (𝜃) + 𝑐𝑉 · 𝐿𝑉 (𝜃) + 𝑐aux · 𝐿aux (𝜃) − 𝑐ent · 𝐿ent (𝜃),

where the policy loss 𝐿 𝜋 is computed with PPO-clip (Schul-
man et al. 2017) and GAE (Schulman et al. 2016), the value
loss 𝐿𝑉 is the mean squared error of the values estimated
for each step in the trajectory, 𝐿ent (𝜃) is the policy entropy
bonus, and 𝐿aux (𝜃) is the auxiliary prediction loss (Equation
4). The loss scaling coefficients used in our experiments are
𝑐𝑉 = 0.1, 𝑐ent = 1e − 5, and 𝑐aux = 3.

The prestige decay constant 𝛼𝑐 used for the Goal Cycle
environments (i.e. Equation 5) was 0.99.

In general we sought hyperparameters that enable stable
training. We experimented with mini-batch sizes varying
from 32 to 1025 trajectories and found training to be more
stable with larger mini-batches. Training was less stable with
learning rates higher than 1e − 4.

We randomized seeds for both the network parameter
initialization and environment generation for each trial of
each experiment.

Compute
The experiments in this paper were performed primarily on
a desktop computer with an AMD Ryzen 3950x CPU and
two Nvidia GTX 1080TI GPUs, as well as g4dn.8xlarge
instances provisioned on Amazon AWS. Either system can
run two or three trials simultaneously, each consisting of three
agents training together in a shared environment. Collecting
experience and updating parameters were comparably time
consuming, and a single 1.5M episode (375M step) 3-agent
training run took about 30 hours. We used Ubuntu 18.04
with python3.8 and all neural networks are implemented in
PyTorch v1.6 (Paszke et al. 2019). Training metrics were
logged with Weights and Biases (Biewald 2020).
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